CN106603130B - Digital-analog hybrid precoding method in large-scale MIMO system - Google Patents
Digital-analog hybrid precoding method in large-scale MIMO system Download PDFInfo
- Publication number
- CN106603130B CN106603130B CN201611185148.2A CN201611185148A CN106603130B CN 106603130 B CN106603130 B CN 106603130B CN 201611185148 A CN201611185148 A CN 201611185148A CN 106603130 B CN106603130 B CN 106603130B
- Authority
- CN
- China
- Prior art keywords
- matrix
- opt
- precoding
- digital
- receiving end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000011159 matrix material Substances 0.000 claims abstract description 129
- 238000000354 decomposition reaction Methods 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 3
- 230000009191 jumping Effects 0.000 claims 2
- 238000001228 spectrum Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000010295 mobile communication Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
Abstract
Description
技术领域technical field
本发明涉及通信技术领域,尤其涉及一种大规模MIMO系统中数模混合预编码方法。The present invention relates to the field of communication technologies, in particular to a digital-analog hybrid precoding method in a massive MIMO system.
背景技术Background technique
多输入多输出(MIMO)技术能够充分利用空间资源来对抗无线信道的衰落,从而在不增加系统带宽和发送功率的情况下,可以提高了通信系统的可靠性和频谱利用率。目前,MIMO技术已经广泛应用于多种移动通信标准中,例如UMTS系统的HSDPA、3GPP中的LTE/LTE-A、IEEE 802.16e/m中的WiMAX和IEEE 802.11n/ac/ah中的WLAN/WI-F。在上述这些系统中,收发两端的天线规模都较小,即基站或接入点的天线数最多不超过8个,而用户天线数最多不超过4个。Multiple-input multiple-output (MIMO) technology can make full use of space resources to combat the fading of wireless channels, thereby improving the reliability and spectrum utilization of the communication system without increasing the system bandwidth and transmit power. At present, MIMO technology has been widely used in various mobile communication standards, such as HSDPA in UMTS system, LTE/LTE-A in 3GPP, WiMAX in IEEE 802.16e/m, and WLAN/ WI-F. In the above-mentioned systems, the antennas at both ends of the transceiver are small in scale, that is, the number of antennas at the base station or access point does not exceed 8 at most, and the number of antennas at the user does not exceed 4 at most.
第5代(5G)移动通信系统旨在为用户提供Gbit/s的数据传输率,由于现有移动通信授权频谱资源的限制,使得该目标的实现变得非常困难。于是,针对毫米波段非授权频段在未来移动通信中的应用研究成为目前国内外学者研究的重点。毫米波因其波长相对较短,天线阵列的物理尺寸大幅度缩小,因此基站端可以安装大规模天线,从而可将毫米波系统与大规模MIMO技术完美地结合起来。作为有效提升未来5G系统数据率、缓解频谱资源压力的有效技术,毫米波大规模MIMO系统及相关关键技术的研究已成为当前移动通信领域的热门研究课题。在毫米波大规模MIMO系统中,受能耗和成本等因素的限制,设计合理的预编码方案显得尤为重要。传统的小规模MIMO预编码方案主要集中在基带,通过采用全数字预编码器对信号进行预处理,从而减小干扰和接收机处理的复杂度。在该方案中,RF射频(RF射频)链路的个数与收发天线数相等,但数目相对较少,因此能耗和成本相对较低。而在毫米波大规模MIMO系统中,由于基站天线数高达数十根甚至上百根,这种全数字预编码方案已不再适用。为了解决毫米波大规模MIMO系统中的预编码问题,研究人员提出了多个数模混合的预编码方案。相关得的研究成果主要分以下为两类:第一类基于共享天线设计,即每个RF链路与所有的天线相连。文献O.El Ayach,S.Rajagopal,S.Abu-Surra,Z.Pi,andR.W.Heath,Jr.,“Spatially sparse precoding in millimeter wave MIMO systems,”IEEE Trans.Wireless Commun.,vol.13,no.3,pp.1499–1513,Mar.2014,将数模混合预编码设计建模为一个稀疏信号的重构问题,并提出基于正交匹配追踪算法的数模混合预编码方案。虽然该方案可以获得比较好的性能,但实现复杂比较高。而另一类基于分离天线设计,即每个RF链路只与所有部分的天线相连。文献X.Gao,L.Dai,S.Han,C.-L.I,andR.W.Heath,Jr.,“Energy-efficient hybrid analog and digital precoding formmWave MIMO systems with large antenna arrays,”IEEE J.Sel.Areas Commun.,vol.34,no.4,pp.998–1009,Apr.2016,利用连续干扰消除的思想,提出了一种基于迭代的数模混合预编码方案。该方案假设数字域预编码矩阵为具有对角矩阵的结构,这种假设使得数字域预编码只起到功率分配的作用,从而导致系统性能损失较多。The 5th generation (5G) mobile communication system aims to provide users with a data transmission rate of Gbit/s. Due to the limitation of existing mobile communication licensed spectrum resources, it is very difficult to achieve this goal. Therefore, research on the application of millimeter-band unlicensed frequency bands in future mobile communications has become the focus of current domestic and foreign scholars' research. Due to the relatively short wavelength of millimeter wave, the physical size of the antenna array is greatly reduced, so large-scale antennas can be installed at the base station, so that the millimeter wave system can be perfectly combined with massive MIMO technology. As an effective technology to effectively improve the data rate of future 5G systems and relieve the pressure on spectrum resources, the research on millimeter-wave massive MIMO systems and related key technologies has become a hot research topic in the field of mobile communications. In a millimeter-wave massive MIMO system, it is particularly important to design a reasonable precoding scheme due to factors such as energy