CN1091307C - 使用半圆形辐射器的宽频带天线 - Google Patents
使用半圆形辐射器的宽频带天线 Download PDFInfo
- Publication number
- CN1091307C CN1091307C CN96121102A CN96121102A CN1091307C CN 1091307 C CN1091307 C CN 1091307C CN 96121102 A CN96121102 A CN 96121102A CN 96121102 A CN96121102 A CN 96121102A CN 1091307 C CN1091307 C CN 1091307C
- Authority
- CN
- China
- Prior art keywords
- radiator
- antenna
- conductor
- semi
- summit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/44—Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions
- H01Q9/46—Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions with rigid elements diverging from single point
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
- H01Q9/285—Planar dipole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/40—Element having extended radiating surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/42—Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
Landscapes
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
Abstract
使用半圆形圆盘导体的宽频带天线中,在半圆形辐射器同心地形成半圆形缺口,或者将具有同心地限定的半圆形缺口的半圆弧形辐射导体弯成圆柱形来形成辐射器。
Description
技术领域
本发明涉及频带宽度例如为0.5~13GHz且尺寸小的天线,特别涉及使用半圆形辐射器或半圆形的带状辐射器的天线。
背景技术
在IEEE AP-S International Symposium,1994,P1294上R.M.Taylor的“A Broadband Omnidirectional Antenna”中,披露了如图1所示使用半圆形圆盘导体的常规宽频带天线。这种常规天线有两个部件。其中一个部件由两个半圆形圆盘导体121a和122a组成,这两个半圆形圆盘导体具有穿过其半圆弧形顶点的公共中心线Ox,并交叉成直角。另一个部件也同样由两个部件121b和122b组成,它们同样具有穿过其半圆弧形顶点的公共中心线Ox,也相交成直角。将两个部件的圆弧形顶点相互对置进行组装。在两个部件的圆弧顶点之间配置馈电区域;沿两个部件中之一的中心设置馈电用同轴电缆31,该电缆的外导体与部件接触。
图2示出示于图1中天线的简化形式,其中半圆形圆盘导体12a和12b的半圆弧顶点相互对置。馈电区域配置在两圆盘导体12a和12b的顶点之间,用装配在圆盘导体12b中的同轴电缆31给它们馈电。
图3示出示于图2中的天线的VSWR特性。由图3可知,简化的天线也具有宽频带特性,在选取各半圆形圆盘导体12a和12b的半径r为6cm时就能得到宽频带特性。VSWR<2.0的频带宽度下限为600MHz。这种情况下,由于下限频率波长λ约为50cm,因而显然要使半径r等于约1/8λ。示于图1的天线的辐射特性在垂直于中心线Ox的平面中是非定向的,而图2中天线的辐射特性在从频率下限至高于它约两倍的频率处的频率范围内是无方向性的,在垂直于中心线Ox的平面中沿与辐射器12a的相同方向是富有方向性的。
因此,图1中的常规天线包括上下成对天线部件,各部件由两个相互交叉的分段辐射器组成。所以占据大量空间。并且在图2的简化型天线中,分段半圆形辐射器也占空间。也就是从尺寸大小的观点来看,常规天线要求半圆形圆盘导体的半径至少为最低谐波波长的1/8左右;甚至简化型天线也需要2r乘2r或1/4λ乘1/4λ的天线面积。因此,常规天线的缺陷就在于它们显得笨重并占空间,当频率下限降低时,它们与该下限值成反比,变得更笨重。
发明内容
所以,本发明的目的在于提供一种天线,它具有与现有技术中的天线相同的电特性,但并不笨重,或者说提供一种比以往尺寸更小、最低谐振频率更低的天线。
按照本发明第一方案的天线的特征在于,半圆弧形辐射器具有在其内限定的几乎为半圆形的空间或区域(下文中称为缺口)。在垂直于辐射器的平面上,设置平面导体接地板,使接地板位于圆弧顶点的对面,并将圆弧顶点设置为馈电点。
按照本发明第二方案的天线的特征在于,设置由基本上为半圆弧形导体所形成的,与之同心地限定了半圆形缺口的第一辐射器和与上述辐射器构形几乎相同的另一个辐射器,使它们的圆弧顶点相互对置并将它们的圆弧顶点用作馈电点。
也可在半圆弧形辐射器的半圆形缺口中设置形状不同于半圆弧形辐射器的至少一个辐射部件,将其接在馈电点附近。
按照本发明第三方案的天线,其特征在于将用作辐射器的半圆形圆盘导体弯成圆柱形式,在垂直于辐射器的平面上设置平面导体接地板,使其位于相对圆柱形辐射器的圆弧顶点并将圆弧顶点用作馈电点。
按照本发明第四方案的天线,其特征在于将具有与圆柱形辐射器圆弧顶点相对的圆弧顶点的另一个半圆形辐射器与此平行地设置,并将它们的圆弧顶点用作馈电点。
本发明第三、四方案的天线中,当圆柱形半园辐射器是具有在其内限定的几乎为半圆形缺口的半圆弧形辐射器时,在缺口中设置形状不同的至少一个辐射部件,并将其接在馈电点附近。
用本发明的天线可以缩小天线部件所占空间,同时保持与现有技术相同的宽频带特性,这是通过在半圆形辐射器中限定半圆形缺口来形成弧形辐射器和/或将半圆形或半圆弧形辐射器弯成圆柱形式来实现的。并且,在半圆形辐射器缺口中包含另一个辐射部件,可以得到多谐振天线而勿需增大天线部件,并且将半圆形辐射器弯成圆柱形式,可相对于现有技术改善VSWR特性。
附图说明
通过以下结合附图对优选实施例的详细描述,本发明的上述以及其它目的、特征和优点会更清楚。附图中:
图1是常规天线的透视图;
图2是表示图1中天线的简化型的透视图;
图3是表示示于图2中的天线的VSWR特性的曲线图;
图4是按照本发明的天线结构透视图;
图5A是表示在图4中的天线结构的辐射器上电流密度分布图;
图5B是表示用图4所示结构中不同形状的辐射器得到的VSWR特性的曲线;
图6是展示本发明第一实施例的透视图;
图7是表示图6中一种馈电模式的图;
图8是表示图6中另一种馈电模式的图;
图9是表示图6中再一种馈电模式的图;
图10A是进行试验的图6天线结构的正视图;
图10B是图10A的侧视图;
图10C是图10A的平面图;
图11是表示测得的VSWR特性的图;
图12是展示本发明第二实施例的透视图;
图13是展示本发明第三实施例的透视图;
图14是展示示于图13的天线的VSWR特性的图;
图15是表示本发明第四实施例的透视图;
图16是展示本发明第五实施例的透视图;
图17是展示本发明第六实施例的透视图;
图18是表示示于图17的天线的VSWR特性的曲线图;
图19是表示图18中放大的低频部分的曲线图;
图20是展示图16实施例的改进形式的图;
图21是展示图16实施例的另一改进形式的图;
图22是展示图16实施例的又一改进形式的图;
图23是展示实施本发明第六实施例的一个模式的透视图;
图24是展示实施本发明第六实施例的另一个模式的透视图;
图25是展示用于本发明中馈电的结构例的透视图;
图26是展示用于馈电的另一种结构例的透视图;
图27是展示用于馈电的又一种结构例的透视图;
图28是本发明第七实施例的透视图;
图29A是用于本发明第七实施例的试验的天线之正视图;
图29B是图29A所示天线平面图;
图29C是图29A所示天线右侧图;
图29D是辐射器13的展开图;
图30是表示测得的图29A~29D中天线的VSWR特性的曲线图;
图31是表示对图28中的椭圆柱辐射器不同轴向长度所测得的VSWR特性的曲线图;
图32是将半圆形辐射器弯折为圆柱形式时两相对端之间距离的说明图;
图33是表示对由于改变圆柱形式直径而在圆柱形辐射器两相对端之间具有的不同距离所测的VSWR特性的曲线图;
图34是表示分别在半圆形辐射器两相对端电气连接和绝缘时所测得的VSWR特性的曲线图;
图35是展示本发明第八实施例的透视图;
图36A是用于本发明第八实施例试验的天线的正视图;
图36B是图36A所示天线的平面图;
图36C是图36A所示天线的右视图;
图36D是辐射器14的展开图;
图37A是表示图36A~36D天线的VSWR特性的曲线图;
图37B是通过实例表示缺口与辐射器面积比与工作区域中最差的VSWR特性之间关系的曲线图;
图38是展示本发明第九实施例的透视图;
图39A是用于本发明第九实施例的试验的天线的正视图;
