[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN109244201A - 金属掺杂的纳米晶及其制备方法、qled器件 - Google Patents

金属掺杂的纳米晶及其制备方法、qled器件 Download PDF

Info

Publication number
CN109244201A
CN109244201A CN201710560567.8A CN201710560567A CN109244201A CN 109244201 A CN109244201 A CN 109244201A CN 201710560567 A CN201710560567 A CN 201710560567A CN 109244201 A CN109244201 A CN 109244201A
Authority
CN
China
Prior art keywords
metal
nanocrystalline
doped
doping metals
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710560567.8A
Other languages
English (en)
Inventor
程陆玲
杨行
杨一行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Corp
Original Assignee
TCL Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCL Corp filed Critical TCL Corp
Priority to CN201710560567.8A priority Critical patent/CN109244201A/zh
Publication of CN109244201A publication Critical patent/CN109244201A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开金属掺杂的纳米晶及其制备方法、QLED器件。包括:将阳离子前躯体盐溶液与掺杂金属醋酸盐溶液混合,继续添加还原性无机盐,随后向混合液中添加无机卤盐,接着再向混合液中添加非离子型高分子化合物,得到前躯液;将阴离子前躯体盐溶液加入到前躯液中,然后通过离心分离、清洗沉淀,得到金属掺杂的纳米晶。本发明通过上述方法,能够制备得到卤素钝化的金属掺纳米晶,制备得到的纳米晶具有好的荧光强度以及光电性能。