consumption and cost. The traditional small-scale MIMO precoding scheme mainly focuses on the baseband, and uses an all-digital precoder to preprocess the signal, thereby reducing the complexity of interference and receiver processing. In this scheme, the number of RF radio frequency (RF radio frequency) links is equal to the number of transceiver antennas, but the number is relatively small, so the energy consumption and cost are relatively low. However, in a millimeter-wave massive MIMO system, since the number of base station antennas is as high as dozens or even hundreds, this all-digital precoding scheme is no longer applicable. In order to solve the precoding problem in millimeter-wave massive MIMO systems, researchers have proposed multiple digital-analog hybrid precoding schemes. The related research results are mainly divided into the following two categories: The first category is based on the shared antenna design, that is, each RF link is connected to all the antennas. Literature O.El Ayach,S.Rajagopal,S.Abu-Surra,Z.Pi,andR.W.Heath,Jr.,“Spatially sparse precoding in millimeter wave MIMO systems,”IEEE Trans.Wireless Commun.,vol.13 , no.3, pp.1499–1513, Mar.2014, modeled the digital-analog hybrid precoding design as a sparse signal reconstruction problem, and proposed a digital-analog hybrid precoding scheme based on the orthogonal matching pursuit algorithm. Although this scheme can achieve better performance, the implementation complexity is relatively high. The other type is based on split antenna designs, ie each RF link is only connected to all part of the antenna. Literature X. Gao, L. Dai, S. Han, C.-L.I, and R.W. Heath, Jr., "Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays," IEEE J.Sel. Areas Commun., vol. 34, no. 4, pp. 998–1009, Apr. 2016, using the idea of continuous interference cancellation, an iterative digital-analog hybrid precoding scheme is proposed. The scheme assumes that the digital domain precoding matrix has a diagonal matrix structure. This assumption makes the digital domain precoding only play the role of power allocation, resulting in a large loss of system performance.
发明内容SUMMARY OF THE INVENTION
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种大规模MIMO系统中数模混合预编码方法,旨在解决现有的基于共享天线设计的数模混合预编码方案的实现复杂度比较高的问题。In view of the above-mentioned defects of the prior art, the technical problem to be solved by the present invention is to provide a digital-analog hybrid precoding method in a massive MIMO system, aiming to solve the problems of the existing digital-analog hybrid precoding scheme based on shared antenna design. Problems with high implementation complexity.
为实现上述目的,本发明提供了一种大规模MIMO系统中数模混合预编码方法,其特征在于,包括以下步骤:In order to achieve the above object, the present invention provides a digital-analog hybrid precoding method in a massive MIMO system, which is characterized by comprising the following steps:
步骤一,发射端计算理想的预编码矩阵Fopt;
步骤二,发射端分别计算模拟域的预编码矩阵FRF和数字域的预编码矩阵FBB;
步骤三,发射端利用FRF和FBB对发送信号进行预编码;Step 3, the transmitting end uses F RF and F BB to precode the transmitted signal;
步骤四,接收端计算理想的合并矩阵Wopt;
步骤五,接收端分别计算模拟域的合并矩阵WRF和数字域的合并矩阵WBB;Step 5, the receiver calculates the merging matrix W RF of the analog domain and the merging matrix W BB of the digital domain respectively;
步骤六,接收端利用WRF和WBB对接收信号进行合并。In
进一步地,所述步骤一具体包括:Further, the
第一步,发射端根据接收端的反馈信号对MIMO信道进行估计得到MIMO信道矩阵的估计 In the first step, the transmitter estimates the MIMO channel according to the feedback signal from the receiver to obtain an estimate of the MIMO channel matrix
第二步,发射端对信道矩阵进行奇异值分解,即其中,Σ1为NR×NT维的对角矩阵且可以表示为Σ1=diag(λ1,λ2,…,λr,0,…,0),其中,λ1,λ2,…,λr为的非零奇异值且满足λ1>λ2>…>λr且其中diag()表示对角矩阵,rank()表示求矩阵的秩;而U1和V1分别是NR×NR维和NT×NT维的酉矩阵且()*表示求矩阵的共轭转置;The second step, the transmitter-to-channel matrix Perform singular value decomposition, that is Among them, Σ 1 is an N R × NT dimensional diagonal matrix and can be expressed as Σ 1 =diag(λ 1 ,λ 2 ,…,λ r ,0,…,0), where λ 1 ,λ 2 , ..., λr is is a non-zero singular value and satisfies λ 1 >λ 2 >…>λ r and Where diag() represents a diagonal matrix, and rank() represents the rank of the matrix; U 1 and V 1 are N R ×N R -dimensional and N T ×N T -dimensional unitary matrices, respectively, and () * represents the common value of the matrix. yoke transposition;
第三步,取第二步中的矩阵V1最左边的NS列作为理想的预编码矩阵Fopt。In the third step, the leftmost N S column of the matrix V 1 in the second step is taken as the ideal precoding matrix F opt .
