[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN108949661A - 一种产o-琥珀酰-l-高丝氨酸重组大肠杆菌及其应用 - Google Patents

一种产o-琥珀酰-l-高丝氨酸重组大肠杆菌及其应用 Download PDF

Info

Publication number
CN108949661A
CN108949661A CN201810845460.2A CN201810845460A CN108949661A CN 108949661 A CN108949661 A CN 108949661A CN 201810845460 A CN201810845460 A CN 201810845460A CN 108949661 A CN108949661 A CN 108949661A
Authority
CN
China
Prior art keywords
gene
homoserine
succinyl
primer
methionine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810845460.2A
Other languages
English (en)
Other versions
CN108949661B (zh
Inventor
柳志强
郑裕国
张博
刘鹏
朱文渊
黄建锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201810845460.2A priority Critical patent/CN108949661B/zh
Publication of CN108949661A publication Critical patent/CN108949661A/zh
Application granted granted Critical
Publication of CN108949661B publication Critical patent/CN108949661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01048Cystathionine gamma-synthase (2.5.1.48)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01003Homoserine dehydrogenase (1.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01046Homoserine O-succinyltransferase (2.3.1.46)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01039Homoserine kinase (2.7.1.39)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种通过代谢工程手段改造的重组大肠杆菌及其用于生产O‑琥珀酰‑L‑高丝氨酸菌株的方法。本发明首先通过通过中断metI以实现L‑蛋氨酸输入系统MetD的部分失活,并在质粒上过表达yjeH基因以促进胞内L‑蛋氨酸的外泌,使得菌株的metA基因编码的高丝氨酸O‑琥珀酰基转移酶保持高活力及稳定性。其次通过敲除负调控转录因子MetJ以解除其对O‑琥珀酰‑L‑高丝氨酸合成代谢路径中相关基因(thrA、metL、lysC、asd、metA等)的阻遏抑制作用。最后通过使用Ptrc启动子替换代谢通路中metL、thrA和sucA基因原位启动子序列,并且阻断了O‑琥珀酰‑L‑高丝氨酸代谢去路中的metB基因。通过以上改造策略的组合,获得了高产O‑琥珀酰‑L‑高丝氨酸的大肠杆菌菌株。

Description

一种产O-琥珀酰-L-高丝氨酸重组大肠杆菌及其应用
技术领域
本发明涉及一种产O-琥珀酰-L-高丝氨酸重组大肠杆菌及其发酵产O-琥珀酰-L-高丝氨酸的应用。
背景技术
O-琥珀酰-L-高丝氨酸不仅作为微生物体内合成蛋氨酸的重要中间体,并在工业生产C4化合物过程中占据非常重要的地位。在大肠杆菌中O-琥珀酰-L-高丝氨酸的生物合成是由metA编码的高丝氨酸转乙酰酶专一性催化合成,其中包括高丝氨酸-γ-羟基的激活和琥珀酰-CoA提供酰基过程。在合成O-琥珀酰-L-高丝氨酸过程中,metA基因受L-蛋氨酸的反馈抑制,而L-蛋氨酸又作为微生物生长发育所必需的氨基酸,因此得到可以抗反馈抑制的突变基因对于提高O-琥珀酰-L-高丝氨酸的生产能力具有重要意义。在已报道的专利(USPatent 7,851,180)中已经有对metA基因进行抗反馈抑制的研究,对O-琥珀酰-L-高丝氨酸产量的提升起到了一定效果。L-蛋氨酸是生物生长的必需氨基酸,生物体细胞膜上分布有与L-蛋氨酸运输相关蛋白,E.coli中存在MetD和MetP两类专一性蛋氨酸内运输系统,MetD对蛋氨酸的亲和力高,MetP亲和力相对较低。而L-蛋氨酸营养缺陷型菌株会激活向胞内运输L-蛋氨酸的运输蛋白使得胞内的L-蛋氨酸含量升高,为了降低胞内L-蛋氨酸的含量从而减轻对metA基因的反馈抑制作用,敲除metI以实现L-蛋氨酸内运系统MetD的部分失活,metD操纵子包含metN、metI和metQ,分别编码ABC转运蛋白元件的ATPase、蛋氨酸渗透酶、蛋氨酸结合蛋白。
微生物体内由metB基因编码的胱硫醚γ合成酶可以将O-琥珀酰-L-高丝氨酸分解生成半胱氨酸,为了使O-琥珀酰-L-高丝氨酸能大量积累,需要对metB基因进行敲除。
天冬氨酸是E coli合成O-琥珀酰-L-高丝氨酸的唯一前体物质,同时也是苏氨酸、异亮氨酸、赖氨酸及支链氨基酸的合成前体。从天冬氨酸到高丝氨酸的生物合成需要经过四步反应,其中thrA和metL编码的高丝氨酸脱氢酶和天冬氨酸激酶II属于双功能酶,除了具有天冬氨酸激酶活性,同时还有高丝氨酸脱氢酶活性,催化天冬氨酸-半醛还原成高丝氨酸。thrA、metL、lysC、asd、metA等基因转录水平都受负调控转录因子MetJ的调节,因此,需要对metJ基因进行敲除。L-苏氨酸的生物合成以L-高丝氨酸为前体物质,经过thrB和thrC基因编码的高丝氨酸激酶和苏氨酸合成酶催化得到,O-琥珀酰-L-高丝氨酸与L-苏氨酸合成代谢互相竞争前体物质L-高丝氨酸,因此有必要阻断或降低L-苏氨酸的合成代谢通量。此外,在O-琥珀酰-L-高丝氨酸生物合成过程中,胞内的底物水平也会影响其产量,而琥珀酰-CoA为其中重要的一个底物,因此有必要通过代谢工程手段增加胞内琥珀酰-CoA的含量。
发明内容
本发明的目的是通过代谢工程手段改造大肠杆菌以获得高产O-琥珀酰-L-高丝氨酸的重组大肠杆菌菌株。
本发明采用的技术方案是:
本发明提供一种产O-琥珀酰-L-高丝氨酸的重组大肠杆菌,所述重组大肠杆菌是将大肠杆菌中编码L-蛋氨酸运输蛋白的metI基因、编码负调控阻遏因子的metJ基因、编码胱硫醚γ合成酶的metB基因、编码高丝氨酸激酶的thrB基因依次敲除后,再分别将编码高丝氨酸脱氢酶I的thrA基因、编码高丝氨酸脱氢酶II的metL基因和编码α-酮戊二酸脱羧酶的sucA基因的启动子均替换为Ptrc启动子,最后再导入编码高丝氨酸O-琥珀酰基转移酶的metA突变基因和编码L-蛋氨酸外运蛋白的yjeH基因,所述metA突变基因是将metA基因编码蛋白(SEQ ID NO.16所示)第64位谷氨酸替换为谷氨酰胺获得的。
进一步,所述Ptrc启动子核苷酸序列为SEQ ID NO.21所示。
进一步,所述metI基因核苷酸序列为SEQ ID NO.1所示、metJ基因核苷酸序列为SEQ ID NO.3所示、metB基因核苷酸序列为SEQ ID NO.5所示、thrB基因核苷酸序列为SEQID NO.7所示。
进一步,所述yjeH基因核苷酸序列为SEQ ID NO.17所示、metA基因核苷酸序列为SEQ ID NO.15所示,metA基因编码蛋白氨基酸序列SEQ ID NO.16所示。
本发明还提供一种所述产O-琥珀酰-L-高丝氨酸的重组大肠杆菌在发酵产O-琥珀酰-L-高丝氨酸中的应用,所述应用是将所述的重组大肠杆菌接种至发酵培养基,在30℃、180-200rpm条件下发酵培养,将培养液分离纯化,获得O-琥珀酰-L-高丝氨酸。
进一步,所述发酵培养基终浓度组成为:葡萄糖40g/L、磷酸二氢钾2g/L、硫酸铵17g/L、酵母粉4g/L、碳酸钙30g/L(用于调节pH)、L-苏氨酸0.2g/L、维生素B1 0.0001g/L、MgSO4 2g/L、FeSO4 0.005g/L、MnSO4 0.005g/L、ZnSO4 0.005g/L,溶剂为去离子水,pH值6.8。
进一步,所述发酵培养前先进行斜面活化和种子培养,将种子液以体积浓度5%的接种量接种至发酵培养基,所述斜面活化方法为:将重组大肠杆菌接种在LB平板上,在37℃培养过夜,获得斜面菌体;所述种子培养方法为:挑取斜面菌体单菌落接种至LB培养基中,在37℃、200rpm的条件下培养过夜,获得种子液。
所述发酵培养在发酵罐中进行,通过添加补料培养基控制发酵罐中葡萄糖浓度2-10g/L;发酵条件为DO水平在30%,搅拌转速200-600rpm,通气速率控制在1-2vvm;发酵过程中控制培养温度在30℃并用50%的氨水调节pH在6.8~7.0的范围。发酵罐中发酵培养基组成:葡萄糖40g/L、磷酸二氢钾2g/L、硫酸铵17g/L、酵母粉4g/L、L-苏氨酸0.2g/L、L-蛋氨酸0.2g/L、L-异亮氨酸0.2g/L、MgSO4 2g/L、FeSO4 0.005g/L、MnSO4 0.005g/L、ZnSO4 0.005g/L、维生素B1 0.0001g/L,溶剂为去离子水,pH值6.8;补料培养基组成:葡萄糖500g/L、磷酸二氢钾12.5g/L、L-苏氨酸2g/L、L-蛋氨酸2g/L、L-异亮氨酸2g/L,溶剂为去离子水。
本发明产O-琥珀酰-L-高丝氨酸的重组大肠杆菌,通过敲除负调控转录因子MetJ以解除其对O-琥珀酰-L-高丝氨酸合成代谢路径中相关基因(thrA、metL、lysC、asd、metA等)的阻遏抑制作用。首先敲除了Ecoli W3110中的负调控转录因子基因metJ,并敲除了metI基因以实现L-甲硫氨酸内运蛋白MetD的部分失活,从而降低胞内蛋氨酸量,进而可以减少蛋氨酸对高丝氨酸O-琥珀酰基转移酶(MetA)的底物抑制作用。通过敲除thrB基因,以减少O-琥珀酰-L-高丝氨酸的前体高丝氨酸向支路氨基酸的代谢去路。与此同时,敲除metB基因实现阻断产物O-琥珀酰-L-高丝氨酸的降解。用强启动子Ptrc替换metL和thrA基因原位启动子序列,以提高天冬氨酸激酶II和高丝氨酸脱氢酶的表达,以及用强启动子Ptrc替换sucA基因原位启动子序列以提高胞内琥珀酰-CoA的含量。在pTrc99A质粒上连接yjeH基因,以促进胞内L-蛋氨酸的外泌,使得菌株的metA基因编码的高丝氨酸O-琥珀酰基转移酶保持高活力及稳定性,并通过化转将该连接质粒导入上述改造后的大肠杆菌中进行诱导表达,以使胞内的L-蛋氨酸仅供微生物生长所需,不会对metA基因编码的高丝氨酸O-琥珀酰基转移酶产生较大的影响。通过质粒过表达对蛋氨酸脱敏的高丝氨酸O-琥珀酰基转移酶和蛋氨酸外运蛋白,实现胞内高丝氨酸O-琥珀酰基转移酶在受L-蛋氨酸影响最低情况下将高丝氨酸转化生成O-琥珀酰-L-高丝氨酸并分泌至胞外。
本发明术语“反馈抑制”指的是高丝氨酸O-琥珀酰基转移酶活性受L-蛋氨酸的抑制。本发明涉及含所述L-蛋氨酸运输系统YjeH编码基因的重组载体。所述重组载体包含与适合指导在宿主细胞中表达的控制序列可操作地连接的多核苷酸。优选该表达载体为pTrc99A。术语“增强”指的是增加由对应的多核苷酸编码的酶的活性。可以通过基因的过表达或替换基因组上该基因的表达调控序列(启动子替换等)。
本发明中使用的载体可不被具体的限制,只要载体在宿主中是可复制的,可以使用本领域中已知的任何载体。
本发明中多肽的表达可以通过转化的方式将包含编码该多肽的基因的重组载体或者通过将编码该多肽的多核苷酸插入染色体中,但是方法不限于此。
与现有技术相比,本发明的有益效果主要体现在:
本发明提供一种利用代谢工程改造的大肠杆菌高产O-琥珀酰-L-高丝氨酸的方法。经过改造后的大肠杆菌相比于野生型能够更好的利用葡萄糖等碳源物质进行O-琥珀酰-L-高丝氨酸生产,并且其产量从0.14g/L提高到24.25g/L。本发明进一步改造的L-蛋氨酸转运系统可以减轻L-蛋氨酸的底物对MetA的反馈抑制作用达到高产O-琥珀酰-L-高丝氨酸,并且以该前体生产L-蛋氨酸和其他工业上重要的C4化合物。
附图说明
图1实施例3中pTrc9999A-metA11重组载体构建过程及图谱。
图2实施例4中pA11y重组载体构建过程及图谱。
图3实施例5中OSH的结构式。
图4实施例5中高效液相色谱(HPLC)检测OSH。
具体实施方式
下面结合具体实例对本发明做进一步详细的说明,但本发明并不限于以下实施例。
下述实施例中的实验方法,如无特殊说明,均为常规方法。
下述实施例中所用的试验材料,如无特殊说明,均为常规生化试剂。
LB培养基组成:蛋白胨10g/L、酵母粉5g/L、氯化钠10g/L,溶剂为去离子水,pH值自然。LB平板是在LB液体培养基中添加终浓度2g/L琼脂。
实施例1基于野生型大肠杆菌菌株的代谢改造
(1)metI基因的敲除
为了阻断metI以实现L-蛋氨酸输入系统MetD的部分失活,使其减少L-蛋氨酸的摄入以降低对metA基因的反馈抑制作用,因此对野生型菌株中的metI基因进行了敲除,参见Jiang Y,Chen B,Duan C,et al.Multigene Editing in the Escherichia coli Genomevia the CRISPR-Cas9System[J].Applied&Environmental Microbiology,2015,81(7):2506.。
通过CRISPR-Cas9系统编辑野生型大肠杆菌(Escherichia coli)W3110(购自大肠杆菌遗传育种中心The Coli Genetic Stock Center)基因组中编码L-蛋氨酸运输系统的metI基因。通过PCR使用引物1和引物2,以pTargetF载体作为模板构建能够表达靶定目的基因metI(核苷酸序列为SEQ ID NO.1所示)的sgRNA的pTarget-ΔmetI突变载体。PCR反应条件如下:95℃5min;95℃15s,55℃15s,72℃2min,重复30个循环;72℃继续延伸10min。将PCR产物用Dpn I于37℃处理3h,灭活后转化至E.coli BL21(DE3)受体菌中,涂布于含终浓度50mg/L盐酸壮观霉素抗性的LB固体平板上,37℃培养12h。随机挑取单菌落转接至含终浓度50mg/L盐酸壮观霉素抗性的LB液体培养基中,37℃培养12h,收集菌体并提取质粒获得pTarget-ΔmetI载体。
通过PCR使用引物3和引物4,以大肠杆菌Escherichia coli W3110基因组为模板扩增得到metI基因上游同源片段,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃30s,重复30个循环;72℃继续延伸10min。按同样的方法使用引物5和引物6扩增得到metI基因下游同源片段,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化片段。将回收的两个DNA片段使用引物3和引物6进行融合PCR,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃1min,重复30个循环;72℃继续延伸10min,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化该片段(核苷酸序列为SEQ ID NO.2所示)。将pTarget-ΔmetI载体和回收的DNA片段一同电转化至含有pCas9载体的Escherichia coli W3110菌株。
为了电穿孔,转化有pCas9载体的Escherichia coli W3110菌株在含有50mg/L的卡那霉素和10mM L-阿拉伯糖的LB培养基中在30℃下培养,直到OD600达到0.6,菌液经过离心得到菌体。菌体使用无菌蒸馏水洗涤两次,然后使用10%的甘油洗涤一次以便使用。电穿孔在2.5KV下进行。
将电转化后的菌液涂至含有50mg/L的卡那霉素和50mg/L的盐酸壮观霉素抗性的LB平板上,30℃培养过夜。挑取单菌落作为模板,以引物7和引物8进行PCR,并且通过观察到在1.0%琼脂糖凝胶中存在1000bp的DNA条带确认metI基因的缺失。将通过此确认的菌株在含有50mg/L的卡那霉素和5mM IPTG的LB培养基中在30℃下培养过夜以去除pTarget-ΔmetI载体。然后将已经去除pTarget-ΔmetI载体的菌株在LB培养基中在37℃下培养过夜以去除pCas载体。如此构建的菌株记为W3110ΔmetI。
表1引物序列
引物1 TAATACTAGTCTACATCGGCTATAACGCGAGTTTTAGAGCTAGAAATAGC
引物2 GCTCTAAAACTCGCGTTATAGCCGATGTAGACTAGTATTATACCTAGGAC
引物3 GACACGTTCTATTCTCGAAC
引物4 GTGTTGAACGAACCCAGTACCTCTACTTTT
引物5 GTACTGGGTTCGTTCAACACAACATAAATA
引物6 AAGCCCACTTTTTGCAGCAG
引物7 TACTGTTTTTGGCAACGTGG
引物8 TGGACGAATTTCTTCACGTT
(2)metJ基因的敲除
为了去除负调控转录因子MetJ对thrA、metL、lysC、asd、metA等基因转录水平的阻遏抑制作用,对W3110ΔmetI菌株中的metJ基因进行了敲除。
通过CRISPR-Cas9系统编辑W3110ΔmetI菌株基因组中编码负调控转录因子的metJ基因。通过PCR使用引物9和引物10,以pTargetF载体作为模板构建能够表达靶定目的基因metJ(核苷酸序列为SEQ ID NO.3所示)的sgRNA的pTarget-ΔmetJ突变载体。PCR反应条件如下:95℃5min;95℃15s,55℃15s,72℃2min,重复30个循环;72℃继续延伸10min。将PCR产物用DpnI于37℃处理3h,灭活后转化至E.coli BL21(DE3)受体菌中,涂布于含终浓度50mg/L盐酸壮观霉素抗性的LB固体平板上,37℃培养12h。随机挑取单菌落转接至含终浓度50mg/L盐酸壮观霉素抗性的LB液体培养基中,37℃培养12h,收集菌体并提取质粒获得pTarget-ΔmetJ载体。
通过PCR使用引物11和引物12,以大肠杆菌Escherichia coli W3110基因组为模板扩增得到metJ基因上游同源片段,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃30s,重复30个循环;72℃继续延伸10min。按同样的方法使用引物13和引物14扩增得到metJ基因下游同源片段,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化片段。将回收的两个DNA片段使用引物11和引物14进行融合PCR,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃1min,重复30个循环;72℃继续延伸10min,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化该片段(核苷酸序列为SEQ ID NO.4所示)。将pTarget-ΔmetJ载体和回收的DNA片段一同电转化至有pCas9载体的W3110ΔmetI菌株。
为了电穿孔,转化有pCas9载体的W3110ΔmetI菌株在含有50mg/L的卡那霉素和10mM L-阿拉伯糖的LB培养基中在30℃下培养,直到OD600达到0.6,菌液经过离心得到菌体。菌体使用无菌蒸馏水洗涤两次,然后使用10%的甘油洗涤一次以便使用。电穿孔在2.5KV下进行。
将电转化后的菌液涂至含有50mg/L的卡那霉素和50mg/L的盐酸壮观霉素抗性的LB平板上,30℃培养过夜。挑取单菌落作为模板,以引物15和引物16进行PCR,并且通过观察到在1.0%琼脂糖凝胶中存在1000bp的DNA条带确认metJ基因的缺失。将通过此确认的菌株在含有50mg/L的卡那霉素和5mM IPTG的LB培养基中在30℃下培养过夜以去除pTarget-ΔmetJ载体。然后将已经去除pTarget-ΔmetJ载体的菌株在LB培养基中在37℃下培养过夜以去除pCas载体。如此构建的菌株记为W3110ΔmetIΔmetJ。
表2引物序列
引物9 TAATACTAGTATCTGCGTAAAGAGCGCAGCGTTTTAGAGCTAGAAATAGC
引物10 GCTCTAAAACGCTGCGCTCTTTACGCAGATACTAGTATTATACCTAGGAC
引物11 ATGCCGGTATTAGTAAGTAC
引物12 CTTTTTTGCTGAGATACTTAATCCTCTTCG
引物13 TAAGTATCTCAGCAAAAAAGAGCGGCGCGG
引物14 TTTTGCCGTTTGCGCCAGTT
引物15 GTACCAGTTTGGGTTTTTCT
引物16 GAATATTCTTGCCGTAACGT
(3)metB基因的敲除
为了阻断O-琥珀酰-L-高丝氨酸的降解代谢路径,通过敲除编码的胱硫醚γ合成酶的metB基因,破坏了O-琥珀酰-L-高丝氨酸分解代谢合成半胱氨酸的过程,以获得高浓度的O-琥珀酰-L-高丝氨酸,因此在W3110ΔmetIΔmetJ菌种中对metB基因实施敲除。
通过CRISPR-Cas9系统编辑W3110ΔmetIΔmetJ菌株基因组中编码胱硫醚γ合成酶的metB基因。通过PCR使用引物17和引物18,以及pTargetF载体作为模板构建能够表达靶定目的基因metB(核苷酸序列为SEQ ID NO.5所示)的sgRNA的pTarget-ΔmetB突变载体。PCR反应条件如下:95℃5min;95℃15s,55℃15s,72℃2min,重复30个循环;72℃继续延伸10min。将PCR产物用DpnI于37℃处理3h,灭活后转化至E.coli BL21(DE3)受体菌中,涂布于含终浓度50mg/L盐酸壮观霉素抗性的LB固体平板上,37℃培养12h。随机挑取单菌落转接至含终浓度50mg/L盐酸壮观霉素抗性的LB液体培养基中,37℃培养12h,收集菌体并提取质粒获得pTarget-ΔmetB载体。
通过PCR使用引物19和引物20,以W3110ΔmetIΔmetJ菌株的基因组为模板扩增得到metB基因上游同源片段,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃30s,重复30个循环;72℃继续延伸10min。按同样的方法使用引物21和引物22扩增得到metB基因下游同源片段,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化片段。将回收的两个DNA片段使用引物19和引物22进行融合PCR,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃1min,重复30个循环;72℃继续延伸10min,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化该片段(核苷酸序列为SEQ ID NO.6所示)。将pTarget-ΔmetB载体和回收的DNA片段一同电转化至有pCas9载体的W3110ΔmetIΔmetJ菌株。
为了电穿孔,转化有pCas9载体的W3110ΔmetIΔmetJ菌株在含有50mg/L的卡那霉素和10mM L-阿拉伯糖的LB培养基中在30℃培养,直到OD600达到0.6,菌液经过离心得到菌体。菌体使用无菌蒸馏水洗涤两次,然后使用10%的甘油洗涤一次以便使用。电穿孔在2.5KV下进行。将电转化后的菌液涂至含有50mg/L的卡那霉素和50mg/L的盐酸壮观霉素抗性的LB平板上,30℃培养过夜。挑取单菌落作为模板,以引物23和引物24进行PCR,并且通过观察到在1.0%琼脂糖凝胶中存在1000bp的DNA条带确认metB基因的缺失。将通过此确认的菌株在含有50mg/L的卡那霉素和5mM IPTG的LB培养基中在30℃下培养过夜以去除pTarget-ΔmetB载体。然后将已经去除pTarget-ΔmetB载体的菌株在LB培养基中在37℃下培养过夜以去除pCas载体。如此构建的菌株记为W3110ΔmetIΔmetJΔmetB。