图39B是图39A所示天线的平面图;
图39C是图39A所示天线的右视图;
图40是表示测得的图39A~39D的VSWR特性的曲线图;
图41是放大地表示图40中低频区域的曲线图;
图42是展示第十实施例的改进形式的图;
图43是展示第十实施例的另一改进形式的图;和
图44是展示第十实施例的又一改进形式的图。
具体实施方式
为便于更好地理解本发明,首先描述单极天线,它包括半圆形圆盘辐射器和用作镜像平面的平面导体接地板,工作中等效于图1中天线,所述半圆形圆盘辐射器为示于图1中的偶极天线的辐射部件之一。如图4所示,在平面导体接地板50上与其垂直设置半导体辐射器12,使辐射器12的圆弧顶点与接地板50相邻但又彼此隔开的,同轴馈电电缆的中心导体和外导体分别接在半导体辐射器12的圆弧顶点和接地板50上,从而形成单极天线。并且,正如下文将述,以示于图4中的单极天线作基础进行分析。由于导体接地板50形成辐射器12的镜像,该单极天线的工作等效于示于图2中天线的工作。
(a)用有限元方法分析辐射器12上5GHz高频电流的分布,由此可知,高电流密度区域如图5A中影线区域所示为沿半圆形辐射器12的圆周不连续地分布,而流过中心区域的电流小得可以忽略-这表明半圆形圆盘的弧形边缘区域对辐射贡献大。
(b)一般认为图4中半圆形辐射器12的形状为包括圆的椭圆,并在下列三种条件下测量辐射器12两垂直相交的第一和第二半径L1、L2之间尺寸关系对VSWR特性的影响。
(1)L1=L2=75mm(即半圆情况下)
(2)L1=75mm、L2=50mm(即当L1>L2时)
(3)L1=40mm、L2=75mm(即当L1<L2时)
图5B中示出在上述三种条件下所测的VSWR特性,分别用实线、虚线和粗虚线5a、5b和5c表示。从图4中可见,半径L2的变化引起频带频率下限改变(半径L2的减小增加下限频率),但即使将辐射器的半圆形式变成椭圆,也未引起VSWR特性的明显变化-这表明辐射器12的形状并不一定要求为标准的半圆形。
依据分析(a)的结果,切掉半圆形圆盘辐射器在其弧形边缘区域内的半圆形区域,限定了一个半圆形缺口,用于容纳另一个天线部件或电路的电气部分。
按照分析(b)的结果,无论辐射器是半圆形或半椭圆形都基本保持VSWR特性不变。这适于用于下文所述本发明实施例的弧形带状辐射导体。第一实施例
图6是展示本发明第一实施例的天线结构的透视图,它包括一对大体为半圆弧形的辐射器11a和11b(例如,由铜或铝制得)。各弧形辐射器11的内外边缘边可为半圆形或半椭圆形。设置两个辐射器11a和11b,使它们的圆弧顶点21a和21b相互对置,馈电区域30配置在顶点21a和21b之间。两个半圆弧形辐射器11a和11b具有在其内部与其有共同中心的大体为半圆形的缺口41a和41b。在辐射器11a和11b为半圆形和缺口41a和41b为例如在水平方向具有长轴的半椭圆形时,辐射器11a和11b的宽度W沿它们的两端逐渐减小或增大。当缺口具有沿垂直方向的长轴时,辐射器11a和11b的宽度W沿其两端逐渐增加。这种天线结构允许在缺口41a和41b中设置其它部件,因而与使用完整的半圆形圆盘导体的常规天线相比,它增加了空间利用率。
图7~9用实例示出了用于图4所示实施例的天线的不同馈电设计方案。图7中沿辐射器11b的中心线Ox设置同轴电缆31,而在图8中,沿辐射器11b的半圆形外圆周设置同轴电缆31。图9中,使用平行二线式馈线33。总之,在两辐射器11a和11b的顶点21a和21b之间设置馈电。
用一个实验来证明或确定本实施例的天线性能。图10示出其正视、右视和平面图,图11示出在实验中测得的VSWR特性。实验中,辐射器11a和11b的各外形为半径a=75mm的半圆,缺口41a和41b的各形状为与各辐射器外形同心的半圆形,其半径为b=55mm。因此,辐射器11a和11b的宽度W为20mm。沿辐射器11b中心轴设置的同轴电缆31用于馈电,同轴电缆31的中心导体接在辐射器11a的顶点21a上,其外导体接在另一辐射器11b上。将这样获得的VSWR特性与示于图3中的现有技术例的VSWR特性进行比较,在高于600MHz的频率区域上VSWR限制在约为2或以下的值,并且无论辐射器是否有缺口,频带特性与现有技术例的该特性相同。设置缺口提高了空间利用率,因为在各辐射器的缺口上可设置电路装置、另一个辐射部件等。第二实施例
图12展示了本发明第二实施例的天线结构的透视图。该实施例中的天线配置有两组天线部件,其中之一组例如由参照图1中的现有技术所述的这种基本上为半圆形圆盘的一对导体121b和122b构成。圆盘导体121b和122b垂直相交,使它们的圆弧顶点处于同一位置,并且其中心线相互重合。另一组天线部件由一对半圆弧形辐射器111a和112a组成,每一半圆弧形辐射器都大体为半圆形,并在其内限定参照图6所述的缺口。辐射器111a和112a也垂直相交,它们的圆弧顶点也保持在由21a所示的同一位置上,它们的中心线Ox也相互重合。两组天线部件相结合,辐射器111a、112a和121b、122b的顶点21a和21b相互对置,顶点21a和21b用作馈电点。本例中同轴电缆31用于馈电,其中心导体接在顶点21a上,其外导体接在顶点21b上。可用平行二线式馈线等来代替同轴电缆31。
本实施例的天线结构也提供与采用图1的现有技术例可获得宽频带特性同样的宽频带特性。因此,本实施例由于具有第一实施例的特征而在空间利用率上是优良的,并且使用多个辐射器来形成辐射部件,因而在水平平面上的方向可具有全向性。第三实施例
图13展示出本发明第三实施例的透视结构,它为相当示于图6和7的偶极天线的单极天线。本实施例中的天线有在其中心限定的大体为半圆形缺口41的基本上为半圆弧形的辐射器11和平面导体接地板50组成。辐射器11设置成其圆弧顶点与平面导体接地板50相邻但又彼此隔开。辐射器11的顶点21用作馈电点,用于馈电的同轴电缆31通过设置于平面导体接地板50上的通孔,将其中心导体接在辐射器11的顶点21上,其外导体接在接地板50上。
对本实施例的天线结构进行试验,其中在半圆弧形辐射器11的中心部位限定的缺口41为半椭圆形。具体地说,对于辐射器11端部的宽度W1和馈电点21处的宽度W2的不同大小进行试验,即在W1=W2,W1>W2和W1<W2的情况下进行试验。图14示出试验中所用的参数和对其测得的VSWR特性。虽然用具有半椭圆形缺口的弧形辐射器得到的VSWR(用虚线表示)在1.5GHz附近低于为半圆形缺口时的VSWR大小,但作为整体来看,VSWR特性没有发生特别的变化,由此可见,不必特别限制缺口41为半圆形式。在1.5GHz附近VSWR的大小差异是由于缺口面积不同所致。第四实施例
图15立体透视地展示出本发明的第四实施例,它使用一对与图13实施例的辐射体形状完全相同的半圆弧形辐射体111和112。辐射体111和112以各自圆弧的顶点垂直相交于同一点,它们的中心线相互重合。也就是说,半圆弧形辐射器111和112各自具有限定在其内的缺口41,将它们组合为一天线部件,其外形的顶点21保持在同一点,它们的穿过此点的中心线相互重合,因而设置由成直角相交的辐射器形成的该天线部件,使其顶点21与平面导体接地板50相邻但又彼此隔开。天线部件的顶点21用作馈电点,通过设置于平面导体接地板50上的通孔将同轴电缆31接于此。
在示于图13和15的第三和第四实施例的每一例中,在平面导体接地板50的背面形成辐射器11的电镜像或辐射器111和112的电镜像。因此,辐射部件的大小(辐射器11或辐射器111、112的大小)仅为第一和第二实施例中该尺寸大小的一半,从而可以将天线高度减小一半,并能同时获得正如第一和第二实施例的天线结构所能获得的宽频带。所以,通过降低天线高度和使用具有限定在其内的缺口41的半圆弧形辐射器能够获得具有良好空间利用率的天线。第五实施例
图16立体透视地示出本发明的第五实施例,在该例中,在由图13实施例的半圆弧形辐射器所限定的缺口41中配置不同于弧形形状的另一辐射部件。也就是说,本实施例的天线包括具有由其半圆形构形的与之同心地限定的几乎为半圆形缺口41的半圆弧形辐射器11;平面导体接地板50,辐射器11的半圆弧顶点与其相邻但又彼此隔开;通过设置于平面导体接地板50上的通孔连接在位于辐射器11的顶点与接地板50之间的馈电点21上的同轴电缆31;和置于辐射器11的缺口41中,其一端接在最接近馈电点21的弧形辐射器11的中心的单极曲折板61。同轴电缆31通过平面导体接地板50的通孔,将其中心导体接在辐射器11的顶点上,将其外导体接在接地板50上。单极曲折板61与弧形辐射器11形成一体结构,通过辐射器11将功率馈送给单极曲折板61。
本实施例中,在半圆弧形天线11中加有其谐振频率低于弧形天线11的最低谐振频率的单极曲折板天线61。由于单极曲折板天线61的电流路径长于半圆弧形天线11的半圆周,因而单极曲折板61可在低于上述各实施例中天线的最低谐振频率的频率上产生谐振。具有附加的单极曲折板天线61的天线结构因而可在上述各实施例中天线的频带之外产生谐振;由此可实现多谐振。特别是通过设置单极曲折板天线61的谐振频率低于半圆弧形辐射器11的谐振频率,可使天线的最低谐振频率更低而勿需改变天线尺寸大小。第六实施例
图17立体透视地示出本发明的第六实施例,图18和19示出其测得的VSWR特性。