Description

金属掺杂的纳米晶及其制备方法、QLED器件
技术领域
本发明涉及纳米晶材料制备技术领域和量子点发光二极管技术领域,尤其涉及一种金属掺杂的纳米晶及其制备方法、一种QLED器件。
背景技术
近些年,纳米晶半导体发光材料被誉为“纳米荧光粉”,引起了科研工作者极大的兴趣,这是由于它们具有新颖和不寻常的结构以及相应的光学和电学性质。硫族纳米晶主要有ZnS、CdS、CdSe/ZnS等。从结构上区分,它们具有单一结构、核壳结构以及合金结构等。这些纳米晶呈现出了有趣的现象是:尺寸能够改变可见光的辐射波长和辐射寿命的长短等性能;利用这些材料可以制备得到电致发光二极管器件并具有较低的起亮电压。
通过掺杂金属的方式改善纳米晶的辐射寿命和荧光效率已经被深入的研究。现有技术的方法,由于在纳米晶生长过程中由于元素的掺杂会使晶格发生错位和难以实现掺杂金属的共沉淀,会导致产生非辐射跃迁,并可能会引起发光峰的半峰宽变宽,从而影响色纯。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种金属掺杂的纳米晶及其制备方法、QLED器件。
本发明的技术方案如下:
一种金属掺杂纳米晶的制备方法,其中,包括:
提供一种含掺杂金属的阳离子前驱液,所述含掺杂金属的阳离子前驱液包括由阳离子前驱体盐溶液、金属醋酸盐溶液、还原性无机盐、无机卤盐混合制备得到;
提供一种阴离子前驱体盐溶液;
将所述阴离子前驱体盐溶液加入到所述含掺杂金属的阳离子前驱液中进行晶体生长,制备得到所述金属掺杂的纳米晶。
所述的金属掺杂纳米晶的制备方法,其中,所述含掺杂金属的阳离子前驱液中还包括非离子型高分子化合物,所述非离子型高分子化合物包括聚乙烯吡咯烷酮、聚丙烯吡咯烷酮、聚丁烯吡咯烷酮中的一种或多种。
所述的金属掺杂纳米晶的制备方法,其中,所述阳离子前躯体盐为硫酸锌、硫酸镉、硫酸铅、硫酸铟中的一种或多种。
所述的金属掺杂纳米晶的制备方法,其中,所述掺杂金属醋酸盐为醋酸金、醋酸银、醋酸铜、醋酸铁、醋酸铝中的一种或多种。
所述的金属掺杂纳米晶的制备方法,其中,所述还原性无机盐为亚硫酸钠、亚硫酸镉、亚硫酸铅、亚硫酸铟、亚硫酸银中的一种或多种。
所述的金属掺杂纳米晶的制备方法,其中,所述无机卤盐为氯化钠、溴化钠、碘化钠、氟化钠中的一种或多种。
所述的金属掺杂纳米晶的制备方法,其中,所述阴离子前躯体盐为硫化钠、硫化钾、硫化钙、硒化钠、硒化钾、硒化钙中的一种或多种。
所述的金属掺杂纳米晶的制备方法,其中,所述含掺杂金属的阳离子前驱液中,阳离子的浓度为0.005-0.05mmol/ml。
所述的金属掺杂纳米晶的制备方法,其中,按所述阳离子与掺杂金属醋酸盐的摩尔比为5-20制备得到所述含掺杂金属的阳离子前驱液。
所述的金属掺杂纳米晶的制备方法,其中,按所述还原性无机盐与阳离子前驱体盐中阳离子元素的摩尔比为0.1-0.5制备得到所述含掺杂金属的阳离子前驱液。
所述的金属掺杂纳米晶的制备方法,其中,按所述无机卤盐与阳离子前驱体盐中阳离子元素的摩尔比为0.02-0.2制备得到所述含掺杂金属的阳离子前驱液。
所述的金属掺杂的纳米晶的制备方法,其中,所述阴离子前躯体盐溶液的摩尔浓度范围为0.05-1mmol/ml,按阴离子前驱体盐中阴离子元素与阳离子前驱体盐中阳离子元素的摩尔比为10-20将所述阴离子前躯体盐溶液加入所述含掺杂金属的阳离子前驱液进行晶体生长。
所述的金属掺杂的纳米晶的制备方法,其中,按所述非离子型高分子化合物与阳离子前驱体盐中阳离子元素的摩尔比为0.05-0.1制备得到所述含掺杂金属的阳离子前驱液。
一种金属掺杂的纳米晶,其中,采用如上任一所述的金属掺杂的纳米晶的制备方法制备而成。
一种QLED器件,包括阴极、阳极、电子传输层、空穴传输层和量子点发光层,其中,所述量子点发光层的材料包括如上所述方法制备得到的金属掺杂的纳米晶。
有益效果:本发明在晶体生长过程中,采用还原性无机盐可以避免掺杂金属被氧化,从而使掺杂金属能与纳米晶材料发生共沉淀,获得更好的掺杂效果,避免掺杂金属会纳米晶的使晶格发生错位,获得纳米晶带隙得到改善,荧光效果好的量子点。在纳米晶的生长阶段添加无机卤盐来调节不同价态金属离子在混合液中的浓度,能够得到既具有金属离子掺杂又具有卤素钝化的纳米晶,大大改善了发光材料的带隙以及光电性能。本发明方法操作简单,设备工艺条件要求低,易于重复,具有很好的工业应用前景。