进一步地,所述步骤二具体包括:Further, the
第一步,发射端将模拟域的预编码矩阵初始化为FRF=Fopt/||Fopt||,其中|| ||表示求矩阵的F范数,同时设置迭代总次数为K,并将迭代计数器的值k初始化为0;In the first step, the transmitter initializes the precoding matrix in the analog domain to F RF =F opt /||F opt ||, where || || represents the F-norm of the matrix, and sets the total number of iterations to K, and Initialize the value k of the iteration counter to 0;
第二步,发射端对FoptFRF进行奇异值分解,即FoptFRF=U2Σ2(V2)*,其中,Fopt为步骤一得到的理想预编码矩阵,FRF为上一步得到的模拟域的预编码矩阵;然后,发射端计算数字域的预编码矩阵为FBB=V2U2;In the second step, the transmitter performs singular value decomposition on F opt F RF , that is, F opt F RF =U 2 Σ 2 (V 2 ) * , where F opt is the ideal precoding matrix obtained in
第三步,发射端计算模拟域的预编码矩阵为FRF=(Fopt(FBB)*)/||Fopt(FBB)*||,其中,Fopt为步骤一得到的理想预编码矩阵,FBB为上一步得到的数字域的预编码矩阵;然后,发射端将迭代计数器的值k加1,即k=k+1;In the third step, the transmitter calculates the precoding matrix in the analog domain as F RF = (Fo pt (F BB ) * )/||Fo pt (F BB ) * ||, where F opt is the ideal precoding matrix obtained in
第四步,发射端判断迭代计数器的当前值k是否等于K,如果k=K,则步骤二结束;否则,跳转到第二步。In the fourth step, the transmitting end judges whether the current value k of the iteration counter is equal to K. If k=K, the second step ends; otherwise, it jumps to the second step.
进一步地,利用步骤二得到的FRF和FBB,发射端对发送信号进行预编码,发射端的发送信号为其中,PT为发射端的发射功率,s为NS维的列向量且表示发射端预编码器的NS路并行输入数据。Further, using the F RF and F BB obtained in
进一步地,所述步骤四具体包括:Further, the
第一步,接收端根据发射端发送的训练信号对MIMO信道进行估计得到MIMO信道矩阵的估计 In the first step, the receiving end estimates the MIMO channel according to the training signal sent by the transmitting end to obtain an estimate of the MIMO channel matrix
第二步,接收端对信道矩阵进行奇异值分解,即其中,Σ3为NR×NT维的对角矩阵且可以表示为Σ3=diag(η1,η2,…,ηr,0,…,0),其中,η1,η2,…,ηr为的非零奇异值且满足η1>η2>…>ηr且其中diag()表示对角矩阵,rank()表示求矩阵的秩;而U3和V3分别是NR×NR维和NT×NT维的酉矩阵且()*表示求矩阵的共轭转置;The second step, the receiver to the channel matrix Perform singular value decomposition, that is where Σ 3 is an N R × NT dimensional diagonal matrix and can be expressed as Σ 3 =diag(η 1 ,η 2 ,...,η r ,0,...,0), where η 1 ,η 2 , ..., η r is non-zero singular values of and satisfy η 1 >η 2 >…>η r and Where diag() represents a diagonal matrix, and rank() represents the rank of the matrix; and U 3 and V 3 are N R ×N R -dimensional and N T ×N T -dimensional unitary matrices, respectively, and () * represents the common value of the matrix. yoke transposition;
第三步,取第二步中的矩阵U3最左边的NS列作为理想的预编码矩阵Wopt。In the third step, the leftmost N S column of the matrix U 3 in the second step is taken as the ideal precoding matrix W opt .
进一步地,所述步骤五具体包括:Further, the step 5 specifically includes:
第一步,接收端将模拟域的合并矩阵初始化为WRF=Wopt/||Wopt||,其中|| ||表示求矩阵的F范数,同时设置迭代总次数为K,并将迭代计数器的值k初始化为0;In the first step, the receiver initializes the combined matrix of the analog domain as W RF =Wo pt /||Wo pt ||, where || || represents the F-norm of the matrix, and sets the total number of iterations to K, and The value k of the iteration counter is initialized to 0;
第二步,接收端对WoptWRF进行奇异值分解,即WoptWRF=U4Σ4(V4)*,其中,Wopt为步骤四得到的理想合并矩阵,WRF为步骤上一步得到的模拟域的合并矩阵;然后,接收端计算数字域的合并矩阵为WBB=V4U4;In the second step, the receiver performs singular value decomposition on W opt W RF , that is, W opt W RF =U 4 Σ 4 (V 4 ) * , where W opt is the ideal merging matrix obtained in
第三步,接收端计算模拟域的合并矩阵为WRF=(Wopt(WBB)*)/||Wopt(WBB)*||,其中,Wopt为步骤四得到的理想合并矩阵,WBB为上一步得到的数字域的合并矩阵;然后,接收端将迭代计数器的值k加1,即k=k+1;In the third step, the receiver calculates the merging matrix in the analog domain as W RF = (W opt (W BB ) * )/||W opt (W BB ) * ||, where W opt is the ideal merging matrix obtained in
第四步,接收端判断迭代计数器的当前值k是否等于K,如果k=K,则步骤五结束;否则,跳转到第二步。In the fourth step, the receiving end judges whether the current value k of the iteration counter is equal to K, and if k=K, the fifth step ends; otherwise, it jumps to the second step.