本实施例的天线不同于图16中实施例的天线,采用如图2现有技术例的半圆形辐射器11b作双极天线来代替平面导体接地板50。也就是说,该天线配有几乎为半圆弧形的辐射器11a和半圆形辐射器11b,它们的圆弧顶点21a和21b作为馈电点相互对置。同轴电缆31接在这些馈电点上。单极曲折板天线61置于辐射器11a的缺口41中,其下端接在辐射器11a的内缘边的中心上。同轴电缆31具有接在弧形辐射器11a的顶点21a上的中心导体和接在半圆形辐射器11b上的外导体。馈给单极曲折板天线61的功率通过辐射器11a实现。
测量该天线的VSWR特性。半圆弧形辐射器11a的外形半径r为75mm,半圆形缺口41与辐射器11a的外形同中心,其半径b=55mm,辐射器11a的宽度W为20mm。调整单极曲折板天线61的谐振频率至280MHz。图18示出在整个频带上测得的VSWR特性,图19放大地示出在从零至2GHz的频带上的特性。这些曲线图在横轴上的频率刻度不同,但表示同一天线的测试数据。
由图18可知,本实施例的天线具有与常规天线相同的频带和VSWR特性。由图19可知,单极曲折板61使本实施例天线也在280MHz处谐振。测量结果表明,本实施例的天线结构实现了多谐振,而勿需改变天线尺寸大小,并使最低谐振频率降低。
图20~22示出图16实施例的改进形式,分别具有设置在由半圆弧形辐射器11限定的半圆形缺口41中的两个单极曲折板611和612,两螺旋型天线611和612,和一个单极电阻性负载。缺口41中所设置的辐射部件并不特别限于上述那些形状,只要能够容纳在半圆形缺口41中,其它形式的辐射部件也可使用。虽然图20和21中示出将两个辐射部件配置在缺口41上,但可以使用预定数量的辐射部件。通过辐射器11将功率供给具体的辐射部件上。
在如图20或21所示由弧形辐射器11限定的缺口41上附加多个辐射部件的情况下,可以使辐射部件的谐振频率不同来增加谐振频率数量。使用如示于图22中的单极电阻性负载63之类的宽频带天线和设置低于由辐射器11形成的半圆弧形单极导体的谐振频率的谐振频率,可以降低最低谐振频率而勿需增大天线结构尺寸,并且还增加了频带宽度。第七实施例
在上述各实施例中,至少一个半圆弧形辐射器具有与此同中心地确定的较小的半圆形缺口41,以此形成在其中容纳另外的天线部件或电路元件的空间。在将要描述的实施例中,至少将一个几乎为半圆形的辐射器卷一圈成圆柱形,从而减小天线的横向长度。
图23是展示本发明第七实施例的天线结构的透视图,它配置有辐射器13a和由半圆形圆盘导体形成的辐射器12b,辐射器13a由一个几乎为半圆形圆盘的导体卷一圈形成圆柱形来形成,从而使它的直边大致上形成为圆。辐射器13a和12b设置成使其中心线Ox公用,其圆弧顶点21a和21b相互对置。顶点21a和21b用作馈电点,馈电区域30就设置于它们之间。
图24是图13实施例的改进形式的透视图,它配置有辐射器13a和13b,各辐射器由将半圆形圆盘导体绕公共圆柱一圈而形成,圆柱的母线是穿过各半圆形圆盘导体顶点的中心线(半圆半径)Ox。设置辐射器13a和13b设置成使其圆弧顶点21a和21b相互对置。即两半圆形辐射器的各直边形成圆而分别成圆柱形。
如上所述,形成天线的两辐射器之一可为如图23所示的这种圆柱形辐射器13a,或者两个辐射器都为如图24所示的这种圆柱形辐射器。在每种情况下,正如下文所述,VSWR特性基本上保持不变,不论弯折的辐射器13a(图23)或辐射器13a和13b(图24)的相对端在其圆周方向上是否保持相互接触。
在图23和24的实施例中,圆柱形辐射器13a(还有图24中的13b)的相对端在其圆周方向上相距较小间隙10。最好使连接圆柱形辐射器13a中心线Ox和间隙10中心的直线d与中心线Ox近似为直角。图24中,最好使连接辐射器13a和13b的公共中心线Ox与各间隙10中心的直线d相互之间大体上平行。辐射器13a和13b最好在其前期的半圆形时尺寸相同。辐射器13a或13b的形状可以是椭圆柱形以及圆柱形,即辐射器只须大体上为圆柱形即可。
由于应用这种圆柱形辐射器,由至少一个辐射部件所占据的横向宽度被减至在使用平坦辐射器的现有技术例中所需宽度的1/3左右,从而增大了占空系数(space factor)。
图25~27通过实例示出用于图24的天线的馈电设计方案。图25中,沿中心线Ox,穿过辐射器13b的顶点设置同轴电缆31,而在图26中,沿辐射器13b的半圆弧设置同轴电缆31。图27中,平行二线式馈线33设置于辐射器13a和13b之间。总之,将两个辐射器13a和12b(或13a和13b)的顶点21和21b同作其馈电点。第八实施例
图28是展示本发明第八实施例的透视图,它用如图13所示实施例的平面导体接地板50代替在图23、24和25所示的实施例中所用的辐射器12b或13b来构成单极天线。也就是说,本实施例的天线包括辐射器13和平面导体接地板50,辐射器13由将大体为半圆形圆盘导体弯折为圆柱形而形成,其穿过半圆弧顶点的中心线Ox平行于圆柱形的中心轴。平面导体接地板50置于辐射器13的圆弧顶点附近,与穿过顶点21的中心线Ox基本上为直角。辐射器13的顶点21用作馈电点,通过从设置于平面导体接地板50上的通孔51穿出的同轴电缆31馈送功率;即同轴电缆31将其中心导体接在辐射器13的顶点21上,将其外导体接在平面导体接地板50上。
本实施例中,由平面导体接地板50在其背面上形成辐射部件13的电镜像。因此,本实施例仅需要一个辐射部件,在第七实施例中所用的天线构件数的一半(图23~27),因而由于使用一半构件数而降低了天线高度,同时还获得了正如用第七实施例所得到的相同宽频带特性。因而本实施例的天线具有优异的占空系数及较低的天线高度。
为确定本实施例天线的性能而进行试验。图29A、29B和29C是用于该试验的天线的正视、平面和右视图,图29D是所用辐射器13的展开图。如图29D所示半径r=75mm的半圆形圆盘导体缠绕一圈成为由穿过半圆弧的中心线Ox限定其母线的、直径为50mm的圆柱,从而形成辐射器13。所用的平面导体接地板50为厚0.2mm、面积300mm×300mm的铜板。通过从设置于平面导体接地板中心的通孔51穿出的同轴电缆31馈送功率。同轴电缆31的中心导体接在辐射器13的顶点上(图29C),其外导体接在平面导体接地板50上。
图30示出了试验中所测的VSWR特性。将其与示于图3中的现有技术例的VSWR特性进行比较,本实施例的天线具有与现有技术例相同的宽频带特性,并且其VSWR水平在整个频带上低于现有技术的VSWR。也就是说,与现有技术的VSWR特性相比,该天线的VSWR特性得到改善。由于使用圆柱形辐射器和平面导体接地板的这种组合,天线的高度被降低一半,辐射器所占天线宽度为现有技术的三分之一,因而该实施例天线的占空系数极佳,此外,与现有技术例相比,还提高了VSWR特性。
尽管将图23~28的实施例中的辐射器13表示为正规的圆柱形,但它还可以为椭圆柱形。如图28所示,椭圆柱形辐射器13的两个轴用与中心线Ox相交成直角的轴L2和与L2成直角的轴L1表示。在下列三种条件下测量VSWR特性。
(1)L1=L2=50(圆柱形)
(2)L1=33mm、L2=60mm(L1>L2的椭圆柱形)
(3)L1=60mm,L2=33mm(L1<L2的椭圆柱形)
图31中示出在上述条件下测得的VSWR特性,分别用实线、粗虚线和虚线31A、31B和31C表示。由图31显见,VSWR特性并没发生任何明显的改变,即使辐射器13为椭圆柱形;因而辐射器13并不总是圆柱形,也可为两轴之比L1/L2的范围大约为0.5~1.5的椭圆柱形。这适于下面将描述的所有实施例和辐射器13a和13b。
虽然图23~28所示的实施例中的圆柱形辐射器13示出其相对端相互之间基本保持接触,但该相对端也可以如图32所示相隔间隙d。图33示出圆柱形辐射器13的直径D为48mm(间隙d为1mm)和37mm(间隙d为6mm)时测得的VSWR特性,分别用实线33A和虚线33B表示测得的特性。当圆柱形辐射器13的相对端相互保持接触时,也得到了天线的宽频带特性。随着间隙d增大,VSWR特性变差,尽管如此,它仍比现有技术的VSWR特性好得多。
图34中分别用虚线34A和实线34B表示辐射器13的两相对端相互焊在一起(d=0)和保持小间隙(约1mm)时所测得的VSWR特性。由图34可见,VSWR特性基本上保持不变,而不管圆柱形辐射器13的相对端是否相互接触。因此,该相对端不必总保持接触。这适用于本发明所有实施例。第九实施例
图35是展示本发明第九实施例的天线结构的透视图。本实施例的天线使用在其中心部分限定有几乎为半圆形缺口41的半圆弧形辐射器14,该辐射器14是将半圆弧形导体(参见图36D)绕圆柱一圈而获得,圆柱的母线由穿过半圆弧形导体的半圆弧的顶点的中心线确定。也就是说,由图29D所示的辐射器13的半圆弧形边缘部分构成辐射器14。正如图28中的情形,平面导体接地板50设置成相邻于辐射器14圆弧的顶点。
辐射器14的顶点21用作馈电点,从穿过设置于平面导体接地板50的通孔51的同轴电缆31馈入功率给馈电点。同轴电缆31的中心导体接在辐射器14的馈电点上,其外导体接在平面导体接地板50上。由于提供了由半圆弧形辐射器14所限定的缺口41,因而能够比用仅将半圆形圆盘导体绕成没有缺口的圆柱形而形成的辐射器的第七或第八实施例的空间利用效率提高更多。参照上文涉及图5A的部分,半圆形辐射部件上的天线电流大部分沿其半圆弧的下部边缘边分布,沿上部的直线边和其中心部分没有天线电流流过;也就是说,仅仅下部的半圆弧边缘部分对辐射天线电波有作用,因而缺口41并不影响天线工作。缺口41并不全是半圆形(已表示出的辐射器状态),也可以为如半椭圆形。