表3引物序列
引物17 TAATACTAGTTTCGACAGTCTGGCGAAACGGTTTTAGAGCTAGAAATAGC
引物18 GCTCTAAAACCGTTTCGCCAGACTGTCGAAACTAGTATTATACCTAGGAC
引物19 GCTTTACTTTGCGATGAGCG
引物20 ACACTCATTTGTGATGAAGTTCCCTGGGCT
引物21 ACTTCATCACAAATGAGTGTGATTGCGCAG
引物22 CAGCTGTTGCAGCAACGGGT
引物23 TGAGCGGGGTGTATTTCACC
引物24 ATTTGTGTCGCGGAATAGTC
(4)thrB基因的敲除
为了使胞内O-琥珀酰-L-高丝氨酸的前体物质L-高丝氨酸的量得到进一步的积累,需要阻断L-高丝氨酸的代谢支路,而胞内的L-高丝氨酸经过thrB基因和thrC基因编码的高丝氨酸激酶和苏氨酸合成酶代谢合成L-苏氨酸。因此,对W3110ΔmetIΔmetJΔmetB菌株中的thrB基因进行敲除。
通过CRISPR-Cas9系统对W3110ΔmetIΔmetJΔmetB菌株基因组中编码高丝氨酸激酶的thrB基因进行编辑。通过PCR使用引物25和引物26,以pTargetF载体作为模板构建能够表达靶定目的基因thrB(核苷酸序列为SEQ ID NO.7所示)的sgRNA的pTarget-ΔthrB突变载体。PCR反应条件如下:95℃5min;95℃15s,55℃15s,72℃2min,重复30个循环;72℃继续延伸10min。将PCR产物用DpnI于37℃处理3h,灭活后转化至E.coli BL21(DE3)受体菌中,涂布于含终浓度50mg/L盐酸壮观霉素抗性的LB固体平板上,37℃培养12h。随机挑取单菌落转接至含终浓度50mg/L盐酸壮观霉素抗性的LB液体培养基中,37℃培养12h,收集菌体并提取质粒获得pTarget-ΔthrB载体。
通过PCR使用引物27和引物28,以W3110ΔmetIΔmetJΔmetB菌株的基因组为模板扩增得到thrB基因上游同源片段,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃30s,重复30个循环;72℃继续延伸10min。按同样的方法使用引物29和引物30扩增得到thrB基因下游同源片段,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化片段。将回收的两个DNA片段使用引物27和引物30进行融合PCR,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃1min,重复30个循环;72℃继续延伸10min,PCR产物用0.9%琼脂糖凝胶电泳检测并切胶回收纯化该片段(核苷酸序列为SEQ ID NO.8所示)。将pTarget-ΔthrB载体和回收的DNA片段一同电转化至有pCas9载体的W3110ΔmetIΔmetJΔmetB菌株。
为了电穿孔,转化有pCas9载体的W3110ΔmetIΔmetJΔmetB菌株在含有50mg/L的卡那霉素和10mM L-阿拉伯糖的LB培养基中在30℃下培养,直到OD达到0.6,菌液经过离心得到菌体。菌体使用无菌蒸馏水洗涤两次,然后使用10%的甘油洗涤一次以便使用。电穿孔在2.5KV下进行。
将电转化后的菌液涂至含有50mg/L的卡那霉素和50mg/L的盐酸壮观霉素抗性的LB平板上,30℃培养过夜。挑取单菌落作为模板,以引物31和引物32进行PCR,并且通过观察到在1.0%琼脂糖凝胶中存在1000bp的DNA条带确认thrB基因的缺失。将通过此确认的菌株在含有50mg/L的卡那霉素和5mM IPTG的LB培养基中在30℃下培养过夜以去除pTarget-ΔthrB载体。然后将已经去除pTarget-ΔthrB载体的菌株在LB培养基中在37℃下培养过夜以去除pCas载体。如此构建的菌株记为W3110ΔmetIΔmetJΔmetBΔthrB。
表4引物序列
实施例2基于W3110ΔmetIΔmetJΔmetBΔthrB菌株的代谢改造
(1)metL基因表达的增强
metL基因编码的酶也是具有天冬氨酸激酶II和高丝氨酸脱氢酶II双功能酶活性,在L-天冬氨酸的代谢中,metL和thrA基因发挥相似的作用,因此也将用trc启动子序列(核苷酸序列为SEQ ID NO.21所示)替换metL基因核苷酸序列为SEQ ID NO.9所示中的原始启动子序列以达到增强metL基因表达的目的。
通过CRISPR-Cas9系统编辑W3110ΔmetIΔmetJΔmetBΔthrB菌株基因组中编码高丝氨酸脱氢酶的metL基因的启动子序列。通过PCR使用引物33和引物34,以及pTargetF载体作为模板构建能够表达靶定目的基因metL启动子序列的sgRNA的pTarget-ΔPmetL::Ptrc突变载体。PCR反应条件如下:95℃5min;95℃15s,55℃15s,72℃2min,重复30个循环;72℃继续延伸10min。将PCR产物用DpnI于37℃处理3h,灭活后转化至E.coli BL21(DE3)受体菌中,涂布于含终浓度50mg/L盐酸壮观霉素抗性的LB固体平板上,37℃培养12h。随机挑取单菌落转接至含终浓度50mg/L盐酸壮观霉素抗性的LB液体培养基中,37℃培养12h,收集菌体并提取质粒获得pTarget-ΔPmetL::Ptrc载体。
通过PCR使用引物35和引物36,以W3110ΔmetIΔmetJΔmetBΔthrB菌株的基因组为模板扩增得到metL基因启动子序列上游同源片段,metL基因的启动子序列信息是基于Ecocyc E.coli Database数据库中获得的(EcoCyc基因登记号:EG10590,核苷酸序列为SEQID NO.18所示),PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃30s,重复30个循环;72℃继续延伸10min。按同样的方法使用引物37和引物38扩增得到metL基因启动子序列下游同源片段,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化片段。将回收的两个DNA片段使用引物35和引物38的引物进行融合PCR,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃1min,重复30个循环;72℃继续延伸10min,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化该片段(核苷酸序列为SEQ ID NO.10所示),该基因条带中已将Ptrc启动子序列插入至两同源片段之间。将pTarget-ΔPmetL::Ptrc载体和回收的DNA片段一同电转化至有pCas9载体的W3110ΔmetIΔmetJΔmetBΔthrB菌株。
为了电穿孔,转化有pCas9载体的W3110ΔmetIΔmetJΔmetBΔthrB菌株在含有50mg/L的卡那霉素和10mM L-阿拉伯糖的LB培养基中在30℃下培养,直到OD600达到0.6,菌液经过离心得到菌体。菌体使用无菌蒸馏水洗涤两次,然后使用10%的甘油洗涤一次以便使用。电穿孔在2.5KV下进行。
将电转化后的菌液涂至含有50mg/L的卡那霉素和50mg/L的盐酸壮观霉素抗性的LB平板上,30℃培养过夜。挑取单菌落作为模板,以引物39和引物40进行PCR,并且通过观察到在1.0%琼脂糖凝胶中存在700bp的DNA条带确认metL基因的原始启动子序列已被Ptrc启动子序列替换。将通过此确认的菌株在含有50mg/L的卡那霉素和5mM IPTG的LB培养基中在30℃下培养过夜以去除pTarget-ΔPmetL::Ptrc载体。然后将已经去除pTarget-ΔPmetL::Ptrc载体的菌株在LB培养基中在37℃下培养过夜以去除pCas载体。将去除pCas载体后的菌株使用引物39和引物38进行PCR扩增,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃1min15s,重复30个循环;72℃继续延伸10min,将PCR产物进行测序验证,测序结果通过BLAST序列比对确认metL基因的原位启动子序列已被Ptrc启动子成功替换。构建的菌株记为W3110ΔmetIΔmetJΔmetBΔthrB-metL(trc)。同样方法构建菌株W3110ΔmetIΔmetJΔmetB-metL(trc),制备该基因型菌株所用的引物也一致。
表5引物序列
(2)thrA基因表达的增强
thrA基因编码的酶具有天冬氨酸激酶I和高丝氨酸脱氢酶I双功能酶活性,为了使L-天冬氨酸往L-高丝氨酸的主路径代谢过程中将更多的碳源流向O-琥珀酰-L-高丝氨酸的前体物质,将用trc启动子序列替换thrA基因(核苷酸序列为SEQ ID NO.11所示)中的原始启动子序列以达到增强thrA基因表达的目的。
通过CRISPR-Cas9系统编辑W3110ΔmetIΔmetJΔmetBΔthrB-metL(trc)菌株基因组中编码高丝氨酸脱氢酶的thrA基因的启动子序列。通过PCR使用引物41和引物42,以及pTargetF载体作为模板构建能够表达靶定目的基因thrA启动子序列的sgRNA的pTarget-ΔPthrA::Ptrc突变载体。PCR反应条件如下:95℃5min;95℃15s,55℃15s,72℃2min,重复30个循环;72℃继续延伸10min。将PCR产物用DpnI于37℃处理3h,灭活后转化至E.coli BL21(DE3)受体菌中,涂布于含终浓度50mg/L盐酸壮观霉素抗性的LB固体平板上,37℃培养12h。随机挑取单菌落转接至含终浓度50mg/L盐酸壮观霉素抗性的LB液体培养基中,37℃培养12h,收集菌体并提取质粒获得pTarget-ΔPthrA::Ptrc载体。
通过PCR使用引物43和引物44,以W3110ΔmetIΔmetJΔmetBΔthrB-metL(trc)菌株的基因组为模板扩增得到thrA基因启动子序列上游同源片段,thrA基因的启动子序列信息是基于Ecocyc E.coli Database数据库中获得的(EcoCyc基因登记号:EG10998),PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃30s,重复30个循环;72℃继续延伸10min。按同样的方法使用引物45和引物46扩增得到thrA基因启动子序列下游同源片段,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化片段(核苷酸序列为SEQ ID NO.12所示)。将回收的两个DNA片段使用引物43和引物46的引物进行融合PCR,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃1min,重复30个循环;72℃继续延伸10min,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化该片段,该基因条带中已将Ptrc启动子序列插入至两同源片段之间。将pTarget-ΔPthrA::Ptrc载体和回收的DNA片段一同电转化至有pCas9载体的W3110ΔmetIΔmetJΔmetBΔthrB-metL(trc)菌株。
为了电穿孔,转化有pCas9载体的W3110ΔmetIΔmetJΔmetBΔthrB-metL(trc)菌株在含有50mg/L的卡那霉素和10mM L-阿拉伯糖的LB培养基中在30℃下培养,直到OD600达到0.6,菌液经过离心得到菌体。菌体使用无菌蒸馏水洗涤两次,然后使用10%的甘油洗涤一次以便使用。电穿孔在2.5KV下进行。