进一步地,接收端利用步骤五得到的WRF和WBB对接收信号进行合并,合并后的输出信号为y=(WBB)*(WRF)*Hx,其中,y为NS维的列向量且表示接收端合并后的NS路并行输出数据,x是发送端的发送信号,H表示发射端与接收端之间实际的MIMO信道,()*表示求矩阵的共轭转置。Further, the receiving end uses the W RF and W BB obtained in step 5 to combine the received signals, and the combined output signal is y=(W BB ) * (W RF ) * Hx, where y is an N S dimension column The vector also represents the N S parallel output data combined by the receiving end, x is the transmitted signal of the transmitting end, H represents the actual MIMO channel between the transmitting end and the receiving end, () * represents the conjugate transpose of the matrix.
本发明的有益效果是:本发明提出的数模混合预编码方法解决了大规模MIMO系统中数模混合域预编码方案实现复杂度过高的问题,同时可以获得较高的频谱效率,具有一定的创新性、实用性。The beneficial effects of the present invention are as follows: the digital-analog hybrid precoding method proposed by the present invention solves the problem that the implementation complexity of the digital-analog hybrid domain precoding scheme in the massive MIMO system is too high, and at the same time, higher spectral efficiency can be obtained, and it has certain advantages. innovation and practicality.
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。The concept, specific structure and technical effects of the present invention will be further described below in conjunction with the accompanying drawings, so as to fully understand the purpose, characteristics and effects of the present invention.
附图说明Description of drawings
图1是本发明实施例提供的大规模MIMO系统中数模混合预编码方法的流程图。FIG. 1 is a flowchart of a digital-analog hybrid precoding method in a massive MIMO system provided by an embodiment of the present invention.
图2是本发明实施例提供的大规模MIMO系统中数模混合预编码方法的模型图。FIG. 2 is a model diagram of a digital-analog hybrid precoding method in a massive MIMO system provided by an embodiment of the present invention.
图3是本发明实施例提供的实施例1的实现流程图。FIG. 3 is an implementation flowchart of
图4是本发明实施例提供的步骤2的实现流程图。FIG. 4 is an implementation flowchart of
图5是本发明实施例提供的步骤4的实现流程图。FIG. 5 is an implementation flowchart of
图6是本发明实施例提供的大规模MIMO系统分别采用本发明提出的和现有的数模混合预编码方法,系统的频谱效率曲线示意图。FIG. 6 is a schematic diagram of a spectrum efficiency curve of a massive MIMO system provided by an embodiment of the present invention using the proposed and existing digital-analog hybrid precoding methods respectively.
具体实施方式Detailed ways
如图1所示,本发明实施例提供的大规模MIMO系统中数模混合预编码方案包括以下步骤:As shown in FIG. 1 , a digital-analog hybrid precoding solution in a massive MIMO system provided by an embodiment of the present invention includes the following steps:
S101:发射端计算理想的预编码矩阵;S101: The transmitting end calculates an ideal precoding matrix;
S102:发射端分别计算模拟域和数字域的预编码矩阵;S102: The transmitter calculates the precoding matrices in the analog domain and the digital domain respectively;
S103:发射端对发送信号进行预编码;S103: The transmitting end precodes the transmitted signal;
S104:接收端计算理想的合并矩阵;S104: the receiving end calculates an ideal combining matrix;
S105:接收端分别计算模拟域和数字域的合并矩阵;S105: The receiver calculates the combined matrix of the analog domain and the digital domain respectively;
S106:接收端端对接收信号进行合并。S106: The receiving end combines the received signals.
下面结合具体实施例对本发明的应用原理作进一步的描述。The application principle of the present invention will be further described below with reference to specific embodiments.
实施例1:Example 1:
本发明实施例采用的大规模MIMO系统中数模混合预编码方案的模型如图2所示,其中发射端配备NT个发射天线,NS条射频链路,而接收端端备NR个发射天线,NS条射频链路。收发之间的无线链路可由×NR NT维的信道矩阵H表示。The model of the digital-analog hybrid precoding scheme in the massive MIMO system adopted in the embodiment of the present invention is shown in FIG. 2 , in which the transmitting end is equipped with N T transmitting antennas and N S radio frequency links, and the receiving end is equipped with NR Transmitting antenna, N S RF links. The wireless link between transmission and reception can be represented by a channel matrix H of ×N R N T dimension.