为确定该天线的性能而进行了试验。图36A、36B和36C分别是天线的正视图、平面图和右侧视图,图36D是辐射器14的展开图。图37A示出试验中所测得的VSWR特性。为制得辐射器14,将半径r1=75mm的半圆弧形导体板绕直径为50mm的圆柱一圈,该半圆弧形导体板具有在圆弧形导体板外形的中心部分所限定的半径r2=55mm的半圆形缺口41,该圆柱的母线由穿过半圆弧形导体顶点21的中心线Ox所确定。所用的平面导体接地板50为300mm×300mm、厚0.2mm的铜板。通过从设置于平面导体接地板50的中心上的通孔穿出的馈电电缆31馈送功率。同轴电缆31的中心导体接在辐射器14的顶点21上,外导体接在平面导体接地板50上。
将试验中测得的VSWR特性(图37A)与没有缺口41的图29天线的VSWR特性(图30)相比较可知,即使辐射器有缺口41,其宽频带特性仍同现有技术的该特性相同。这种情况下,低于5GHz频带上的VSWR降低,但与示于图3的现有技术的该特性相比,它并没降低低频区域上的VSWR特性,并且还相当显著地改善了高频频带上的该特性。由于提供了由辐射器14所限定的缺口41,可将另一个天线部件置于缺口41中,因此,该实施例天线的占空系数极佳。
图37B是表示半圆形缺口41与半圆弧形辐射器14之面积比和工作频带上最差的VSWR特性之间关系的曲线图。由图37B可知,当使VSWR低于2时,缺口41的上述面积比可增至50%。这时半径比r2/r1接近0.7,这表明缺口41可被明显地放大。第十实施例
图38是展示本发明第十实施例的天线结构的透视图,它使用与图35的第九实施例中所用的半圆弧形辐射器相同的辐射器14,不同之处在于由辐射器14所限定的缺口41内放置了辐射部件。平面导体接地板50设置在相邻于辐射器14的半圆弧顶点21处。放置于由半圆弧形辐射器14所限定的缺口41中的是螺旋形天线62,它位于顶点21之上,其轴基本保持与平面导体接地板50垂直。同轴电缆31穿过平面导体接地板50的通孔51,将其中心导体接在辐射器14的顶点21上,外导体接在平面导体接地板50上。通过辐射体14将功率加给螺旋形天线62。
本实施例中,包括在图35天线结构中作第二天线的螺旋形天线。第二天线的频带是随意的,通过选择其工作频带低于对应的最低谐振频率可实现多谐振。并且,由于选择可容纳于缺口41中的尺寸的第二天线,因而可降低最低谐振频率而勿需增加整个天线结构的尺寸大小。
为确定该实施例天线的性能而进行试验。图39A、39B和39C是天线的正视图、平面图和右侧视图,图39D是辐射器14的展开图。图40和41中示出测得的VSWR特性。图41是表示在具有放大的横坐标上在0~1GHz的整个频带上的VSWR特性。辐射器14是半径r1=75mm的半圆弧形导体板,在其中心部分具有由圆弧形导体板外形所限定的半径r2=55mm的半圆形缺口41,将该半圆弧形导体板绕直径为50mm,其母线由穿过半圆弧形导体顶点21的中心线Ox所确定的圆柱一圈即制得辐射器14。在缺口41上放置螺旋形天线62,其一端接在辐射器14缺口41的半圆弧顶点21上,该螺旋形天线62作为第二天线调整在280MHz下工作。平面导体接地板50是300mm×300mm、厚0.2mm的铜板。通过从设置于平面导体接地板50的中心上的通孔穿出的馈电电缆31馈送功率。同轴电缆31的中心导体接在辐射器14的顶点21上,外导体接在平面导体接地板50上。将示于图40的试验结果与图37A中第九实施例的特性进行比较,可知即使缺口41中设置了螺旋形天线,也可获得相同的宽频带特性。图41表明使用辐射器14和螺旋形天线62的组合,使谐振也在280MHz下产生。因此,可以实现多谐振和降低最低谐振频率而勿需改变天线结构的尺寸。
图42、43和44示出第十实施例的改进形式,分别在由半圆弧形辐射器14所限定的缺口41中设置两个螺旋形天线621和622、两个单极曲折板611和612和一个单极电阻性负载63。任何其它型式的辐射部件只要可容纳于缺口41中就可使用。尽管图42和43示出设置两个辐射部件在缺口41上,但并不特别限制辐射部件的数量。通过辐射器14将功率供给与其相连的辐射部件。
通过选择设置于由半圆弧型辐射器14所限定的缺口41中的各辐射部件的不同谐振频率,可进一步增加天线的谐振频率数。在图44的情形,设置单极电阻负载63的谐振频率低于由辐射器14所形成的半圆形导体单极天线的谐振频率,可降低最低谐振频率而勿需增大天线结构尺寸,因而可使频带变宽。改变缺口41中所置辐射部件或元件和辐射器14的谐振频率和阻抗至这样的范围,使这些天线的工作相互不受影响。
如上所述,按照本发明第一、二方案,提供由半圆弧形辐射器所限定的缺口来增加占空系数同时保持宽频带特性。在缺口中设置一个或多个辐射部件,可以得到与常规天线尺寸相同、在多个频率下谐振、并加宽了频带宽度或降低了最低谐振频率的天线。
按照本发明的第三、四方案,将半圆形辐射体弯成所占空间少于现有技术例的圆柱形,由圆柱的半圆弧形辐射体所限定的缺口增加了占空系数。将与半圆弧形辐射器不同形状和工作频带的天线部件置于缺口中,可以得到与现有技术相比尺寸较小、但频带更宽和更多谐振或降低了最低谐振频率的天线。
应当理解,在不偏离本发明的实质和范围的情况下,可以作出许多修改和变形。
Claims (15)
1、一种天线,包括:
由基本上为半圆形圆盘的导体所形成的第一辐射器,所述第一辐射器与之同心地限定了几乎为半圆形的缺口;
相对于所述第一辐射器的半圆弧为直角地设置的平面导体接地板;和
接在所述第一辐射器半圆弧顶点上和所述平面导体接地板上给它们提供功率的馈线。
2、根据权利要求1所述的天线,还包括与所述第一辐射器形状大体相同的另一辐射器,所述另一个辐射器和所述第一辐射器具有公用的、与每一个辐射器相交的中心轴。
3、一种天线,包括:
由基本上为半圆弧形导体所形成的,与之同心地限定了半圆形缺口的第一辐射器;
由基本上为半圆形圆盘导体所形成的第二辐射器,将该第二辐射器的半圆弧顶点相对于所述第一辐射器的半圆弧顶点设置;和
接在所述第一和第二辐射器顶点上提供给它们功率的馈线。
4、根据权利要求3所述的天线,还包括:
与所述第一辐射器形状大体相同的第三辐射器,所述第三辐射器与所述第一辐射器相交,保持它们的半圆弧顶点在相同点并使它们具有公共的中心轴;和
与所述第二辐射器形状大体相同的第四辐射器,所述第四辐射器与所述第二辐射器相交,将它们的半圆弧顶点保持在相同点并使它们具有公共的中心轴。
5、根据权利要求3所述的天线,其中,所述第二辐射器具有与其半圆弧同心地限定的缺口。
6、根据权利要求1或3所述的天线,还包括至少一个形状不同于置于所述缺口中的第一辐射器的辐射部件,它接在所述第一辐射器的所述馈电点附近。
7、根据权利要求6所述的天线,其中,所述至少一个辐射部件是单极曲折板、单极电阻负载和螺旋形天线中的任一种。
8、一种天线,包括:
至少一个由将基本上为半圆形圆盘的导体弯成圆柱形的辐射器;
设置于所述辐射器半圆形顶点对面、与所述圆柱形母线基本上成直角的平面导体接地板;和
接在所述辐射器所述半圆弧顶点和所述平面导体接地板上提供给它们功率的馈线。
9、根据权利要求8所述的天线,其中,所述辐射器具有与所述圆盘导体的半圆形状大体同心地限定的几乎为半圆形的缺口。
10、一种天线,包括:
至少一个由将基本上为半圆形圆盘的导体弯成圆柱形的辐射器;具有与所述半圆形圆盘导体的中心线相重合和具有相对于所述辐射器半圆弧的弧形边缘边的另一个辐射器;和
接在所述辐射器圆弧顶点和所述另一辐射器圆弧顶点上提供给它们功率的馈线。
11、根据权利要求10所述的天线,其中,所述另一个辐射器由另一个半圆形圆盘导体形成。
12、根据权利要求10所述的天线,其中,所述另一个辐射器是将另一个半圆形圆盘导体绕成几乎为圆柱形而形成的圆柱形辐射器。
13、根据权利要求10所述的天线,其中,所述辐射器具有与所述圆盘导体的半圆形状大体同心地限定的几乎为半圆形的缺口。
14、根据权利要求13所述的天线,其中,在所述缺口中放置至少一个形状不同于所述半圆形辐射部件的辐射部件并且将其连接至所述弯成圆柱形的辐射部件。
15、根据权利要求14所述的天线,其中,所述至少一个辐射部件是单极曲折板、单极电阻负载和螺旋形天线中的任一种。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24971295 | 1995-09-27 | ||
JP249712/95 | 1995-09-27 | ||
JP321906/95 | 1995-12-11 | ||
JP32190695 | 1995-12-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1151621A CN1151621A (zh) | 1997-06-11 |
CN1091307C true CN1091307C (zh) | 2002-09-18 |
Family
ID=26539435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN96121102A Expired - Fee Related CN1091307C (zh) | 1995-09-27 | 1996-09-27 | 使用半圆形辐射器的宽频带天线 |