将电转化后的菌液涂至含有50mg/L的卡那霉素和50mg/L的盐酸壮观霉素抗性的LB平板上,30℃培养过夜。挑取单菌落作为模板,以引物47和引物48进行PCR,并且通过观察到在1.0%琼脂糖凝胶中存在700bp的DNA条带确认thrA基因的原始启动子序列已被Ptrc启动子序列替换。将通过此确认的菌株在含有50mg/L的卡那霉素和5mM IPTG的LB培养基中在30℃下培养过夜以去除pTarget-ΔPthrA::Ptrc载体。然后将已经去除pTarget-ΔPthrA::Ptrc载体的菌株在LB培养基中在37℃下培养过夜以去除pCas载体。将去除pCas载体后的菌株使用引物47和引物46进行PCR扩增,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃1min 15s,重复30个循环;72℃继续延伸10min,将PCR产物进行测序验证,测序结果通过BLAST序列比对确认thrA基因的原位启动子序列(核苷酸序列为SEQ ID NO.19所示)已被Ptrc启动子(核苷酸序列为SEQ ID NO.21所示)成功替换。如此构建的菌株记为W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA(trc)。
表6引物序列
引物41 GCTCTAAAACCGTTACCTTTGGTCGAAAAAACTAGTATTATACCTAGGAC
引物42 GCTCTAAAACCGTTACCTTTGGTCGAAAAAACTAGTATTATACCTAGGAC
引物43 TTAAAGTTTTCCCGACATTG
引物44 ACCACACATTATACGAGCCGGATGATTAATTGTCAATAAAATTTTAATTTACTCAC
引物45 CGGCTCGTATAATGTGTGGTCACAAAGGAGATATACATGCGAGTGTTGAAGTTCGG
引物46 CACCACCAGTTCGCCTTTTT
引物47 TTCGCGGTTATTTGATCAAG
引物48 GTATATCTCCTTTGTGACCA
(2)sucA基因表达的增强
sucA基因编码的α-酮戊二酸脱羧酶将α-酮戊二酸催化合成琥珀酰-CoA,为了进一步提高底物琥珀酰CoA在胞内的含量,将用trc启动子序列替换sucA基因(核苷酸序列为SEQID NO.13所示)中的原始启动子序列以达到增强sucA基因表达的目的。
通过CRISPR-Cas9系统编辑W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA(trc)菌株基因组中编码高丝氨酸脱氢酶的sucA基因的启动子序列。通过PCR使用引物49和引物50,以及pTargetF载体作为模板构建能够表达靶定目的基因sucA启动子序列的sgRNA的pTarget-ΔPsucA::Ptrc突变载体。PCR反应条件如下:95℃5min;95℃15s,55℃15s,72℃2min,重复30个循环;72℃继续延伸10min。将PCR产物用DpnI于37℃处理3h,灭活后转化至E.coli BL21(DE3)受体菌中,涂布于含终浓度50mg/L盐酸壮观霉素抗性的LB固体平板上,37℃培养12h。随机挑取单菌落转接至含终浓度50mg/L盐酸壮观霉素抗性的LB液体培养基中,37℃培养12h,收集菌体并提取质粒获得pTarget-ΔPsucA::Ptrc载体。
通过PCR使用引物51和引物52,以W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA(trc)菌株的基因组为模板扩增得到sucA基因启动子序列上游同源片段,sucA基因的启动子序列信息是基于Ecocyc E.coli Database数据库中获得的(EcoCyc基因登记号:EG10998),PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃30s,重复30个循环;72℃继续延伸10min。按同样的方法使用引物53和引物54扩增得到sucA基因启动子序列下游同源片段,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化片段(核苷酸序列为SEQ IDNO.14所示)。将回收的两个DNA片段使用引物51和引物54的引物进行融合PCR,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃1min,重复30个循环;72℃继续延伸10min,PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化该片段,该基因条带中已将Ptrc启动子序列插入至两同源片段之间。将pTarget-ΔPsucA::Ptrc载体和回收的DNA片段一同电转化至有pCas9载体的W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA(trc)菌株。
为了电穿孔,转化有pCas9载体的W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA(trc)菌株在含有50mg/L的卡那霉素和10mM L-阿拉伯糖的LB培养基中在30℃下培养,直到OD600达到0.6,菌液经过离心得到菌体。菌体使用无菌蒸馏水洗涤两次,然后使用10%的甘油洗涤一次以便使用。电穿孔在2.5KV下进行。
将电转化后的菌液涂至含有50mg/L的卡那霉素和50mg/L的盐酸壮观霉素抗性的LB平板上,30℃培养过夜。挑取单菌落作为模板,以引物55和引物56进行PCR,并且通过观察到在1.0%琼脂糖凝胶中存在700bp的DNA条带确认sucA基因的原始启动子序列已被Ptrc启动子序列替换。将通过此确认的菌株在含有50mg/L的卡那霉素和5mM IPTG的LB培养基中在30℃下培养过夜以去除pTarget-ΔPsucA::Ptrc载体。然后将已经去除pTarget-ΔPsucA::Ptrc载体的菌株在LB培养基中在37℃下培养过夜以去除pCas载体。将去除pCas载体后的菌株使用引物47和引物46进行PCR扩增,PCR反应条件如下:95℃5min;95℃30s,55℃30s,72℃1min 15s,重复30个循环;72℃继续延伸10min,将PCR产物进行测序验证,测序结果通过BLAST序列比对确认sucA基因的原位启动子序列(核苷酸序列为SEQ ID NO.20所示)已被Ptrc启动子(核苷酸序列为SEQ ID NO.21所示)成功替换。如此构建的菌株记为W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA-sucA(trc)。
表7引物序列
引物49 TAATACTAGTAAGAGCTCGCAAGTGAACCCGTTTTAGAGCTAGAAATAGC
引物50 GCTCTAAAACGGGTTCACTTGCGAGCTCTTACTAGTATTATACCTAGGAC
引物51 AAGAAGATTGTGATTCGCCC
引物52 ACCACACATTATACGAGCCGGATGATTAATTGTCAAGATTTCCTGCATTTCTTTGT
引物53 CGGCTCGTATAATGTGTGGTCACAAAGGAGATATACATGCAGAACAGCGCTTTGAA
引物54 TCAGTTCGCTTAAGAAGCGT
引物55 TAAAAGAGAAAGATCCCAGC
引物56 GTATATCTCCTTTGTGACCA
实施例3表达具有抗反馈抑制的metA基因的质粒的构建
以野生型大肠杆菌Escherichia coli W3110(大肠杆菌遗传育种中心The ColiGenetic Stock Center)基因组作为模板,连同引物57和引物58进行PCR扩增。PCR反应条件:预变性95℃5min,95℃30s,60℃30s,72℃1min,共30个循环,最后72℃延伸10min。PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化该片段,利用Taq DNA聚合酶向片段5’端引入碱基A。在T4DNA连接酶作用下将该片段同pGEM-T载体进行连接,得到克隆重组质粒pGEM-T-metA。在pGEM-T-metA质粒上对metA基因(核苷酸序列为SEQ ID NO.15所示,编码蛋白氨基酸序列为SEQ ID NO.16所示)进行定点突变,将64位氨基酸--谷氨酸替换为谷氨酰胺(E64Q),使用引物59和引物60,并以pGEM-T-metA质粒为模板,通过PCR引入突变,PCR反应程序如下:98℃3min;98℃10s,55℃5s,72℃3min,重复30个循环;72℃继续延伸10min。将PCR产物用DpnI于37℃处理3h,灭活后转化至E.coli BL21(DE3)受体菌中,涂布于含终浓度50mg/L氨苄青霉素钠抗性的LB固体平板上,37℃培养12h后,随机挑取单菌落进行测序分析,获得metA突变基因。根据分析结果设计表达引物61和引物62(引物中分别具有NcoI限制性酶切位点和SacI限制性酶切位点),获得930bp的metA11基因序列。利用NcoI和SacI限制性内切酶对扩增片段进行酶切处理,利用T4DNA连接酶将该片段与用相同限制性内切酶处理的pTrc99A进行连接,构建表达载体pTrc99A-metA11。
表8引物序列
引物57 ATGCCGATTCGTGTGCCGGA
引物58 TTAATCCAGCGTTGGATTCA
引物59 CTTTGCAGGTCGATATTCAG
引物60 CTGAATATCGACCTGCAAAG
引物61 ccatggATGCCGATTCGTGTGCCGGA
引物62 gagctcTTAATCCAGCGTTGGATTCA
实施例4表达具L-蛋氨酸运输功能的yjeH基因的质粒的构建
以野生型大肠杆菌Escherichia coli W3110(大肠杆菌遗传育种中心The ColiGenetic Stock Center)基因组作为模板,连同引物63和引物64进行PCR扩增。PCR反应条件:预变性95℃5min,95℃30s,60℃30s,72℃1min30s,共30个循环,最后72℃延伸10min。PCR产物用1.0%琼脂糖凝胶电泳检测并切胶回收纯化该片段,利用Taq DNA聚合酶向片段5’端引入碱基A。在T4DNA连接酶作用下将该片段同pGEM-T载体进行连接,得到克隆重组质粒pGEM-T-yjeH。将该重组质粒转化至大肠杆菌JM109中,涂布于含有浓度为50μg/mL氨苄青霉素钠抗性的LB平板,随机挑取阳性克隆进行测序分析。根据分析结果设计表达引物65和引物66(引物中分别具有Kpn I限制性酶切位点和Hind III限制性酶切位点),获得1257bp的yjeH基因序列(核苷酸序列为SEQ ID NO.17所示)。利用Kpn I和Hind III限制性内切酶对扩增片段进行酶切处理,利用T4DNA连接酶将该片段与用相同限制性内切酶处理的pTrc99A-metA11进行连接,构建表达载体pTrc99A-metA11-yjeH,并且命名为pA11y。
表9引物序列
引物63 ATGAGTGGACTCAAACAAGA
引物64 TTATGTGGTTATGCCATTTT
引物65 ccatgg ATGAGTGGACTCAAACAAGA
引物66 gagctc TTATGTGGTTATGCCATTTT
实施例5实验菌株的构建
(1)菌株的构建
将大肠杆菌菌株W3110、W3110ΔmetI、W3110ΔmetIΔmetJ、W3110ΔmetIΔmetJΔmetB、W3110ΔmetIΔmetJΔmetBΔthrB、W3110ΔmetIΔmetJΔmetBΔthrB-metL(trc)、W3110ΔmetIΔmetJΔmetB-metL(trc)、W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA(trc)、W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA-sucA(trc)制备成感受态细胞,并且通过化学转化法将实施例4中构建的质粒pA11y转化至上述制备的感受态细胞中,涂布于含有浓度为50μg/mL氨苄青霉素钠抗性的LB平板,得到含有pA11y质粒的三种代谢改造后的菌株。