如图3所示,本发明实施例的实现步骤如下:As shown in Figure 3, the implementation steps of the embodiment of the present invention are as follows:
步骤1,发射端计算理想的预编码矩阵Fopt,具体步骤如下:
1a)发射端根据接收端的反馈信号对MIMO信道进行估计得到MIMO信道矩阵的估计具体估计方法可参见文献:H.Jin,D.Gesbert,M.Filippou,and Y.Liu,“A coordinatedapproach to channel estimation in large-scale multiple-antenna systems,”IEEEJ.Sel.Areas Commun,vol.31,no.2,pp.264–273,Feb.2013等;1a) The transmitter estimates the MIMO channel according to the feedback signal from the receiver to obtain the estimation of the MIMO channel matrix The specific estimation method can be found in the literature: H. Jin, D. Gesbert, M. Filippou, and Y. Liu, "A coordinated approach to channel estimation in large-scale multiple-antenna systems," IEEE J. Sel. Areas Commun, vol.31 , no.2, pp.264–273, Feb.2013, etc.;
1b)发射端对信道矩阵进行奇异值分解,即其中,Σ1为NR×NT维的对角矩阵且可以表示为Σ1=diag(λ1,λ2,…,λr,0,…,0),其中,λ1,λ2,…,λr为的非零奇异值且满足λ1>λ2>…>λr且其中diag()表示对角矩阵,rank()表示求矩阵的秩;而U1和V1分别是NR×NR维和NT×NT维的酉矩阵且()*表示求矩阵的共轭转置。1b) Transmitter-to-channel matrix Perform singular value decomposition, that is Among them, Σ 1 is an N R × NT dimensional diagonal matrix and can be expressed as Σ 1 =diag(λ 1 ,λ 2 ,…,λ r ,0,…,0), where λ 1 ,λ 2 , ..., λr is is a non-zero singular value and satisfies λ 1 >λ 2 >…>λ r and Where diag() represents a diagonal matrix, and rank() represents the rank of the matrix; U 1 and V 1 are N R ×N R -dimensional and N T ×N T -dimensional unitary matrices, respectively, and () * represents the common value of the matrix. Yoke transposed.
1c)取步骤1b)中的矩阵V1最左边的NS列作为理想的预编码矩阵Fopt。1c) Take the leftmost N S column of the matrix V 1 in step 1b) as the ideal precoding matrix F opt .
步骤2,按照图4所示的流程图,发射端利用以下的迭代方法分别计算模拟域的预编码矩阵FRF和数字域的预编码矩阵FBB,具体步骤如下:
2a)发射端将模拟域的预编码矩阵初始化为FRF=Fopt/||Fopt||,其中|| ||表示求矩阵的F范数,同时设置迭代总次数为K,并将迭代计数器的值k初始化为0;2a) The transmitter initializes the precoding matrix in the analog domain to F RF =F opt /||F opt ||, where || || represents the F-norm of the matrix, and sets the total number of iterations to K, and iterates The value k of the counter is initialized to 0;
2b)发射端对FoptFRF进行奇异值分解,即FoptFRF=U2Σ2(V2)*,其中,Fopt为步骤1得到的理想预编码矩阵,FRF为步骤2a)得到的模拟域的预编码矩阵;然后,发射端计算数字域的预编码矩阵为FBB=V2U2;2b) The transmitter performs singular value decomposition on F opt F RF , that is, F opt F RF =U 2 Σ 2 (V 2 ) * , where F opt is the ideal precoding matrix obtained in
2c)发射端计算模拟域的预编码矩阵为FRF=(Fopt(FBB)*)/||Fopt(FBB)*||,其中,Fopt为步骤1得到的理想预编码矩阵,FBB为步骤2b)得到的数字域的预编码矩阵;然后,发射端将迭代计数器的值k加1,即k=k+1;2c) The precoding matrix calculated by the transmitter in the analog domain is F RF = (F opt (F BB ) * )/||F opt (F BB ) * ||, where F opt is the ideal precoding matrix obtained in
2d)发射端判断迭代计数器的当前值k是否等于K。如果k=K,则步骤2结束;否则,跳转到步骤2b)。2d) The transmitter determines whether the current value k of the iteration counter is equal to K. If k=K,
步骤3,利用步骤2得到的FRF和FBB,发射端对发送信号进行预编码。发射端的发送信号为其中,PT为发射端的发射功率,s为NS维的列向量且表示发射端预编码器的NS路并行输入数据。Step 3, using the F RF and F BB obtained in
步骤4,接收端计算理想的合并矩阵Wopt,具体步骤如下:
4a)接收端根据发射端发送的训练信号对MIMO信道进行估计得到MIMO信道矩阵的估计具体估计方法可参见文献:H.Jin,D.Gesbert,M.Filippou,and Y.Liu,“Acoordinated approach to channel estimation in large-scale multiple-antennasystems,”IEEE J.Sel.Areas Commun,vol.31,no.2,pp.264–273,Feb.2013等;4a) The receiving end estimates the MIMO channel according to the training signal sent by the transmitting end to obtain the estimation of the MIMO channel matrix The specific estimation method can be found in the literature: H.Jin, D.Gesbert, M.Filippou, and Y.Liu, "Acoordinated approach to channel estimation in large-scale multiple-antennasystems," IEEE J.Sel.Areas Commun, vol.31 , no.2, pp.264–273, Feb.2013, etc.;
4b)接收端对信道矩阵进行奇异值分解,即其中,Σ3为NR×NT维的对角矩阵且可以表示为Σ3=diag(η1,η2,…,ηr,0,…,0),其中,η1,η2,…,ηr为的非零奇异值且满足η1>η2>…>ηr且其中diag()表示对角矩阵,rank()表示求矩阵的秩;而U3和V3分别是NR×NR维和NT×NT维的酉矩阵且()*表示求矩阵的共轭转置。4b) Receiver-to-channel matrix Perform singular value decomposition, that is where Σ 3 is an N R × NT dimensional diagonal matrix and can be expressed as Σ 3 =diag(η 1 ,η 2 ,...,η r ,0,...,0), where η 1 ,η 2 , ..., η r is non-zero singular values of and satisfy η 1 >η 2 >…>η r and Where diag() represents a diagonal matrix, and rank() represents the rank of the matrix; and U 3 and V 3 are N R ×N R -dimensional and N T ×N T -dimensional unitary matrices, respectively, and () * represents the common value of the matrix. Yoke transposed.