Country Status (6)
Country | Link |
---|---|
US (1) | US5872546A (zh) |
EP (2) | EP0766343B1 (zh) |
KR (1) | KR100211229B1 (zh) |
CN (1) | CN1091307C (zh) |
CA (1) | CA2186186C (zh) |
DE (2) | DE69627262T2 (zh) |
Families Citing this family (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19935792A1 (de) * | 1999-07-29 | 2001-02-01 | Intershop Software Entwicklung | Informationsübermittlung mittels Adressdatenfeld |
ES2241378T3 (es) | 1999-09-20 | 2005-10-16 | Fractus, S.A. | Antenas multinivel. |
JP2003513496A (ja) | 1999-10-26 | 2003-04-08 | フラクトゥス・ソシエダッド・アノニマ | インタレースマルチバンドアンテナアレイ |
AU3150000A (en) | 2000-01-19 | 2001-07-31 | Fractus, S.A. | Space-filling miniature antennas |
EP2051325A1 (en) * | 2000-01-19 | 2009-04-22 | Fractus, S.A. | Fractal and space-filling transmission lines, resonators, filters and passive network elements |
US6329951B1 (en) * | 2000-04-05 | 2001-12-11 | Research In Motion Limited | Electrically connected multi-feed antenna system |
NZ504042A (en) * | 2000-04-14 | 2002-12-20 | Gregory Daniel Hall | A wide-band high-gain plate dipole antenna using a pair of plate elements arranged in the same plane |
AU4121000A (en) * | 2000-04-19 | 2001-11-07 | Ficosa Internacional, S.A. | Multilevel advanced antenna for motor vehicles |
US6845253B1 (en) * | 2000-09-27 | 2005-01-18 | Time Domain Corporation | Electromagnetic antenna apparatus |
US7511675B2 (en) * | 2000-10-26 | 2009-03-31 | Advanced Automotive Antennas, S.L. | Antenna system for a motor vehicle |
WO2002063714A1 (en) | 2001-02-07 | 2002-08-15 | Fractus, S.A. | Miniature broadband ring-like microstrip patch antenna |
US6664930B2 (en) | 2001-04-12 | 2003-12-16 | Research In Motion Limited | Multiple-element antenna |
DE60128837T2 (de) * | 2001-04-16 | 2008-02-28 | Fractus, S.A. | Doppelbandige dualpolarisierte gruppenantenne |
US6512488B2 (en) * | 2001-05-15 | 2003-01-28 | Time Domain Corporation | Apparatus for establishing signal coupling between a signal line and an antenna structure |
US6642903B2 (en) * | 2001-05-15 | 2003-11-04 | Time Domain Corporation | Apparatus for establishing signal coupling between a signal line and an antenna structure |
BR0117154A (pt) * | 2001-10-16 | 2004-10-26 | Fractus Sa | Antena carregada |
US9755314B2 (en) | 2001-10-16 | 2017-09-05 | Fractus S.A. | Loaded antenna |
EP1436857B1 (en) * | 2001-10-16 | 2008-01-23 | Fractus, S.A. | Multifrequency microstrip patch antenna with parasitic coupled elements |
WO2003034544A1 (en) * | 2001-10-16 | 2003-04-24 | Fractus, S.A. | Multiband antenna |
ES2190749B1 (es) | 2001-11-30 | 2004-06-16 | Fractus, S.A | Dispersores "chaff" multinivel y/o "space-filling", contra radar. |
JP2003329067A (ja) * | 2002-05-16 | 2003-11-19 | Advics:Kk | ディスクブレーキ |
ATE446595T1 (de) * | 2002-06-21 | 2009-11-15 | Research In Motion Ltd | Mehrfachelement-antenne mit parasitärkoppler |
EP2056398A1 (en) * | 2002-07-15 | 2009-05-06 | Fractus, S.A. | Antenna with one or more holes |
CN1295814C (zh) * | 2002-10-25 | 2007-01-17 | 智邦科技股份有限公司 | 平板型天线及应用该天线的无线网络装置 |
JP2004328694A (ja) * | 2002-11-27 | 2004-11-18 | Taiyo Yuden Co Ltd | アンテナ及び無線通信カード |
AU2003252503A1 (en) * | 2002-11-27 | 2004-06-18 | Taiyoyuden Co., Ltd. | Antenna, dielectric substrate for antenna, radio communication card |
JP2004328693A (ja) * | 2002-11-27 | 2004-11-18 | Taiyo Yuden Co Ltd | アンテナ及びアンテナ用誘電体基板 |
JP4170828B2 (ja) * | 2002-11-27 | 2008-10-22 | 太陽誘電株式会社 | アンテナ及びアンテナ用誘電体基板 |
JP2004328703A (ja) * | 2002-11-27 | 2004-11-18 | Taiyo Yuden Co Ltd | アンテナ |
US6791500B2 (en) * | 2002-12-12 | 2004-09-14 | Research In Motion Limited | Antenna with near-field radiation control |
CA2414718C (en) | 2002-12-17 | 2005-11-22 | Research In Motion Limited | Dual mode antenna system for radio transceiver |
WO2004057701A1 (en) * | 2002-12-22 | 2004-07-08 | Fractus S.A. | Multi-band monopole antenna for a mobile communications device |
WO2005076407A2 (en) | 2004-01-30 | 2005-08-18 | Fractus S.A. | Multi-band monopole antennas for mobile communications devices |
