[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN109706454A - 一种无低表面能物质改性的铝合金超疏水表面制备方法 - Google Patents

一种无低表面能物质改性的铝合金超疏水表面制备方法 Download PDF

Info

Publication number
CN109706454A
CN109706454A CN201910003202.4A CN201910003202A CN109706454A CN 109706454 A CN109706454 A CN 109706454A CN 201910003202 A CN201910003202 A CN 201910003202A CN 109706454 A CN109706454 A CN 109706454A
Authority
CN
China
Prior art keywords
aluminum alloy
preparation
etching
superhydrophobic
superhydrophobic surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910003202.4A
Other languages
English (en)
Inventor
徐金亭
郝壮
成泽超
曲光辉
侯文彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910003202.4A priority Critical patent/CN109706454A/zh
Publication of CN109706454A publication Critical patent/CN109706454A/zh
Withdrawn legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

本发明属于金属材料表面处理技术领域,提供了一种无低表面能物质改性的铝合金超疏水表面制备方法。该方法将经过预处理的铝合金基体置于盐酸溶液中,采用化学蚀刻法,在铝合金基体表面形成微纳米级的粗糙结构;清洗后,立即将铝合金放入烘箱内高温烘干;然后,在室温下自然冷却,从而实现铝合金表面的超疏水化。采用本发明所制备的铝合金表面具有优良的超疏水性,其表面的接触角可达164°,滚动角小于5°。本发明铝合金超疏水表面及其制备方法无需特殊设备、工艺简单、制备快速,而且省去了传统的低表面能物质改性过程,具有潜在的工业应用前景,也可为其他超疏水表面的制备提供新的思路。