(2)摇瓶发酵实验
对上述菌体在摇瓶中进行发酵实验测试,以比较各基因型菌株之间生产O-琥珀酰-L-高丝氨酸的能力。摇瓶发酵实验按如下方案进行:将每个菌株划线接种在含有50μg/mL氨苄青霉素钠抗性的LB平板上,在37℃培养箱中培养过夜,挑取单菌落接种至5ml的LB培养基中,并且以200rpm的转速在37℃培养箱中培养过夜。
在500ml的摇瓶中添加20ml的发酵培养基,并将1ml每种菌株的种子液接种至摇瓶的培养基中。然后摇瓶以180rpm的转速在30℃的培养箱中培养48小时,从摇瓶中取1ml液体,用超纯水稀释100倍,过滤膜后通过HPLC分析发酵液中O-琥珀酰-L-高丝氨酸的含量,最终比较携带质粒的每种菌株获得O-琥珀酰-L-高丝氨酸的量。结果如表10代谢改造菌株摇瓶发酵实验所示。
发酵培养基组成:葡萄糖40/L、磷酸二氢钾2g/L、硫酸铵17g/L、酵母粉4g/L、碳酸钙30g/L、L-苏氨酸0.2g/L、维生素B1 0.0001g/L、MgSO4 2g/L、FeSO4 0.005g/L、MnSO40.005g/L、ZnSO4 0.005g/L,溶剂为去离子水,pH值6.8。
表10代谢改造菌株摇瓶发酵实验
根据表10可知,9株经过代谢改造并携带载体的W3110ΔmetI/pA11y、W3110ΔmetIΔmetJ/pA11y、W3110ΔmetIΔmetJΔmetB/pA11y、W3110ΔmetIΔmetJΔmetBΔthrB/pA11y、W3110ΔmetIΔmetJΔmetB-metL(trc)/pA11y、W3110ΔmetIΔmetJΔmetBΔthrB-metL(trc)/pA11y、W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA(trc)/pA11y、W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA-sucA(trc)/pA11y菌株都具有生产O-琥珀酰-L-高丝氨酸的能力,而且对L-蛋氨酸运输系统的部分改造并未对菌株的生长造成明显的影响,通过对菌株胞内L-蛋氨酸含量的控制,可以减弱其对metA基因的反馈抑制作用,从而发挥该酶良好的活性。经过改造后性能最优的菌株在发酵生产O-琥珀酰-L-高丝氨酸的水平相比于野生型的菌株从0g/L提高到21.8g/L。其他经过改造后的菌株在生产O-琥珀酰-L-高丝氨酸的水平相较于原始菌株都有不同程度的提高。
(3)L-苏氨酸添加量实验
对L-苏氨酸营养缺陷型菌株W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA(trc)/pA11y进行了L-苏氨酸添加量的实验,将发酵培养基中L-苏氨酸量分别为0g/L、0.1g/L、0.2g/L、0.4g/L、0.8g/L、1.6g/L,并将1ml每种菌株的种子液接种至摇瓶的培养基中。然后摇瓶以180rpm的转速在30℃的培养箱中培养48小时。最终考查W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA(trc)/pA11y菌株生产O-琥珀酰-L-高丝氨酸的能力。
通过外源添加L-苏氨酸和补加葡萄糖的发酵实验,W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA(trc)/pA11y菌株生产O-琥珀酰-L-高丝氨酸的产量水平如表11所示。对于L-苏氨酸营养缺陷型菌株来说,在没有外源添加L-苏氨酸的时候,菌株的生长受到限制,其代谢生产O-琥珀酰-L-高丝氨酸的能力也随之受到限制。当过量添加L-苏氨酸时,不仅不能促进菌体生长,还会对O-琥珀酰-L-高丝氨酸的积累起到负面的影响。
表11L-苏氨酸添加量发酵实验
L-苏氨酸添加量(g/L) OD600 糖酸转化率(%) O-琥珀酰-L-高丝氨酸(g/L)
0 7.33 16.14 6.456235
0.1 10.17 46.62 18.64797
0.2 9.96 49.10 19.64033
0.4 9.5 50.79 20.31498
0.8 9.67 49.15 19.65896
1.6 9.36 46.56 18.62247
实施例6大型发酵罐培养实验
为了大规模生产L-高丝氨酸,使用W3110ΔmetIΔmetJΔmetBΔthrB-metL-thrA-sucA(trc)/pA11y菌株,在5L发酵罐中进行培养。将菌株划线接种在含有50μg/mL氨苄青霉素钠抗性的LB平板上,在37℃培养箱中培养过夜。挑取单菌落接种至10ml的LB试管培养基中,在37℃下培养8h,然后将1ml试管培养物再接种入含有50μg/mL氨苄青霉素钠抗性的100ml的种子培养基的500ml三角瓶中,并且以200rpm的转速在37℃培养箱中培养8-10h,并且将200ml的种子培养物接种入含50μg/mL氨苄青霉素钠抗性的2L发酵培养基的5L发酵罐中,通过补料分批方法补加补料培养基,并且培养50-100h。发酵过程中通过补料将葡萄糖浓度控制在2–10g/L。通过搅拌耦合溶氧(DO)模式控制发酵过程中DO水平在30%左右,搅拌转速控制在200–600rpm,通气速率控制在1–2vvm,发酵过程中控制培养温度在30℃并用50%的氨水调节pH在6.8~7.0的范围。培养基成分如表11所示,并通过氨基酸分析仪分析如此培养的发酵液中的O-琥珀酰-L-高丝氨酸的浓度为100g/L。
表11培养基配方(溶剂为去离子水,pH6.8)
组成 发酵培养基 补料培养基
葡萄糖(g/L) 40 500
酵母粉(g/L) 4
KH2PO4(g/L) 2 12.5
MgSO4(g/L) 2
(NH4)2SO4(g/L) 17
L-蛋氨酸(g/L) 0.2 2
L-苏氨酸(g/L) 0.2 2
L-异亮氨酸(g/L) 0.2 2
FeSO4(g/L) 0.005
MnSO4(g/L) 0.005
ZnSO4(g/L) 0.005
维生素B1(g/L) 0.0001
序列表
<110> 浙江工业大学
<120> 一种产O-琥珀酰-L-高丝氨酸重组大肠杆菌及其应用
<160> 21
<170> SIPOSequenceListing 1.0
<210> 1
<211> 654
<212> DNA
<213> 未知(Unknown)
<400> 1
atgtctgagc cgatgatgtg gctgctggtt cgtggcgtat gggaaacgct ggcaatgacc 60
ttcgtatccg gtttttttgg ctttgtgatt ggtctgccgg ttggcgttct gctttatgtc 120
acgcgtccgg ggcaaattat tgctaacgcg aagctgtatc gtaccgtttc tgcgattgtg 180
aacattttcc gttccatccc gttcattatc ttgcttgtat ggatgattcc gtttacccgc 240
gttattgtcg gtacatcgat tggtttgcag gcagcgattg ttccgttaac cgttggtgca 300
gcaccgttta ttgcccgtat ggtcgagaac gctctgctgg agatcccaac cgggttaatt 360
gaagcttccc gcgcaatggg tgccacgccg atgcagatcg tccgtaaggt gctgttaccg 420
gaagcgctgc cgggtctggt gaatgcggca actatcaccc tgattaccct ggtcggttat 480
tccgcgatgg gtggtgcagt cggtgccggt ggtttaggtc agattggcta tcagtatggc 540
tacatcggct ataacgcgac ggtgatgaat acggtactgg tattgctggt cattctggtt 600
tatttaattc agttcgcagg cgaccgcatc gtccgggctg tcactcgcaa gtaa 654
<210> 2
<211> 1000
<212> DNA
<213> 未知(Unknown)
<400> 2
gacacgttct attctcgaac tgctgaaaga catcaaccgc cgtctggggt tgacgattct 60
gttgatcacc cacgaaatgg acgttgtgaa gcgcatttgt gattgcgtgg cggtcatcag 120
caatggagaa ctgatcgagc aggacacggt aagtgaagtg ttctcgcatc cgaaaacgcc 180
gctggcgcag aagtttattc agtcgaccct gcatctggat atcccggaag attaccagga 240
acgtctgcaa gcggagccat ttactgactg cgtgccgatg ctgcgtctgg agtttaccgg 300
tcaatcggtc gatgccccac tgctttctga aaccgcgcgt cgtttcaacg tcaacaacaa 360
cattattagc gcgcagatgg attacgccgg tggcgttaag ttcggcatca tgctgactga 420
aatgcacggc acacaacaag atacgcaagc cgccattgcc tggctgcagg aacaccatgt 480
aaaagtagag gtactgggtt cgttcaacac aacataaata attgaagaag gaataaggta 540
tggcgttcaa attcaaaacc tttgcggcag tgggagccct gatcggatca ctggcactgg 600
taggctgcgg tcaggatgaa aaagatccaa accacattaa agtcggcgtg attgttggtg 660
ccgaacagca ggttgcagaa gtcgcgcaga aagttgcgaa agacaaatat ggcctggacg 720
ttgagctggt aaccttcaac gactatgttc tgccaaacga agcattgagc aaaggcgata 780
tcgacgccaa cgccttccag cataaaccgt accttgatca gcaactgaaa gatcgtggct 840
acaaactggt cgcagtaggc aacacttttg tttatccgat tgctggttac tccaagaaaa 900
tcaaatcact ggatgaactg caggatggtt cgcaggttgc cgtgccaaac gacccaacta 960
accttggtcg ttcactgctg ctgctgcaaa aagtgggctt 1000
<210> 3
<211> 318
<212> DNA
<213> 未知(Unknown)
<400> 3
atggctgaat ggagcggcga atatatcagc ccatacgctg agcacggcaa gaagagtgaa 60
caagtcaaaa agattacggt ttccattcct cttaaggtgt taaaaatcct caccgatgaa 120
cgcacgcgtc gtcaggtgaa caacctgcgt cacgctacca acagcgagct gctgtgcgaa 180
gcgtttctgc atgcctttac cgggcaacct ttgccggatg atgccgatct gcgtaaagag 240
cgcagcgacg aaatcccgga agcggcaaaa gagatcatgc gtgagatggg gattaacccg 300
gagacgtggg aatactaa 318
<210> 4
<211> 1013
<212> DNA
<213> 未知(Unknown)
<400> 4
atgccggtat tagtaagtac tgcaccagca ccaccttcca gttctgccag cgcacgctga 60