JP3833609B2 (ja) * | 2002-12-27 | 2006-10-18 | 本田技研工業株式会社 | 車載アンテナ |
WO2004066441A1 (ja) * | 2003-01-24 | 2004-08-05 | Yokohama Tlo Company, Ltd. | 広帯域アンテナ |
WO2004066440A1 (ja) * | 2003-01-24 | 2004-08-05 | Yokohama Tlo Company, Ltd. | 広帯域アンテナ |
FR2850794A1 (fr) * | 2003-01-30 | 2004-08-06 | Thomson Licensing Sa | Antenne large bande et a rayonnement omnidirectionnel |
EP1593180A1 (de) * | 2003-02-14 | 2005-11-09 | Huber + Suhner Ag | Breitband-monopol-antenne |
JP2004318466A (ja) * | 2003-04-16 | 2004-11-11 | Matsushita Electric Ind Co Ltd | 商品券、商品券発行システム及び商品券利用システム |
US7973733B2 (en) * | 2003-04-25 | 2011-07-05 | Qualcomm Incorporated | Electromagnetically coupled end-fed elliptical dipole for ultra-wide band systems |
DE60316666T2 (de) * | 2003-05-14 | 2008-07-24 | Research In Motion Ltd., Waterloo | Mehrbandantenne mit Streifenleiter- und Schlitzstrukturen |
EP1487051B1 (en) * | 2003-06-12 | 2008-03-26 | Research In Motion Limited | Multiple-element antenna with electromagnetically coupled floating antenna element |
CA2435900C (en) * | 2003-07-24 | 2008-10-21 | Research In Motion Limited | Floating conductor pad for antenna performance stabilization and noise reduction |
KR100846487B1 (ko) * | 2003-12-08 | 2008-07-17 | 삼성전자주식회사 | 등방향성 방사패턴을 갖는 초광대역 안테나 |
EP1542314A1 (en) * | 2003-12-11 | 2005-06-15 | Sony International (Europe) GmbH | Three-dimensional omni-directional monopole antenna designs for ultra- wideband applications |
US7446726B2 (en) * | 2003-12-25 | 2008-11-04 | Samsung Electronics Co., Ltd. | Antenna |
JP4002553B2 (ja) * | 2003-12-26 | 2007-11-07 | アンテン株式会社 | アンテナ |
WO2005070022A2 (en) * | 2004-01-22 | 2005-08-04 | Hans Gregory Schantz | Broadband electric-magnetic antenna apparatus and system |
EP1769559A1 (en) | 2004-03-17 | 2007-04-04 | EMS Technologies, Inc. | Printed circuit board wireless access point antenna |
JP3863533B2 (ja) * | 2004-03-22 | 2006-12-27 | 株式会社ヨコオ | 折返しアンテナ |
US7202819B2 (en) * | 2004-04-14 | 2007-04-10 | Qualcomm Incorporated | Tapered multiband antenna |
US7369089B2 (en) * | 2004-05-13 | 2008-05-06 | Research In Motion Limited | Antenna with multiple-band patch and slot structures |
JP4018698B2 (ja) * | 2004-07-12 | 2007-12-05 | 株式会社東芝 | 広帯域アンテナおよびこの広帯域アンテナを具備する通信装置 |
JP2006086973A (ja) * | 2004-09-17 | 2006-03-30 | Fujitsu Component Ltd | アンテナ装置 |
US7183977B2 (en) * | 2004-09-28 | 2007-02-27 | Intel Corporation | Antennas for multicarrier communications and multicarrier transceiver |
US7782269B2 (en) | 2004-11-12 | 2010-08-24 | Fractus, S.A. | Antenna structure for a wireless device with a ground plane shaped as a loop |
US7158089B2 (en) * | 2004-11-29 | 2007-01-02 | Qualcomm Incorporated | Compact antennas for ultra wide band applications |
KR100683177B1 (ko) * | 2005-01-18 | 2007-02-15 | 삼성전자주식회사 | 안정된 방사패턴을 갖는 초광대역 기판형 다이폴 안테나 |
DE102005003685B4 (de) * | 2005-01-26 | 2021-02-11 | Rohde & Schwarz GmbH & Co. Kommanditgesellschaft | Antenne mit Reflektor |
US7183978B1 (en) * | 2005-03-07 | 2007-02-27 | Bae Systems Information And Electronic Systems Integration Inc. | Wideband omnidirectional antenna |
DE102005034966B4 (de) * | 2005-07-22 | 2013-10-17 | Universität Kassel | Ultrabreitbandantenne |
JP2007123982A (ja) * | 2005-10-25 | 2007-05-17 | Sony Ericsson Mobilecommunications Japan Inc | マルチバンド対応アンテナ装置および通信端末装置 |
US7327318B2 (en) * | 2006-02-28 | 2008-02-05 | Mti Wireless Edge, Ltd. | Ultra wide band flat antenna |
US7679575B1 (en) * | 2006-06-15 | 2010-03-16 | The United States Of America As Represented By The Secretary Of The Navy | Tapered slot antenna cylindrical array |
US8738103B2 (en) | 2006-07-18 | 2014-05-27 | Fractus, S.A. | Multiple-body-configuration multimedia and smartphone multifunction wireless devices |
FR2911725B1 (fr) * | 2007-01-24 | 2011-02-18 | Groupe Ecoles Telecomm | Antenne ou element d'antenne ultra-large bande. |
US7671817B2 (en) | 2007-02-27 | 2010-03-02 | Sony Ericsson Mobile Communications Ab | Wideband antenna |