Description

一种无低表面能物质改性的铝合金超疏水表面制备方法
技术领域
本发明属于金属材料表面处理技术领域,特别涉及一种无低表面能物质改性的铝合金超疏水表面制备方法。
背景技术
在自然界中,许多植物和动物表面,如植物的叶子、昆虫的翅膀和鸟的羽毛,都表现出了超疏水性,其中荷叶是最典型的代表,水滴可以在其表面自由地滚动并同时去除污垢。由于具有流体减阻、防结冰和防雾、表面耐腐蚀和自洁等优点,超疏水表面在日常生活、工业生产、国防科技以及医学研究等领域具有潜在的应用前景。铝及其合金作为最常用的金属材料,已经广泛应用于航空航天、国防、运载等高端制造领域,在其基体上制备具有超疏水功能的表面已经引起了广大研究者的关注。
目前,化学刻蚀、热喷涂、气相沉积和电镀等方法可用于在金属基体上制备具有超疏水功能的表面。申请号为201110152051.2的专利公开了一种电镀法制备超疏水钴镀层的方法,所用的电镀液以氯化胆碱离子液体作为溶剂,以NiCl2或NiCl2·6H2O为溶质,在一定温度和电镀电压下,电镀制备了超疏水钴镀层。专利号为200810150857.6的专利申请公开了一种用电化学法制备超疏水表面的工艺方法,通过两步处理工艺方法,即先电化学刻蚀再通过草酸阳极氧化来在铝及其合金表面构造微纳米双重粗糙结构,然后通过氟硅烷修饰来制备超疏水表面。文献“S.Barthwal,Y.S.Kim,S.-H.Lim.Fabrication of amphiphobicsurface by using titanium anodization for large-area three-dimensionalsubstrates.Journal of Colloid And Interface Science,2013,400:123-129”采用两步阳极氧化法在钛合金表面构筑纳米管表面形貌,用氟硅烷改性微米和纳米结构的钛合金表面,制备了超疏水表面。上述发明都需要复杂的实验装置和相对繁琐的工艺步骤,而且表面改性所需的氟硅烷对自然环境和人类健康具有潜在危险。为了克服这些问题,本发明提供了一种不需要复杂工艺和表面改性处理便能得到铝合金超疏水表面的制备方法。
发明内容
本发明的目的在于提供一种简单有效、成本低廉且无低表面能物质改性的铝合金超疏水表面制备方法。
本发明的技术方案:
一种无低表面能物质改性的铝合金超疏水表面制备方法,步骤如下:
将经过预处理的铝合金基体置于盐酸溶液中,采用化学蚀刻法,常温化学蚀刻的时间为9~13min,在铝合金基体表面形成微纳米级的粗糙结构;清洗后,于烘干温度80℃~200℃条件下烘干至少60min;然后,在室温下自然冷却,从而实现铝合金表面的超疏水化。
所述预处理,将铝合金基体表面用300#砂纸打磨,然后先后分别用丙酮、无水乙醇和去离子水超声清洗铝合金基体表面5min。
所述盐酸溶液是质量分数为35%的盐酸溶液。
所述化学蚀刻的时间为10min,烘干时间为60min,烘干温度为140℃。
所述蚀刻后的铝合金基体取出浸泡到去离子水中清洗30s。
本发明的有益效果:
(1)本发明制备方法不需要复杂的加工设备,制备过程简单,具有很好的应用价值。
(2)本发明热处理方法简单,所用化学试剂成分简单,成本低廉。
(3)本发明在铝合金表面制备的超疏水表面平整、均匀,具有超疏水特性,接触角在150~164°范围,滚动角小于5°。本发明制备的超疏水表面可应用于多种工业零部件外表面和金属管道内壁等需要自清洁、耐腐蚀、抗结冰和减小水阻力等各种场合。
(4)本发明所述方法制备的样品仅需加热,获得超疏水性,无需低表面能物质修饰,与常规超疏水表面制备技术不同,避免了低表面能有机物的使用。
附图说明
图1(a)和(b)分别为本发明实施例制得的铝合金表面未烘干前放大5000倍和40000倍的扫描电镜形貌图。
图2(a)和(b)分别为本发明实施例制得的铝合金表面烘干后放大5000倍和40000倍的扫描电镜形貌图。
图3为本发明实施例制得的铝合金超疏水表面的接触角测试结果图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例采用盐酸溶液构建铝合金表面粗糙结构:
(1)将铝合金板切割成规格大小为30mm×20mm×5mm的合金块,并用300#砂纸打磨去除表面氧化物。先后用丙酮、无水乙醇或去离子水分别超声清洗铝合金基体表面5min,自然干燥。
(2)配制质量分数为35%的盐酸溶液。
(3)将预处理后的铝合金基体竖直放置,浸泡在配置好的盐酸溶液中,在室温下蚀刻10min。
(4)取出蚀刻后的铝合金基体,用去离子水清洗30s,然后立即放入烘箱中烘干,其中烘箱温度为140℃,烘干时间为60min。
(5)取出烘干后的试样,在室温下自然冷却。
(6)使用去离子水检验超疏水表面合格,即得到铝合金基体的超疏水表面。
(7)接触角测量时水滴大小为5μL,检测上述处理后基体表面接触角为164°。
图1为采用实施例所制得的铝合金超疏水表面未烘干前放大5000倍和40000倍的扫描电镜表面形貌照片,图1a观察到突起彼此分开或连接在一起,一些毛孔连在一起形成更大更长的沟,从图1b中较高放大倍数的SEM图像可以看出,在孔隙和突起上没有产生明显的纳米级形态。
图2为采用实施例所制得的铝合金超疏水表面烘干后放大5000倍和40000倍的扫描电镜表面形貌照片。可以观察到蚀刻的表面在140℃下烘烤60min后,通过纳米级的絮凝物形态密集地覆盖了突起或孔隙,形成了更加粗糙密集的微纳米结构,如图2a和b所示。
图3为经过本发明所制备的铝合金超疏水表面,用去离子水滴到铝合金基体表面进行接触角测定。

Claims (8)

1.一种无低表面能物质改性的铝合金超疏水表面制备方法,其特征在于,步骤如下:
将经过预处理的铝合金基体置于盐酸溶液中,采用化学蚀刻法,常温化学蚀刻的时间为9~13min,在铝合金基体表面形成微纳米级的粗糙结构;清洗后,于烘干温度80℃~200℃条件下烘干至少60min;然后,在室温下自然冷却,从而实现铝合金表面的超疏水化。
2.根据权利要求1所述的铝合金超疏水表面制备方法,其特征在于,所述预处理,将铝合金基体表面用300#砂纸打磨,然后先后分别用丙酮、无水乙醇和去离子水超声清洗铝合金基体表面5min。
3.根据权利要求1或2所述的铝合金超疏水表面制备方法,其特征在于,所述盐酸溶液是质量分数为35%的盐酸溶液。
4.根据权利要求1或2所述的铝合金超疏水表面制备方法,其特征在于,所述化学蚀刻的时间为10min,烘干时间为60min,烘干温度为140℃。
5.根据权利要求3所述的铝合金超疏水表面制备方法,其特征在于,所述化学蚀刻的时间为10min,烘干时间为60min,烘干温度为140℃。
6.根据权利要求1、2或5所述的铝合金超疏水表面制备方法,其特征在于,所述蚀刻后的铝合金基体取出浸泡到去离子水中清洗30s。
7.根据权利要求3所述的铝合金超疏水表面制备方法,其特征在于,所述蚀刻后的铝合金基体取出浸泡到去离子水中清洗30s。
8.根据权利要求4所述的铝合金超疏水表面制备方法,其特征在于,所述蚀刻后的铝合金基体取出浸泡到去离子水中清洗30s。
CN201910003202.4A 2019-01-03 2019-01-03 一种无低表面能物质改性的铝合金超疏水表面制备方法 Withdrawn CN109706454A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910003202.4A CN109706454A (zh) 2019-01-03 2019-01-03 一种无低表面能物质改性的铝合金超疏水表面制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910003202.4A CN109706454A (zh) 2019-01-03 2019-01-03 一种无低表面能物质改性的铝合金超疏水表面制备方法