accacatcgc gcgttgggtt gccgcgacgc gagtaatcat gcgcgcgcgg ttcattaaat 120
ccggtaaagt tataggtgct ggaaagatgg atcggtggga caacgcaacc atactgttcg 180
tcgtcattta acccgctacg cactgcgatg gtggcctgtt tacgcgtcat gtgatgaagt 240
tccctgggct ttgtcggtga aatgtcaggc accagagtaa acattgtgtt aatggacgtc 300
aatacatctg gacatctaaa cttctttgcg tatagattga gcaaatccca aatagccgtt 360
aaaattatat gcattatcac gccgacaggt gcattacacg atgtcacggt aacgcctgta 420
cggtaaacta tgcgggttta cggtcagtac ccacatcaac tgtgtggtct ggtctcaatt 480
tattgacgaa gaggattaag tatctcagca aaaaagagcg gcgcggagtg gaatcgcctg 540
atgcgctacg cttatcaggc ctacgtcata ttgcaattta ttgaatttgc acgaacttgt 600
aggccggata aggcgttcac gccgcatccg gcataaacaa cgagcacgtt gtctgcgacc 660
caccgctttt tatacatgga cgtttaacta tgaaaaacag gctgctgatc ctcagcctgc 720
tggtttctgt acctgccttt gcctggcagc cacaaaccgg cgacatcatc tttcagatct 780
ctcgctcatc gcaaagtaaa gcgatccaac tggcgaccca taccgattat agccacaccg 840
gtatgctggt gatacgcaac aaaaagccct acgtttttga agcagtcggc ccggtgaaat 900
acaccccgct caagcagtgg atcgcccatg gtgaaaaggg caaatacgtt gttcgccgcg 960
ttgaaggcgg actgagtgtt gaacaacagc aaaaactggc gcaaacggca aaa 1013
<210> 5
<211> 1160
<212> DNA
<213> 未知(Unknown)
<400> 5
atgacgcgta aacaggccac catcgcagtg cgtagcgggt taaatgacga cgaacagtat 60
ggttgcgttg tcccaccgat ccatctttcc agcacctata actttaccgg atttaatgaa 120
ccgcgcgcgc atgattactc gcgtcgcggc aacccaacgc gcgatgtggt tcagcgtgcg 180
ctggcagaac tggaaggtgg tgctggtgca gtacttacta ataccggcat gtccgcgatt 240
cacctggtaa cgaccgtctt tttgaaacct ggcgatctgc tggttgcgcc gcacgactgc 300
tacggcggta gctatcgcct gttcgacagt ctggcgaaac gcggttgcta tcgcgtgttg 360
tttgttgatc aaggcgatga acaggcatta cgggcagcgc tggcagaaaa acccaaactg 420
gtactggtag aaagcccaag taatccattg ttacgcgtcg tggatattgc gaaaatctgc 480
catctggcaa gggaagtcgg ggcggtgagc gtggtggata acaccttctt aagcccggca 540
ttacaaaatc cgctggcatt aggtgccgat ctggtgttgc attcatgcac gaaatatctg 600
aacggtcact cagacgtagt ggccggcgtg gtgattgcta aagacccgga cgttgtcact 660
gaactggcct ggtgggcaaa caatattggc gtgacgggcg gcgcgtttga cagctatctg 720
ctgctacgtg ggttgcgaac gctggtgccg cgtatggagc tggcgcagcg caacgcgcag 780
gcgattgtga aatacctgca aacccagccg ttggtgaaaa aactgtatca cccgtcgttg 840
ccggaaaatc aggggcatga aattgccgcg cgccagcaaa aaggctttgg cgcaatgttg 900
agttttgaac tggatggcga tgagcagacg ctgcgtcgtt tcctgggcgg gctgtcgttg 960
tttacgctgg cggaatcatt agggggagtg gaaagtttaa tctctcacgc cgcaaccatg 1020
acacatgcag gcatggcacc agaagcgcgt gctgccgccg ggatctccga gacgctgctg 1080
cgtatctcca ccggtattga agatggcgaa gatttaattg ccgacctgga aaatggcttc 1140
cgggctgcaa acaaggggta 1160
<210> 6
<211> 1388
<212> DNA
<213> 未知(Unknown)
<400> 6
gctttacttt gcgatgagcg agagatctga aagatgatgt cgccggtttg tggctgccag 60
gcaaaggcag gtacagaaac cagcaggctg aggatcagca gcctgttttt catagttaaa 120
cgtccatgta taaaaagcgg tgggtcgcag acaacgtgct cgttgtttat gccggatgcg 180
gcgtgaacgc cttatccggc ctacaagttc gtgcaaattc aataaattgc aatatgacgt 240
aggcctgata agcgtagcgc atcaggcgat tccactccgc gccgctcttt tttgctgaga 300
tacttaatcc tcttcgtcaa taaattgaga ccagaccaca cagttgatgt gggtactgac 360
cgtaaacccg catagtttac cgtacaggcg ttaccgtgac atcgtgtaat gcacctgtcg 420
gcgtgataat gcatataatt ttaacggcta tttgggattt gctcaatcta tacgcaaaga 480
agtttagatg tccagatgta ttgacgtcca ttaacacaat gtttactctg gtgcctgaca 540
tttcaccgac aaagcccagg gaacttcatc acgagatact taatcctctt cgtcaataaa 600
ttgagaccag accacacagt tgatgtgggt actgaccgta aacccgcata gtttaccgta 660
caggcgttac cgtgacatcg tgtaatgcac ctgtcggcgt gataatgcat ataattttaa 720
cggctatttg ggatttgctc aatctatacg caaagaagtt tagatgtcca gatgtattga 780
cgtccattaa cacaatgttt actctggtgc ctgacatttc accgacaaag cccagggaac 840
ttcatcacaa aatgagtgtg attgcgcagg caggggcgaa aggtcgtcag ctgcataaat 900
ttggtggcag tagtctggct gatgtgaagt gttatttgcg tgtcgcgggc attatggcgg 960
agtactctca gcctgacgat atgatggtgg tttccgccgc cggtagcacc actaaccagt 1020
tgattaactg gttgaaacta agccagaccg atcgtctctc tgcgcatcag gttcaacaaa 1080
cgctgcgtcg ctatcagtgc gatctgatta gcggtctgct acccgctgaa gaagccgata 1140
gcctcattag cgcttttgtc agcgaccttg agcgcctggc ggcgctgctc gacagcggta 1200
ttaacgacgc agtgtatgcg gaagtggtgg gccacgggga agtatggtcg gcacgtctga 1260
tgtctgcggt acttaatcaa caagggctgc cagcggcctg gcttgatgcc cgcgagtttt 1320
tacgcgctga acgcgccgca caaccgcagg ttgatgaagg gctttcttac ccgttgctgc 1380
aacagctg 1388
<210> 7
<211> 933
<212> DNA
<213> 未知(Unknown)
<400> 7
atggttaaag tttatgcccc ggcttccagt gccaatatga gcgtcgggtt tgatgtgctc 60
ggggcggcgg tgacacctgt tgatggtgca ttgctcggag atgtagtcac ggttgaggcg 120
gcagagacat tcagtctcaa caacctcgga cgctttgccg ataagctgcc gtcagaacca 180
cgggaaaata tcgtttatca gtgctgggag cgtttttgcc aggaactggg taagcaaatt 240
ccagtggcga tgaccctgga aaagaatatg ccgatcggtt cgggcttagg ctccagtgcc 300
tgttcggtgg tcgcggcgct gatggcgatg aatgaacact gcggcaagcc gcttaatgac 360
actcgtttgc tggctttgat gggcgagctg gaaggccgta tctccggcag cattcattac 420
gacaacgtgg caccgtgttt tctcggtggt atgcagttga tgatcgaaga aaacgacatc 480
atcagccagc aagtgccagg gtttgatgag tggctgtggg tgctggcgta tccggggatt 540
aaagtctcga cggcagaagc cagggctatt ttaccggcgc agtatcgccg ccaggattgc 600
attgcgcacg ggcgacatct ggcaggcttc attcacgcct gctattcccg tcagcctgag 660
cttgccgcga agctgatgaa agatgttatc gctgaaccct accgtgaacg gttactgcca 720
ggcttccggc aggcgcggca ggcggtcgcg gaaatcggcg cggtagcgag cggtatctcc 780
ggctccggcc cgaccttgtt cgctctgtgt gacaagccgg aaaccgccca gcgcgttgcc 840