具体实施方式
本发明提供一种金属掺杂纳米晶及其制备方法、QLED器件,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的一种金属掺杂的纳米晶的制备方法较佳实施例,其中,包括:
提供一种含掺杂金属的阳离子前驱液,所述含掺杂金属的阳离子前驱液包括由阳离子前驱体盐溶液、金属醋酸盐溶液、还原性无机盐、无机卤盐制备混合得到;
提供一种阴离子前驱体盐溶液;
将所述阴离子前驱体盐溶液加入到所述含掺杂金属的阳离子前驱液中进行晶体生长,制备得到所述金属掺杂的纳米晶。
所述含掺杂金属的阳离子前驱液是通过将前躯体盐溶液混合加入掺杂金属醋酸盐溶液、还原性无机盐、无机卤盐。混合加入所述掺杂金属醋酸盐溶液、还原性无机盐、无机卤盐的气氛环境为空气气氛、真空气氛或惰性气氛。
例如,在一种具体的实施方式中,所述含掺杂金属的阳离子前驱液是通过如下方法制备得到的:在室温条件下,将阳离子前躯体盐溶液与掺杂金属醋酸盐溶液混合,并在惰性气氛下混合5-15min;继续加入还原性无机盐和无机卤盐,并在惰性气氛下搅拌5-15min,制备得到所述含掺杂金属的阳离子前驱液。
进一步的,向混合液中添加非离子型高分子化合物,并室温搅拌1-3h,得到前躯液。
可以理解的是,所述阳离子前驱体盐溶液、金属醋酸盐溶液、阴离子前驱体盐溶液中选用的溶剂为能为晶体生长提供反应环境的溶剂。
为了增加晶体生长过程中混合液的粘度,降低反应速率,使生成的纳米晶尺寸均一性好,可以进一步加入非离子型高分子化合物制备得到含掺杂金属的阳离子前驱液。所述非离子型高分子化合物可以为聚乙烯吡咯烷酮(PVP)、聚丙烯吡咯烷酮、聚丁烯吡咯烷酮中的一种或多种。
优选的,按所述非离子型高分子化合物与所述阳离子前驱体盐中阳离子元素的摩尔比为0.05-0.1制备得到所述含掺杂金属的阳离子前驱液,这是因为比值过高,粘度过大,导致反应速率过低;反之,则同样达不到控制反应速率的目的。
本发明所述阳离子前躯体盐能够为后续制备掺杂的纳米晶提供稳定的阳离子,且阳离子不易被还原。优选的,所述阳离子前躯体盐可以为硫酸锌(ZnSO4)、硫酸镉(CdSO4)、硫酸铅(PbSO4)、硫酸铟(In2(SO4)3)中的一种或多种。
优选的,所述含掺杂金属的阳离子前驱液中,所述阳离子前驱体盐中的阳离子元素的浓度为0.005-0.05mmol/ml,这是因为浓度过大,相应的阳离子过量,反应速率过快;如果浓度过小,反应速率较低。
优选的,按所述阳离子前驱体盐中阳离子元素与掺杂金属醋酸盐的摩尔比为5-20制备得到所述含掺杂金属的阳离子前驱液,这是因为摩尔用量之比过高,掺杂的金属元素用量较少,掺杂的效果不佳;反之摩尔用量之比过低,掺杂的金属元素用量过高,影响掺杂效果,会容易导致合金化。优选的,所述掺杂金属醋酸盐可以为醋酸金、醋酸银、醋酸铜、醋酸铁、醋酸铝等中的一种或多种。因为醋酸盐能够较好的溶解形成金属离子溶液并且有好的掺杂效果。
优选的,所述还原性无机盐可以为亚硫酸钠、亚硫酸镉、亚硫酸铅、亚硫酸铟、亚硫酸银等中的一种或多种。由于掺杂金属醋酸盐中的低价掺杂金属离子具有较强的还原性,极易被氧化,从而影响掺杂效果。本发明采用所述还原性无机盐能够避免所述低价掺杂金属离子被氧化,在晶体生长过程中,杂金属离子与纳米晶发生共沉淀,提高掺杂效果。
按所述还原性无机盐与所述阳离子前驱体盐中的阳离子元素的摩尔比为0.1-0.5制备得到所述含掺杂金属的阳离子前驱液。如果所述还原性无机盐用量过高,容易造成混合液中具有的pH值偏碱性,不利于后续掺杂纳米晶的生长;如果所述还原性无机盐用量过低,易造成低价金属离子被氧化成高价金属离子,影响掺杂效果。
优选的,所述无机卤盐为碱金属卤化盐,例如可以为氯化钠、溴化钠、碘化钠、氟化钠等中的一种或多种。所述无机卤盐可以电离出卤素离子与纳米晶表面的原位金属(所述阳离子金属元素)结合,对纳米晶实现钝化,以此提高纳米晶的发光效率。
优选的,按无机卤盐与阳离子前躯体盐中阳离子元素的摩尔比为0.02-0.2制备得到所述含掺杂金属的阳离子前驱液。这是因为摩尔用量比值过低或过高,都会影响钝化效果。