4c)取步骤4b)中的矩阵U3最左边的NS列作为理想的预编码矩阵Wopt。4c) Take the leftmost N S column of the matrix U 3 in step 4b) as the ideal precoding matrix W opt .
步骤5,照图5所示的流程图,接收端利用以下的迭代方法分别计算模拟域的合并矩阵WRF和数字域的合并矩阵WBB,具体步骤如下:Step 5, according to the flow chart shown in FIG. 5, the receiving end uses the following iterative method to calculate the merging matrix W RF of the analog domain and the merging matrix W BB of the digital domain respectively, and the specific steps are as follows:
5a)接收端将模拟域的合并矩阵初始化为WRF=Wopt/||Wopt||,其中|| ||表示求矩阵的F范数,同时设置迭代总次数为K,并将迭代计数器的值k初始化为0;5a) The receiver initializes the combined matrix of the analog domain as W RF =W opt /||W opt ||, where || || represents the F-norm of the matrix, and sets the total number of iterations to K, and sets the iteration counter to The value of k is initialized to 0;
5b)接收端对WoptWRF进行奇异值分解,即WoptWRF=U4Σ4(V4)*,其中,Wopt为步骤4得到的理想合并矩阵,WRF为步骤5a)得到的模拟域的合并矩阵;然后,接收端计算数字域的合并矩阵为WBB=V4U4;5b) The receiver performs singular value decomposition on W opt W RF , that is, W opt W RF =U 4 Σ 4 (V 4 ) * , where W opt is the ideal merging matrix obtained in
5c)接收端计算模拟域的合并矩阵为WRF=(Wopt(WBB)*)/||Wopt(WBB)*||,其中,Wopt为步骤4得到的理想合并矩阵,WBB为步骤5b)得到的数字域的合并矩阵;然后,接收端将迭代计数器的值k加1,即k=k+1;5c) The receiving end calculates the merging matrix in the analog domain as W RF =(W opt (W BB ) * )/||W opt (W BB ) * ||, where W opt is the ideal merging matrix obtained in
5d)接收端判断迭代计数器的当前值k是否等于K。如果k=K,则步骤5结束;否则,跳转到步骤5b)。5d) The receiving end judges whether the current value k of the iteration counter is equal to K. If k=K, step 5 ends; otherwise, jump to step 5b).
步骤6,利用步骤五得到的WRF和WBB,接收端对接收信号进行合并,合并后的输出信号为其中,y为NS维的列向量且表示接收端合并后的NS路并行输出数据,x是发送端发送信号,H表示发射端与接收端之间实际的MIMO信道,()*表示求矩阵的共轭转置。
下面结合仿真对本发明的应用效果作详细的描述。The application effect of the present invention will be described in detail below in conjunction with simulation.
1)仿真条件:1) Simulation conditions:
假设本发明采用的大规模MIMO系统中,发射端和接收端配置的天线数相等且为128,即Nt=Nr=128,收发两端之间的并行数据流个数取以下两种值:NS=2和NS=4。信道模型可参考现有的预编码方案采用的毫米波MIMO信道模型,具体可见文献:El Ayach,S.Rajagopal,S.Abu-Surra,Z.Pi,and R.W.Heath,Jr.,“Spatially sparse precoding inmillimeter wave MIMO systems,”IEEE Trans.Wireless Commun.,vol.13,no.3,pp.1499–1513,Mar.2014。在上述信道模型中,假设散射族的个数为Ncl=3,传输路径个数为Nray=18。另外,假设接收端的噪声为加性高斯白噪声且均值为零,方差为N0。仿真结果中的横坐标为信噪比,定义为10log10(PT/N0),其中PT表示发射端的发射功率。Assuming that in the massive MIMO system adopted in the present invention, the number of antennas configured at the transmitter and the receiver is equal to 128, that is, N t =N r =128, and the number of parallel data streams between the transmitter and receiver takes the following two values : Ns =2 and Ns =4. For the channel model, please refer to the millimeter-wave MIMO channel model adopted by the existing precoding scheme. For details, please refer to the literature: El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and RWHeath, Jr., "Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans.Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014. In the above channel model, it is assumed that the number of scattering clusters is N cl =3, and the number of transmission paths is N ray =18. In addition, it is assumed that the noise at the receiving end is additive white Gaussian noise with a mean value of zero and a variance of N 0 . The abscissa in the simulation results is the signal-to-noise ratio, which is defined as 10log 10 (P T /N 0 ), where P T represents the transmit power of the transmitter.