gactggttgg gtaagaacta cctgcaaaat caggaaggtt ttgttcatat ttgccggctg 900
gatacggcgg gcgcacgagt actggaaaac taa 933
<210> 8
<211> 1137
<212> DNA
<213> 未知(Unknown)
<400> 8
taaattcctc tatgacacca acgttggggc tggattaccg gttattgaga acctgcaaaa 60
tctgctcaat gcaggtgatg aattgatgaa gttctccggc attctttctg gttcgctttc 120
ttatatcttc ggcaagttag acgaaggcat gagtttctcc gaggcgacca cgctggcgcg 180
ggaaatgggt tataccgaac cggacccgcg agatgatctt tctggtatgg atgtggcgcg 240
taaactattg attctcgctc gtgaaacggg acgtgaactg gagctggcgg atattgaaat 300
tgaacctgtg ctgcccgcag agtttaacgc cgagggtgat gttgccgctt ttatggcgaa 360
tctgtcacaa ctcgacgatc tctttgccgc gcgcgtggcg aaggcccgtg atgaaggaaa 420
agttttgcgc tatgttggca atattgatga agatggcgtc tgccgcgtga agattgccga 480
agtggatggt aatgatccgc tgttcaaagt gaaaaatggc gaaaacgccc tggccttcta 540
tagccactat tatcagccgc tgccgttggt actgcgcgga tatggtgcgg gcaatgacgt 600
tacagctgcc ggtgtctttg ctgatctgct acgtaccctc tcatggaagt taggagtctg 660
aatgaaactc tacaatctga aagatcacaa cgagcaggtc agctttgcgc aagccgtaac 720
ccaggggttg ggcaaaaatc aggggctgtt ttttccgcac gacctgccgg aattcagcct 780
gactgaaatt gatgagatgc tgaagctgga ttttgtcacc cgcagtgcga agatcctctc 840
ggcgtttatt ggtgatgaaa tcccacagga aatcctggaa gagcgcgtgc gcgcggcgtt 900
tgccttcccg gctccggtcg ccaatgttga aagcgatgtc ggttgtctgg aattgttcca 960
cgggccaacg ctggcattta aagatttcgg cggtcgcttt atggcacaaa tgctgaccca 1020
tattgcgggt gataagccag tgaccattct gaccgcgacc tccggtgata ccggagcggc 1080
agtggctcat gctttctacg gtttaccgaa tgtgaaagtg gttatcctct atccacg 1137
<210> 9
<211> 2433
<212> DNA
<213> 未知(Unknown)
<400> 9
atgagtgtga ttgcgcaggc aggggcgaaa ggtcgtcagc tgcataaatt tggtggcagt 60
agtctggctg atgtgaagtg ttatttgcgt gtcgcgggca ttatggcgga gtactctcag 120
cctgacgata tgatggtggt ttccgccgcc ggtagcacca ctaaccagtt gattaactgg 180
ttgaaactaa gccagaccga tcgtctctct gcgcatcagg ttcaacaaac gctgcgtcgc 240
tatcagtgcg atctgattag cggtctgcta cccgctgaag aagccgatag cctcattagc 300
gcttttgtca gcgaccttga gcgcctggcg gcgctgctcg acagcggtat taacgacgca 360
gtgtatgcgg aagtggtggg ccacggggaa gtatggtcgg cacgtctgat gtctgcggta 420
cttaatcaac aagggctgcc agcggcctgg cttgatgccc gcgagttttt acgcgctgaa 480
cgcgccgcac aaccgcaggt tgatgaaggg ctttcttacc cgttgctgca acagctgctg 540
gtgcaacatc cgggcaaacg tctggtggtg accggattta tcagccgcaa caacgccggt 600
gaaacggtgc tgctggggcg taacggttcc gactattccg cgacacaaat cggtgcgctg 660
gcgggtgttt ctcgcgtaac catctggagc gacgtcgccg gggtatacag tgccgacccg 720
cgtaaagtga aagatgcctg cctgctgccg ttgctgcgtc tggatgaggc cagcgaactg 780
gcgcgcctgg cggctcccgt tcttcacgcc cgtactttac agccggtttc tggcagcgaa 840
atcgacctgc aactgcgctg tagctacacg ccggatcaag gttccacgcg cattgaacgc 900
gtgctggcct ccggtactgg tgcgcgtatt gtcaccagcc acgatgatgt ctgtttgatt 960
gagtttcagg tgcccgccag tcaggatttc aaactggcgc ataaagagat cgaccaaatc 1020
ctgaaacgcg cgcaggtacg cccgctggcg gttggcgtac ataacgatcg ccagttgctg 1080
caattttgct acacctcaga agtggccgac agtgcgctga aaatcctcga cgaagcggga 1140
ttacctggcg aactgcgcct gcgtcagggg ctggcgctgg tggcgatggt cggtgcaggc 1200
gtcacccgta acccgctgca ttgccaccgc ttctggcagc aactgaaagg ccagccggtc 1260
gaatttacct ggcagtccga tgacggcatc agcctggtgg cagtactgcg caccggcccg 1320
accgaaagcc tgattcaggg gctgcatcag tccgtcttcc gcgcagaaaa acgcatcggc 1380
ctggtattgt tcggtaaggg caatatcggt tcccgttggc tggaactgtt cgcccgtgag 1440
cagagcacgc tttcggcacg taccggcttt gagtttgtgc tggcaggtgt ggtggacagc 1500
cgccgcagcc tgttgagcta tgacgggctg gacgccagcc gcgcgttagc cttcttcaac 1560
gatgaagcgg ttgagcagga tgaagagtcg ttgttcctgt ggatgcgcgc ccatccgtat 1620
gatgatttag tggtgctgga cgttaccgcc agccagcagc ttgctgatca gtatcttgat 1680
ttcgccagcc acggtttcca cgttatcagc gccaacaaac tggcgggagc cagcgacagc 1740
aataaatatc gccagatcca cgacgccttc gaaaaaaccg ggcgtcactg gctgtacaat 1800
gccaccgtcg gtgcgggctt gccgatcaac cacaccgtgc gcgatctgat cgacagcggc 1860
gatactattt tgtcgatcag cgggatcttc tccggcacgc tctcctggct gttcctgcaa 1920
ttcgacggta gcgtgccgtt taccgagctg gtggatcagg cgtggcagca gggcttaacc 1980
gaacctgacc cgcgtgacga tctctctggc aaagacgtga tgcgcaagct ggtgattctg 2040
gcgcgtgaag caggttacaa catcgaaccg gatcaggtac gtgtggaatc gctggtgcct 2100
gctcattgcg aaggcggcag catcgaccat ttctttgaaa atggcgatga actgaacgag 2160
cagatggtgc aacggctgga agcggcccgc gaaatggggc tggtgctgcg ctacgtggcg 2220
cgtttcgatg ccaacggtaa agcgcgtgta ggcgtggaag cggtgcgtga agatcatccg 2280
ttggcatcac tgctgccgtg cgataacgtc tttgccatcg aaagccgctg gtatcgcgat 2340
aaccctctgg tgatccgcgg acctggcgct gggcgcgacg tcaccgccgg ggcgattcag 2400
tcggatatca accggctggc acagttgttg taa 2433
<210> 10
<211> 1069
<212> DNA
<213> 未知(Unknown)
<400> 10
cagttggatc gctttacttt gcgatgagcg agagatctga aagatgatgt cgccggtttg 60
tggctgccag gcaaaggcag gtacagaaac cagcaggctg aggatcagca gcctgttttt 120
catagttaaa cgtccatgta taaaaagcgg tgggtcgcag acaacgtgct cgttgtttat 180
gccggatgcg gcgtgaacgc cttatccggc ctacaagttc gtgcaaattc aataaattgc 240
aatatgacgt aggcctgata agcgtagcgc atcaggcgat tccactccgc gccgctcttt 300
tttgctgaga tacttaatcc tcttcgtcaa taaattgaga ccagaccaca cagttgatgt 360
gggtactgac cgtaaacccg catagtttac cgtacaggcg ttaccgtgac atcgtgtaat 420
gcacctgtcg gcgtgataat gcatataatt ttaacggcta tttgggattt gctcaatcta 480
tacgcaaaga agtttagatg tccagatgta ttgacaatta atcatccggc tcgtataatg 540
tgtggtcaca aaggagatat acatgagtgt gattgcgcag gcaggggcga aaggtcgtca 600
gctgcataaa tttggtggca gtagtctggc tgatgtgaag tgttatttgc gtgtcgcggg 660