优选的,所述阴离子前躯体盐能够电离出具有较强还原性的阴离子,用于参与反应。例如:所述阴离子前躯体盐可以为硫化钠、硫化钾、硫化钙、硒化钠、硒化钾、硒化钙等中的一种或多种。
所述阴离子前躯体盐溶液的摩尔浓度范围为0.05-1mmol/ml,这是因为浓度过低,反应速率过慢;反之浓度过高,则反应速率过快。按阴离子前驱体盐中阴离子元素与阳离子前驱体盐中阳离子元素的摩尔比为10-20将所述阴离子前躯体盐溶液加入所述含掺杂金属的阳离子前驱液进行晶体生长。进一步的,所述阴离子前躯体盐溶液可以采用逐步加入的方式加入到所述含掺杂金属的阳离子前驱液中或者采用一次全部加入的加入到所述含掺杂金属的阳离子前驱液中进行晶体生长。优选的,采用逐步加入的方式进行晶体生长。
本发明在纳米晶的制备过程中,在纳米晶的生长阶段添加无机卤盐来调节不同价态金属离子在混合液中的浓度,进而能够有效的得到既具有金属离子掺杂,又具有卤素钝化的纳米晶,大大改善了发光材料的带隙以及光电性能。相应的作用机制主要是:依靠卤素离子与纳米晶表面的金属阳离子空位的偶极效应形成的化学键,来完成纳米晶的表面钝化,进而提高纳米晶的荧光强度以及相应的光电性能。本发明方法操作简单,易于重复,解决了现有通过掺杂改变纳米晶的带隙后,引起发光峰的半峰宽变宽,影响色纯的问题。
本发明的一种QLED器件,所述QLED器件包括阴极、阳极、空穴传输层、电子传输层和量子点发光层,其中,所述QLED的量子点发光层的材料为如上所述的金属掺杂的纳米晶。
下面通过若干实施例对本发明进行详细说明。
实施例1
1、本实施例的Cu掺杂ZnS纳米晶的制备方法,包括如下步骤:
1)、前驱液的制备:
取10ml含有0.1mmol的硫酸锌水溶液和0.01mmol的醋酸铜溶液混合,并在氮气氛围下搅拌10min,继续添加0.08mmol的NaSO3,用于通过SO2的气体的生成降低Cu+向Cu2+的转化;向混合液中加入0.02mmol的氯化钠(NaCl)并搅拌10min;向混合液中加入0.01mmol的聚乙烯吡咯烷酮(PVP),并剧烈搅拌5min,得到前驱液。
2)、Cu掺杂ZnS纳米晶的合成:
取10ml的0.1mmol的Na2S溶液,采用滴加到上述前驱液中,直到混合液中出现白色絮状沉淀后停止滴加Na2S溶液。然后通过离心分离、清洗沉淀,得到相应的Cu掺杂ZnS纳米晶。
2、本实施例的QLED器件的制备方法,包括如下步骤:
将PEDPOT:PSS(AI4083)溶液利用0.45微米的滤头进行过滤后,采用转速为4000rpm时间为60s在清洗干净的ITO玻璃片上旋涂,然后采用150℃退火15min,采用同样的转速和时间旋涂空穴传输层和电子阻挡层(含有PVK氯苯溶液,浓度为6mg/ml),然后将制备好的Cu掺杂ZnS纳米颗粒溶液在手套箱中采用转速为2000rpm时间为60s的条件旋涂沉积,最后在高真空2×104Pa压强下通过一个掩膜版采用热蒸的形式沉积40 nm厚的TPBI和150nm厚的铝电极,制备的QLED器件面积为4cm2
实施例2
1、本实施例的Cu掺杂ZnS纳米晶的制备方法,包括如下步骤:
1)、含有前驱液的制备:
取10ml含有0.1mmol的硫酸锌水溶液和0.01mmol的醋酸铜溶液混合,并在氮气氛围下搅拌10min,继续添加0.08mmol的CdSO3,用于通过SO2的气体的生成降低Cu+向Cu2+的转化;向混合液中加入0.02mmol的氟化钠(NaF)并搅拌10min;向混合液中加入0.01mmol的聚乙烯吡咯烷酮(PVP),并剧烈搅拌5min,得到前驱液。
2).铜掺杂ZnS纳米晶的合成:
取10ml的0.1mmol的Na2S溶液,采用一定的速率慢慢滴加到上述前驱液中,直到混合液中出现白色絮状沉淀后停止滴加Na2S溶液。然后通过离心分离、清洗沉淀,得到相应的Cu掺杂ZnS纳米晶。
2、本实施例的QLED器件的制备方法,包括如下步骤:
将PEDPOT:PSS(AI4083)溶液利用0.45微米的滤头进行过滤后,采用转速为4000rpm时间为60s在清洗干净的ITO玻璃片上旋涂,然后采用150℃退火15min,采用同样的转速和时间旋涂空穴传输层和电子阻挡层(含有PVK氯苯溶液,浓度为6mg/ml),然后将制备好的Cu掺杂ZnS纳米晶溶液在手套箱中采用转速为2000rpm时间为60 s的条件旋涂沉积,最后在高真空2×104 Pa压强下通过一个掩膜版采用热蒸的形式沉积40nm厚的TPBI和150nm厚的铝电极,制备的QLED器件面积为4cm2