2)仿真内容与结果:2) Simulation content and results:
针对采用本发明提出的预编码方案的大规模MIMO系统,利用计算机对系统的频谱效率进行了仿真,仿真结果如图6所示。从图6可以看出,本发明提出的预编码方案可以获得比现有的预编码方案更高的频谱效率,而且随着收发之间的并行数据流个数NS的增加,本发明提出的预编码方案的性能优势更加明显。另外,通过算法实现复杂度的分析可得,现有的预编码方案的实现复杂度为而本发明提出的预编码方案的实现复杂度为其中,NS为收发之间的并行数据流个数,而NT和NR分别为收发两端的天线数。所以,通过以上比较可以看出,本发明提出的预编码方案可以获得比现有的预编码方案更高的频谱效率且实现复杂度更低。For the massive MIMO system adopting the precoding scheme proposed by the present invention, a computer is used to simulate the spectral efficiency of the system, and the simulation result is shown in FIG. 6 . It can be seen from FIG. 6 that the precoding scheme proposed by the present invention can obtain higher spectral efficiency than the existing precoding scheme, and with the increase of the number of parallel data streams N S between sending and receiving, the The performance advantage of the precoding scheme is more obvious. In addition, through the analysis of the algorithm implementation complexity, it can be obtained that the implementation complexity of the existing precoding scheme is: And the implementation complexity of the precoding scheme proposed by the present invention is: Among them, N S is the number of parallel data streams between transceivers, and NT and NR are the number of antennas at both ends of the transceiver. Therefore, it can be seen from the above comparison that the precoding scheme proposed by the present invention can obtain higher spectral efficiency and lower implementation complexity than the existing precoding scheme.
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make numerous modifications and changes according to the concept of the present invention without creative efforts. Therefore, all technical solutions that can be obtained by those skilled in the art through logical analysis, reasoning or limited experiments on the basis of the prior art according to the concept of the present invention shall fall within the protection scope determined by the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611185148.2A CN106603130B (en) | 2016-12-20 | 2016-12-20 | Digital-analog hybrid precoding method in large-scale MIMO system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611185148.2A CN106603130B (en) | 2016-12-20 | 2016-12-20 | Digital-analog hybrid precoding method in large-scale MIMO system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106603130A CN106603130A (en) | 2017-04-26 |
CN106603130B true CN106603130B (en) | 2020-07-10 |
Family
ID=58602024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611185148.2A Active CN106603130B (en) | 2016-12-20 | 2016-12-20 | Digital-analog hybrid precoding method in large-scale MIMO system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106603130B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107104719B (en) * | 2017-05-16 | 2020-04-24 | 东南大学 | Millimeter wave digital-analog hybrid precoding design method based on geometric construction |
CN107171708B (en) * | 2017-05-25 | 2020-10-23 | 清华大学 | Channel tracking and hybrid precoding method for large-scale MIMO system |
CN107359921B (en) * | 2017-08-04 | 2020-07-28 | 西安科技大学 | A Hybrid Precoding Method Based on Standard Orthogonalization for Massive MIMO Systems |
CN108449121B (en) * | 2018-02-13 | 2020-09-01 | 杭州电子科技大学 | Low-complexity hybrid precoding method in millimeter-wave massive MIMO systems |
CN108712196B (en) * | 2018-02-14 | 2021-04-09 | 北京交通大学 | Low-resolution millimeter-wave massive MIMO hybrid precoding system and method |
CN109547082A (en) * | 2019-01-04 | 2019-03-29 | 上海电机学院 | Mixing precoding optimization method based on the extensive antenna system of millimeter wave |
CN109861731B (en) * | 2019-01-23 | 2022-02-15 | 北京理工大学 | A hybrid precoder and design method thereof |
CN109714091B (en) * | 2019-01-25 | 2021-04-06 | 北京邮电大学 | An iterative hybrid precoding method based on hierarchical design in mmWave MIMO systems |
CN112073973B (en) * | 2020-08-03 | 2022-04-26 | 北京大学 | Millimeter wave band unlicensed spectrum access and beam forming method and device |
CN112636801B (en) * | 2020-11-20 | 2021-12-28 | 鹏城实验室 | A millimeter wave hybrid precoding method, intelligent terminal and storage medium |
CN112468201B (en) * | 2020-11-25 | 2021-10-26 | 郑州铁路职业技术学院 | Overlapping sub-connection hybrid precoding method based on millimeter wave large-scale MIMO antenna system |
CN112468200B (en) * | 2020-11-25 | 2021-10-26 | 郑州铁路职业技术学院 | Overlapping sub-connection hybrid precoding device based on millimeter wave large-scale MIMO antenna system |
CN115801076B (en) * | 2022-06-20 | 2024-05-03 | 西安电子科技大学 | Large-scale MIMO minimized cross entropy precoding method and communication base station and system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103748850A (en) * | 2011-08-11 | 2014-04-23 | 三星电子株式会社 | Method and apparatus for mixed analog/digital beamforming |