Publications (1)

Publication Number Publication Date
CN109706454A true CN109706454A (zh) 2019-05-03

Family

ID=66260650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910003202.4A Withdrawn CN109706454A (zh) 2019-01-03 2019-01-03 一种无低表面能物质改性的铝合金超疏水表面制备方法

Country Status (1)

Country Link
CN (1) CN109706454A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110714212A (zh) * 2019-10-12 2020-01-21 常州大学 一种水溶液体系中由氯化镍一步法制备超疏水镍薄膜的方法
CN114877570A (zh) * 2022-06-02 2022-08-09 桂林电子科技大学 一种电动汽车热泵型空调车外换热器翅片及其除霜用超疏水涂层的制备方法
CN115029767A (zh) * 2022-05-31 2022-09-09 珠海市湖大科技有限公司 一种铝合金无机超疏水表面的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110714212A (zh) * 2019-10-12 2020-01-21 常州大学 一种水溶液体系中由氯化镍一步法制备超疏水镍薄膜的方法
CN115029767A (zh) * 2022-05-31 2022-09-09 珠海市湖大科技有限公司 一种铝合金无机超疏水表面的制备方法
CN115029767B (zh) * 2022-05-31 2023-12-29 湖北大学 一种铝合金无机超疏水表面的制备方法
CN114877570A (zh) * 2022-06-02 2022-08-09 桂林电子科技大学 一种电动汽车热泵型空调车外换热器翅片及其除霜用超疏水涂层的制备方法

Similar Documents

Publication Publication Date Title
Wei et al. Controllable superhydrophobic surfaces with tunable adhesion on Mg alloys by a simple etching method and its corrosion inhibition performance
Manoj et al. A simple, rapid and single step method for fabricating superhydrophobic titanium surfaces with improved water bouncing and self cleaning properties
Zhang et al. Biomimetic one step fabrication of manganese stearate superhydrophobic surface as an efficient barrier against marine corrosion and Chlorella vulgaris-induced biofouling
Zhou et al. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties
Sun et al. Fabrication of polydimethylsiloxane-derived superhydrophobic surface on aluminium via chemical vapour deposition technique for corrosion protection
Qing et al. Rough structure of electrodeposition as a template for an ultrarobust self-cleaning surface
Feng et al. Stearic acid modified zinc nano-coatings with superhydrophobicity and enhanced antifouling performance
Shi et al. A facile and mild route for fabricating slippery liquid-infused porous surface (SLIPS) on CuZn with corrosion resistance and self-healing properties
CN101423945B (zh) 一种轻质金属超疏水表面的制备方法
Song et al. Water-repellent and corrosion-resistance properties of superhydrophobic and lubricant-infused super slippery surfaces
Fang et al. Corrosion-resistant and superhydrophobic nickel‑phosphorus/nickel/PFDTMS triple-layer coating on magnesium alloy
CN103952732B (zh) 一种金属超疏水表面及其制备方法
CN107321583B (zh) 微纳米分级结构超疏水表面的原位构建方法及应用
Mirzadeh et al. Effect of stearic acid as a low cost and green material on the self-cleaning and anti-corrosion behavior of anodized titanium
CN109706454A (zh) 一种无低表面能物质改性的铝合金超疏水表面制备方法
Vanithakumari et al. Influence of silanes on the wettability of anodized titanium
CN104250813B (zh) 一种镁合金超疏水自清洁耐腐蚀表面的制备方法
Saffari et al. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes
Yang et al. New perspectives on structural parameters and hydrophobic model inspired by a superhydrophobic Cu cone-flower coating
Wei et al. Preparation of anti-corrosion superhydrophobic coatings by an Fe-based micro/nano composite electro-brush plating and blackening process
CN101830428B (zh) 一种以微针阵列制造超疏水表面的方法
Sun et al. A universal method to create surface patterns with extreme wettability on metal substrates
Feng et al. Fabrication and corrosion resistance of superhydrophobic magnesium alloy
CN102304741A (zh) 阳极氧化法制备铝基超疏水薄膜
CN105386090A (zh) 一种具有内凹微孔的超疏油金属表面的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190503