JP4844748B2 (ja) * | 2007-03-15 | 2011-12-28 | ミツミ電機株式会社 | 広帯域アンテナ装置 |
US8228257B2 (en) * | 2008-03-21 | 2012-07-24 | First Rf Corporation | Broadband antenna system allowing multiple stacked collinear devices |
CN102099960B (zh) * | 2008-07-14 | 2015-08-12 | 莱尔德技术股份有限公司 | 用于无线应用装置的多频带天线组件 |
WO2010113336A1 (ja) * | 2009-03-31 | 2010-10-07 | 株式会社フジクラ | 広帯域アンテナ |
US8514136B2 (en) * | 2009-10-26 | 2013-08-20 | The Boeing Company | Conformal high frequency antenna |
DE102010004503B4 (de) * | 2010-01-13 | 2015-08-20 | Continental Automotive Gmbh | Antennenstruktur für ein Fahrzeug für mehrere Frequenzbänder |
US9525488B2 (en) | 2010-05-02 | 2016-12-20 | Corning Optical Communications LLC | Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods |
DE102010026698A1 (de) * | 2010-07-07 | 2012-01-12 | Funkwerk Dabendorf Gmbh | Anordnung zur drahtlosen Ankopplung eines Funkgerätes |
WO2012024247A1 (en) | 2010-08-16 | 2012-02-23 | Corning Cable Systems Llc | Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units |
US9252874B2 (en) | 2010-10-13 | 2016-02-02 | Ccs Technology, Inc | Power management for remote antenna units in distributed antenna systems |
TWI474560B (zh) * | 2011-01-10 | 2015-02-21 | Accton Technology Corp | 非對稱偶極天線 |
WO2012115843A1 (en) | 2011-02-21 | 2012-08-30 | Corning Cable Systems Llc | Providing digital data services as electrical signals and radio-frequency (rf) communications over optical fiber in distributed communications systems, and related components and methods |
CN103036008B (zh) * | 2011-10-08 | 2015-02-18 | 智邦科技股份有限公司 | 非对称偶极天线 |
CN102593580B (zh) * | 2012-03-29 | 2014-04-02 | 哈尔滨工业大学 | 一种超宽带全向辐射双级线天线 |
CN102694253B (zh) * | 2012-06-11 | 2014-02-12 | 哈尔滨工业大学 | 一种平衡微带线馈电的超宽带偶极天线 |
US9716309B1 (en) * | 2012-06-12 | 2017-07-25 | Rockwell Collins, Inc. | Multifunctional, multi-beam circular BAVA array |
US9590310B1 (en) * | 2013-03-12 | 2017-03-07 | Greenwave Scientific, Inc. | Shaped antenna of planar conducting material |
DE102013005001A1 (de) * | 2013-03-24 | 2014-09-25 | Heinz Lindenmeier | Breitband-Monopolantenne für zwei durch eine Frequenzlücke getrennte Frequenzbänder im Dezimeterwellenbereich für Fahrzeuge |
CN103346388A (zh) * | 2013-07-09 | 2013-10-09 | 哈尔滨工业大学 | 一种超宽带单极子天线 |
US10659163B2 (en) | 2014-09-25 | 2020-05-19 | Corning Optical Communications LLC | Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors |
WO2016071902A1 (en) * | 2014-11-03 | 2016-05-12 | Corning Optical Communications Wireless Ltd. | Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement |
WO2016075696A1 (en) | 2014-11-13 | 2016-05-19 | Corning Optical Communications Wireless Ltd. | Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals |
EP3235336A1 (en) | 2014-12-18 | 2017-10-25 | Corning Optical Communications Wireless Ltd. | Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass) |
WO2016098111A1 (en) | 2014-12-18 | 2016-06-23 | Corning Optical Communications Wireless Ltd. | Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass) |
DE202015001972U1 (de) * | 2015-03-09 | 2016-03-10 | Sputnik24 Communication Systems GmbH | Multifunktions-Antennensystem mit RADAR-Reflektor |
US10199745B2 (en) | 2015-06-04 | 2019-02-05 | The Boeing Company | Omnidirectional antenna system |
CN105811086B (zh) * | 2016-02-04 | 2019-06-04 | 东华大学 | 一种用于异物检测的小型超宽带贴片天线 |
CN211350981U (zh) * | 2018-10-10 | 2020-08-25 | 株式会社友华 | 天线、天线装置、以及车载用天线装置 |
US11411306B2 (en) | 2019-01-30 | 2022-08-09 | Aeroantenna Technology, Inc. | Broad band monopole antenna |
US11095035B2 (en) | 2019-02-14 | 2021-08-17 | Aeroantenna Technology, Inc. | Broad band dipole antenna |
CN114128041B (zh) * | 2019-07-16 | 2023-10-20 | 华为技术有限公司 | 双极化天线元件和天线阵列 |
US20230054135A1 (en) * | 2021-08-23 | 2023-02-23 | Te Connectivity Solutions Gmbh | Omnidirectional antenna assemblies including broadband monopole antennas |
WO2023159345A1 (zh) * | 2022-02-22 | 2023-08-31 | 京东方科技集团股份有限公司 | 天线 |
KR102446276B1 (ko) * | 2022-05-10 | 2022-09-22 | 한화시스템 주식회사 | 망 구조의 인공위성 안테나 장치 및 망 구조의 안테나 전개 방법 |