综上所述,本发明提供的一种金属掺杂的纳米晶及其制备方法、QLED器件。本发明在纳米晶的制备过程中,在不同的生长阶段添加无机卤盐来调节不同价态金属离子在混合液中的浓度,进而能够有效的得到既具有金属离子掺杂,又具有卤素钝化的纳米晶。本发明方法操作简单,易于重复。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种金属掺杂的纳米晶的制备方法,其特征在于,包括:
提供一种含掺杂金属的阳离子前驱液,所述含掺杂金属的阳离子前驱液包括由阳离子前驱体盐溶液、金属醋酸盐溶液、还原性无机盐、无机卤盐混合制备得到;
提供一种阴离子前驱体盐溶液;
将所述阴离子前驱体盐溶液加入到所述含掺杂金属的阳离子前驱液中进行晶体生长,制备得到所述金属掺杂的纳米晶。
2.根据权利要求1所述的金属掺杂的纳米晶的制备方法,其特征在于,所述含掺杂金属的阳离子前驱液中还包括非离子型高分子化合物。
3.根据权利要求2所述的金属掺杂的纳米晶的制备方法,其特征在于,所述非离子型高分子化合物为聚乙烯吡咯烷酮、聚丙烯吡咯烷酮、聚丁烯吡咯烷酮中的一种或多种。
4.根据权利要求1至3任意一项所述的金属掺杂的纳米晶的制备方法,其特征在于,所述阳离子前躯体盐为硫酸锌、硫酸镉、硫酸铅、硫酸铟中的一种或多种;
和/或所述掺杂金属醋酸盐为醋酸金、醋酸银、醋酸铜、醋酸铁、醋酸铝中的一种或多种;
和/或所述还原性无机盐为亚硫酸钠、亚硫酸镉、亚硫酸铅、亚硫酸铟、亚硫酸银中的一种或多种;
和/或所述无机卤盐为氯化钠、溴化钠、碘化钠、氟化钠中的一种或多种;
和/或所述阴离子前躯体盐为硫化钠、硫化钾、硫化钙、硒化钠、硒化钾、硒化钙中的一种或多种。
5.根据权利要求1所述的金属掺杂的纳米晶的制备方法,其特征在于,所述阳离子前躯体盐溶液中阳离子元素的浓度为0.005-0.05mmol/ml。
6.根据权利要求1至3任意一项所述的金属掺杂的纳米晶的制备方法,其特征在于,按所述阳离子前躯体盐中阳离子元素与掺杂金属醋酸盐的摩尔比为5-20制备得到所述含掺杂金属的阳离子前驱液;
和/或按所述还原性无机盐与阳离子前躯体盐中阳离子元素的摩尔比为0.1-0.5制备得到所述含掺杂金属的阳离子前驱液;
和/或按所述无机卤盐与阳离子前躯体盐中阳离子元素的摩尔比为0.02-0.2制备得到所述含掺杂金属的阳离子前驱液。
7.根据权利要求1所述的金属掺杂的纳米晶的制备方法,其特征在于,所述阴离子前躯体盐溶液中的阴离子元素的浓度为0.05-1mmol/ml,按所述阴离子前躯体盐中的阴离子元素与阳离子前躯体盐中阳离子元素的摩尔比为10-20,将所述所述阴离子前躯体盐溶液加入含掺杂金属的阳离子前驱液中进行晶体生长。
8.根据权利要求1所述的金属掺杂的纳米晶的制备方法,其特征在于,所述非离子型高分子化合物与阳离子前躯体盐中阳离子元素的摩尔比为0.05-0.1。
9.一种金属掺杂的纳米晶,其特征在于,采用如权利要求1-8任一所述的金属掺杂的纳米晶的制备方法制备而成。
10.一种QLED器件,其特征在于,包括阴极、阳极、电子传输层、空穴传输层和量子点发光层,所述QLED的量子点发光层的材料包括权利要求9所述的金属掺杂的纳米晶。
CN201710560567.8A 2017-07-11 2017-07-11 金属掺杂的纳米晶及其制备方法、qled器件 Pending CN109244201A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710560567.8A CN109244201A (zh) 2017-07-11 2017-07-11 金属掺杂的纳米晶及其制备方法、qled器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710560567.8A CN109244201A (zh) 2017-07-11 2017-07-11 金属掺杂的纳米晶及其制备方法、qled器件