CN104486044A (en) * | 2014-12-30 | 2015-04-01 | 北京航空航天大学 | Broadband module mixing pretreatment method for large-scale MIMO system |
CN106033986A (en) * | 2015-03-19 | 2016-10-19 | 电信科学技术研究院 | Large-scale digital and analog hybrid antenna and channel state information feedback method and device |
CN106160809A (en) * | 2015-04-10 | 2016-11-23 | 上海贝尔股份有限公司 | The mixing method for precoding of multi-user multi-aerial system and device thereof |
CN106233685A (en) * | 2014-06-13 | 2016-12-14 | 上海贝尔股份有限公司 | Method for the hybrid analog-digital simulation digital precode of extensive mimo system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130110396A (en) * | 2012-03-29 | 2013-10-10 | 삼성전자주식회사 | Method and apparatus for reference signal design in mixed analog/digital beam forming system |
-
2016
- 2016-12-20 CN CN201611185148.2A patent/CN106603130B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103748850A (en) * | 2011-08-11 | 2014-04-23 | 三星电子株式会社 | Method and apparatus for mixed analog/digital beamforming |
CN106233685A (en) * | 2014-06-13 | 2016-12-14 | 上海贝尔股份有限公司 | Method for the hybrid analog-digital simulation digital precode of extensive mimo system |
CN104486044A (en) * | 2014-12-30 | 2015-04-01 | 北京航空航天大学 | Broadband module mixing pretreatment method for large-scale MIMO system |
CN106033986A (en) * | 2015-03-19 | 2016-10-19 | 电信科学技术研究院 | Large-scale digital and analog hybrid antenna and channel state information feedback method and device |
CN106160809A (en) * | 2015-04-10 | 2016-11-23 | 上海贝尔股份有限公司 | The mixing method for precoding of multi-user multi-aerial system and device thereof |
Also Published As
Publication number | Publication date |
---|---|
CN106603130A (en) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106603130B (en) | Digital-analog hybrid precoding method in large-scale MIMO system | |
Li et al. | Hybrid precoding and combining design for millimeter-wave multi-user MIMO based on SVD | |
CN107359921B (en) | A Hybrid Precoding Method Based on Standard Orthogonalization for Massive MIMO Systems | |
CN108023620B (en) | Large-scale MIMO system hybrid precoding method applied to millimeter wave frequency band | |
CN105959048B (en) | A Precoding Method for Large Scale Antennas | |
CN107046434B (en) | Large-scale MIMO system analog-digital mixed precoding method | |
CN102546088B (en) | A kind of block diagonalization method for precoding and device | |
CN109861731B (en) | A hybrid precoder and design method thereof | |
CN107332596B (en) | Zero forcing-based millimeter wave communication system hybrid precoding method | |
CN108736943B (en) | Hybrid precoding method suitable for large-scale MIMO system | |
CN110138425B (en) | Low-complexity array antenna multi-input multi-output system hybrid precoding algorithm | |
CN111342874B (en) | Precoding method for downlink large-scale broadband millimeter-wave multi-user system | |
CN112118033B (en) | Nonlinear hybrid precoding design method of multi-user large-scale MIMO system | |
Kaushik et al. | Energy efficiency maximization of millimeter wave hybrid MIMO systems with low resolution DACs | |
CN109547082A (en) | Mixing precoding optimization method based on the extensive antenna system of millimeter wave | |
CN108494456A (en) | One kind carrying out mixing method for precoding based on code book pilot tone | |
Han et al. | Efficient hybrid beamforming design in mmWave massive MU-MIMO DF relay systems with the mixed-structure | |
CN107707284B (en) | A Hybrid Precoding Method Based on Channel Statistics Codebook Quantization Feedback | |
CN112054827A (en) | Combined hybrid precoding method based on channel equivalence | |
CN109067446B (en) | Mixed precoding method for multi-antenna multi-user large-scale antenna | |
CN107659348B (en) | SLNR and THP mixed adaptive precoding design method | |
Su et al. | Revisiting dirty paper coding to hybrid precoding for massive MIMO downlink broadcast channel | |
Zhang et al. | Hybrid analog-digital precoding for millimeter wave MIMO Systems | |
Qiao et al. | Eigen decomposition-based hybrid precoding for millimeter wave MIMO systems with low-resolution ADCs/DACs | |
CN108462518A (en) | Data transmission method and device based on user's scheduling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210118 Address after: Room 301, block a, Hanyun Pavilion, Xi'an Software Park, No. 68, Keji 2nd Road, hi tech Zone, Xi'an City, Shaanxi Province Patentee after: SHAANXI REACTOR MICROELECTRONICS Co.,Ltd. Address before: 710071 Xi'an Electronic and Science University, 2 Taibai South Road, Shaanxi, Xi'an Patentee before: XIDIAN University |