KR102446277B1 (ko) * | 2022-05-10 | 2022-09-22 | 한화시스템 주식회사 | 인공위성 메쉬 안테나 장치 및 메쉬 안테나 전개 방법 |
KR102446278B1 (ko) * | 2022-05-25 | 2022-09-22 | 한화시스템 주식회사 | 인공위성 메쉬 안테나 장치 및 메쉬 안테나 제조 방법 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0565041A1 (en) * | 1992-04-10 | 1993-10-13 | FIAT AUTO S.p.A. | A unit for driving two endless belts, for an internal combustion engine |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1109748B (de) * | 1958-12-10 | 1961-06-29 | Siemens Ag | Antennenanordnung fuer kurze und sehr kurze elektromagnetische Wellen |
DE1301376B (de) * | 1961-06-27 | 1969-08-21 | Siemens Ag | Antennenanordnung, insbesondere fuer sehr kurze elektromagnetische Wellen |
US3401387A (en) * | 1966-02-16 | 1968-09-10 | Northrop Corp | Slotted cone antenna |
FR2442520A1 (fr) * | 1978-11-27 | 1980-06-20 | Havot Henri | Antenne en plaques a double boucles circulaires |
JPS57142003A (en) * | 1981-02-27 | 1982-09-02 | Denki Kogyo Kk | Antenna |
JPS60237701A (ja) * | 1984-05-11 | 1985-11-26 | Yagi Antenna Co Ltd | 自己補対アンテナ |
US4843403A (en) * | 1987-07-29 | 1989-06-27 | Ball Corporation | Broadband notch antenna |
US5319377A (en) * | 1992-04-07 | 1994-06-07 | Hughes Aircraft Company | Wideband arrayable planar radiator |
US5309165A (en) * | 1992-05-09 | 1994-05-03 | Westinghouse Electric Corp. | Positioner with corner contacts for cross notch array and improved radiator elements |
-
1996
- 1996-09-17 US US08/714,262 patent/US5872546A/en not_active Expired - Lifetime
- 1996-09-19 DE DE69627262T patent/DE69627262T2/de not_active Expired - Lifetime
- 1996-09-19 EP EP96115061A patent/EP0766343B1/en not_active Expired - Lifetime
- 1996-09-19 DE DE69633986T patent/DE69633986T2/de not_active Expired - Lifetime
- 1996-09-19 EP EP02013954A patent/EP1249893B1/en not_active Expired - Lifetime
- 1996-09-23 CA CA002186186A patent/CA2186186C/en not_active Expired - Fee Related
- 1996-09-25 KR KR1019960042438A patent/KR100211229B1/ko not_active IP Right Cessation
- 1996-09-27 CN CN96121102A patent/CN1091307C/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0565041A1 (en) * | 1992-04-10 | 1993-10-13 | FIAT AUTO S.p.A. | A unit for driving two endless belts, for an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
CA2186186A1 (en) | 1997-03-28 |
DE69633986D1 (de) | 2005-01-05 |
CA2186186C (en) | 1999-08-31 |
DE69633986T2 (de) | 2006-04-06 |
DE69627262D1 (de) | 2003-05-15 |
DE69627262T2 (de) | 2003-12-24 |
EP1249893A3 (en) | 2003-06-25 |
EP1249893B1 (en) | 2004-12-01 |
EP0766343A2 (en) | 1997-04-02 |
CN1151621A (zh) | 1997-06-11 |
EP0766343B1 (en) | 2003-04-09 |
KR100211229B1 (ko) | 1999-07-15 |
EP0766343A3 (en) | 1998-02-04 |
US5872546A (en) | 1999-02-16 |
EP1249893A2 (en) | 2002-10-16 |
KR970018845A (ko) | 1997-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1091307C (zh) | 使用半圆形辐射器的宽频带天线 | |
CN1293671C (zh) | 带无馈电元件的隙缝蝴蝶结天线 | |
CN100346532C (zh) | 天线装置 | |
JP3273463B2 (ja) | 半円形放射板を使った広帯域アンテナ装置 | |
CN1214486C (zh) | 天线 | |
CN1211884C (zh) | 同轴腔天线 | |
Ojaroudi et al. | Small square monopole antenna with enhanced bandwidth by using inverted T-shaped slot and conductor-backed plane | |
CN104638326B (zh) | 通过多模式三维(3‑d)行波(tw)的超宽带微型化全向天线 | |
US7518567B2 (en) | Planar antenna | |
CN1196230C (zh) | 单极天线 | |
CN1203579C (zh) | 配备滤波材料组合件的天线 | |
CN1577974A (zh) | 天线元件,探测器;间隔器,天线和与多个装置通信方法 | |
CN1182626C (zh) | 无线电信号收发装置 | |
CN1331856A (zh) | 圆极化介质谐振天线 | |
CN1116779A (zh) | 双向印刷天线 | |
CN1879256A (zh) | 天线及其制造方法以及使用了该天线的便携无线终端 | |
CN1624976A (zh) | 介电天线以及包含该天线的通信装置 | |
CN1841844A (zh) | 天线装置及电子设备 | |
CN101055940A (zh) | 天线器件以及使用该器件的多频段型无线通信设备 | |
CN105518935A (zh) | 极低剖面式天线 | |
CN1599130A (zh) | 天线设备 | |
CN1742407A (zh) | 天线装置 | |
CN1331853A (zh) | 具有一体的辐射器/接地面元件的宽频带天线 | |
US7091919B2 (en) | Apparatus and method to increase apparent resonant slot length in a slotted coaxial antenna | |
WO2012144247A1 (ja) | 広帯域アンテナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20020918 Termination date: 20130927 |