Publications (1)

Publication Number Publication Date
CN109244201A true CN109244201A (zh) 2019-01-18

Family

ID=65083890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710560567.8A Pending CN109244201A (zh) 2017-07-11 2017-07-11 金属掺杂的纳米晶及其制备方法、qled器件

Country Status (1)

Country Link
CN (1) CN109244201A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11603493B2 (en) 2019-10-17 2023-03-14 Samsung Electronics Co., Ltd. Core shell quantum dot, production method thereof, and electronic device including the same
US11692136B2 (en) 2019-10-17 2023-07-04 Samsung Electronics Co., Ltd. Core shell quantum dot, production method thereof, and electronic device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101875844A (zh) * 2010-02-02 2010-11-03 华东师范大学 一种可发射白色荧光的纳米材料及其制备方法
CN101963581A (zh) * 2010-07-22 2011-02-02 合肥学院 对痕量TNT检测的ZnS:Cu2+纳米晶荧光探针的制备方法
US20120125781A1 (en) * 2008-12-10 2012-05-24 Zhang jin zhong Compositions and methods for synthesis of hydrogen fuel
CN101341228B (zh) * 2005-09-29 2013-03-13 国防研究与发展组织总干事 半导体纳米晶的单源前体
CN104974759B (zh) * 2014-04-11 2017-05-10 韩国机械研究院 由卤素盐稳定化的量子点及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101341228B (zh) * 2005-09-29 2013-03-13 国防研究与发展组织总干事 半导体纳米晶的单源前体
US20120125781A1 (en) * 2008-12-10 2012-05-24 Zhang jin zhong Compositions and methods for synthesis of hydrogen fuel
CN101875844A (zh) * 2010-02-02 2010-11-03 华东师范大学 一种可发射白色荧光的纳米材料及其制备方法
CN101963581A (zh) * 2010-07-22 2011-02-02 合肥学院 对痕量TNT检测的ZnS:Cu2+纳米晶荧光探针的制备方法
CN104974759B (zh) * 2014-04-11 2017-05-10 韩国机械研究院 由卤素盐稳定化的量子点及其制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11603493B2 (en) 2019-10-17 2023-03-14 Samsung Electronics Co., Ltd. Core shell quantum dot, production method thereof, and electronic device including the same
US11692136B2 (en) 2019-10-17 2023-07-04 Samsung Electronics Co., Ltd. Core shell quantum dot, production method thereof, and electronic device including the same
US11987739B2 (en) 2019-10-17 2024-05-21 Samsung Electronics Co., Ltd. Core shell quantum dot, production method thereof, and electronic device including the same
US11999887B2 (en) 2019-10-17 2024-06-04 Samsung Electronics Co., Ltd. Core shell quantum dot, production method thereof, and electronic device including the same

Similar Documents

Publication Publication Date Title
Moyen et al. ZnO nanoparticles for quantum-dot-based light-emitting diodes
Long et al. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS 2 quantum dots
WO2019128992A1 (zh) 电子传输薄膜及其制备方法和应用
CN109980097B (zh) 一种薄膜的制备方法与qled器件
CN109411614B (zh) 一种有机无机复合型钙钛矿发光二极管器件及其制备方法
Qi et al. Synthesis and characterization of ZnS: Cu, Al phosphor prepared by a chemical solution method
Zhong et al. Encapsulation of lead halide perovskite nanocrystals (NCs) at the single-particle level: strategies and properties
CN109244201A (zh) 金属掺杂的纳米晶及其制备方法、qled器件
CN109980126B (zh) 载流子传输材料、载流子传输薄膜及其制备方法和应用
CN105419803B (zh) 碲汞镉量子点与碳纳米管纳米复合材料的制备方法
CN102757764A (zh) 酸性钨溶胶及其制备方法和应用
CN110534656A (zh) 一种纳米材料及制备方法与量子点发光二极管
CN113120949A (zh) 一种氧化锌纳米材料及其制备方法、薄膜及光电器件
CN109935662A (zh) 电子传输材料及其制备方法、发光二极管
Gao et al. Synthesis and luminescence properties of CdSe: Eu NPs and their surface polymerization of poly (MMA-co-MQ)
CN109994653B (zh) 一种薄膜的制备方法与qled器件
EP2881448B1 (en) Zinc aluminate material and method for preparing same
Kumar et al. Structural, optical investigations of Zn0. 98-xSn0. 02MnxS (x≤ 0.04) quantum dots for optoelectronic applications
Huang et al. Large stokes shift of Ag doped CdSe quantum dots via aqueous route
US9595439B2 (en) Method for preparing nanostructure by electrochemical deposition, and nanostructure prepared thereby
Kameyama Advances in colloidal I-III-VI2-based semiconductor quantum dots toward tailorable photofunctional materials
US20150129803A1 (en) Stannate fluorescent material and method for preparing same
Yang et al. Development of novel cadmium-free AgInS2 semiconductor nanoparticles
CN101734616B (zh) 一锅法制备二氧化硅杂化量子点的方法
CN109841745A (zh) 一种以过渡金属氧化物掺杂量子点为发光层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190118

RJ01 Rejection of invention patent application after publication