cattatggcg gagtactctc agcctgacga tatgatggtg gtttccgccg ccggtagcac 720
cactaaccag ttgattaact ggttgaaact aagccagacc gatcgtctct ctgcgcatca 780
ggttcaacaa acgctgcgtc gctatcagtg cgatctgatt agcggtctgc tacccgctga 840
agaagccgat agcctcatta gcgcttttgt cagcgacctt gagcgcctgg cggcgctgct 900
cgacagcggt attaacgacg cagtgtatgc ggaagtggtg ggccacgggg aagtatggtc 960
ggcacgtctg atgtctgcgg tacttaatca acaagggctg ccagcggcct ggcttgatgc 1020
ccgcgagttt ttacgcgctg aacgcgccgc acaaccgcag gttgatgaa 1069
<210> 11
<211> 2463
<212> DNA
<213> 未知(Unknown)
<400> 11
atgcgagtgt tgaagttcgg cggtacatca gtggcaaatg cagaacgttt tctgcgtgtt 60
gccgatattc tggaaagcaa tgccaggcag gggcaggtgg ccaccgtcct ctctgccccc 120
gccaaaatca ccaaccacct ggtggcgatg attgaaaaaa ccattagcgg ccaggatgct 180
ttacccaata tcagcgatgc cgaacgtatt tttgccgaac ttttgacggg actcgccgcc 240
gcccagccgg ggttcccgct ggcgcaattg aaaactttcg tcgatcagga atttgcccaa 300
ataaaacatg tcctgcatgg cattagtttg ttggggcagt gcccggatag catcaacgct 360
gcgctgattt gccgtggcga gaaaatgtcg atcgccatta tggccggcgt attagaagcg 420
cgcggtcaca acgttactgt tatcgatccg gtcgaaaaac tgctggcagt ggggcattac 480
ctcgaatcta ccgtcgatat tgctgagtcc acccgccgta ttgcggcaag ccgcattccg 540
gctgatcaca tggtgctgat ggcaggtttc accgccggta atgaaaaagg cgaactggtg 600
gtgcttggac gcaacggttc cgactactct gctgcggtgc tggctgcctg tttacgcgcc 660
gattgttgcg agatttggac ggacgttgac ggggtctata cctgcgaccc gcgtcaggtg 720
cccgatgcga ggttgttgaa gtcgatgtcc taccaggaag cgatggagct ttcctacttc 780
ggcgctaaag ttcttcaccc ccgcaccatt acccccatcg cccagttcca gatcccttgc 840
ctgattaaaa ataccggaaa tcctcaagca ccaggtacgc tcattggtgc cagccgtgat 900
gaagacgaat taccggtcaa gggcatttcc aatctgaata acatggcaat gttcagcgtt 960
tctggtccgg ggatgaaagg gatggtcggc atggcggcgc gcgtctttgc agcgatgtca 1020
cgcgcccgta tttccgtggt gctgattacg caatcatctt ccgaatacag catcagtttc 1080
tgcgttccac aaagcgactg tgtgcgagct gaacgggcaa tgcaggaaga gttctacctg 1140
gaactgaaag aaggcttact ggagccgctg gcagtgacgg aacggctggc cattatctcg 1200
gtggtaggtg atggtatgcg caccttgcgt gggatctcgg cgaaattctt tgccgcactg 1260
gcccgcgcca atatcaacat tgtcgccatt gctcagggat cttctgaacg ctcaatctct 1320
gtcgtggtaa ataacgatga tgcgaccact ggcgtgcgcg ttactcatca gatgctgttc 1380
aataccgatc aggttatcga agtgtttgtg attggcgtcg gtggcgttgg cggtgcgctg 1440
ctggagcaac tgaagcgtca gcaaagctgg ctgaagaata aacatatcga cttacgtgtc 1500
tgcggtgttg ccaactcgaa ggctctgctc accaatgtac atggccttaa tctggaaaac 1560
tggcaggaag aactggcgca agccaaagag ccgtttaatc tcgggcgctt aattcgcctc 1620
gtgaaagaat atcatctgct gaacccggtc attgttgact gcacttccag ccaggcagtg 1680
gcggatcaat atgccgactt cctgcgcgaa ggtttccacg ttgtcacgcc gaacaaaaag 1740
gccaacacct cgtcgatgga ttactaccat cagttgcgtt atgcggcgga aaaatcgcgg 1800
cgtaaattcc tctatgacac caacgttggg gctggattac cggttattga gaacctgcaa 1860
aatctgctca atgcaggtga tgaattgatg aagttctccg gcattctttc tggttcgctt 1920
tcttatatct tcggcaagtt agacgaaggc atgagtttct ccgaggcgac cacgctggcg 1980
cgggaaatgg gttataccga accggacccg cgagatgatc tttctggtat ggatgtggcg 2040
cgtaaactat tgattctcgc tcgtgaaacg ggacgtgaac tggagctggc ggatattgaa 2100
attgaacctg tgctgcccgc agagtttaac gccgagggtg atgttgccgc ttttatggcg 2160
aatctgtcac aactcgacga tctctttgcc gcgcgcgtgg cgaaggcccg tgatgaagga 2220
aaagttttgc gctatgttgg caatattgat gaagatggcg tctgccgcgt gaagattgcc 2280
gaagtggatg gtaatgatcc gctgttcaaa gtgaaaaatg gcgaaaacgc cctggccttc 2340
tatagccact attatcagcc gctgccgttg gtactgcgcg gatatggtgc gggcaatgac 2400
gttacagctg ccggtgtctt tgctgatctg ctacgtaccc tctcatggaa gttaggagtc 2460
tga 2463
<210> 12
<211> 1304
<212> DNA
<213> 未知(Unknown)
<400> 12
ttaaagtttt cccgacattg gctgaatcgt tacacgatgt cgatttcact gtcgccacca 60
ctgcgcgcag tcgggcgaaa tatcattact acgccacgcc agttgaactg gtgccgctgt 120
tagaggaaaa atcttcatgg atgagccatg ccgcgctggt gtttggtcgc gaagattccg 180
ggttgactaa cgaagagtta gcgttggctg acgttcttac tggtgtgccg atggtggcgg 240
attatccttc gctcaatctg gggcaggcgg tgatggtcta ttgctatcaa ttagcaacat 300
taatacaaca accggcgaaa agtgatgcaa cggcagacca acatcaactg caagctttac 360
gcgaacgagc catgacattg ctgacgactc tggcagtggc agatgacata aaactggtcg 420
actggttaca acaacgcctg gggcttttag agcaacgaga cacggcaatg ttgcaccgtt 480
tgctgcatga tattgaaaaa aatatcacca aataaaaaac gccttagtaa gtatttttca 540
gcttttcatt ctgactgcaa cgggcaatat gtctctgtgt ggattaaaaa aagagtgtct 600
gatagcagct tctgaactgg ttacctgccg tgagtaaatt aaaattttat tgacaattaa 660
tcatccggct cgtataatgt gtggtcacaa aggagatata catgcgagtg ttgaagttcg 720
gcggtacatc agtggcaaat gcagaacgtt ttctgcgtgt tgccgatatt ctggaaagca 780
atgccaggca ggggcaggtg gccaccgtcc tctctgcccc cgccaaaatc accaaccacc 840
tggtggcgat gattgaaaaa accattagcg gccaggatgc tttacccaat atcagcgatg 900
ccgaacgtat ttttgccgaa cttttgacgg gactcgccgc cgcccagccg gggttcccgc 960
tggcgcaatt gaaaactttc gtcgatcagg aatttgccca aataaaacat gtcctgcatg 1020
gcattagttt gttggggcag tgcccggata gcatcaacgc tgcgctgatt tgccgtggcg 1080
agaaaatgtc gatcgccatt atggccggcg tattagaagc gcgcggtcac aacgttactg 1140
ttatcgatcc ggtcgaaaaa ctgctggcag tggggcatta cctcgaatct accgtcgata 1200
ttgctgagtc cacccgccgt attgcggcaa gccgcattcc ggctgatcac atggtgctga 1260
tggcaggttt caccgccggt aatgaaaaag gcgaactggt ggtg 1304
<210> 13
<211> 2802
<212> DNA
<213> 未知(Unknown)
<400> 13
atgcagaaca gcgctttgaa agcctggttg gactcttctt acctctctgg cgcaaaccag 60
agctggatag aacagctcta tgaagacttc ttaaccgatc ctgactcggt tgacgctaac 120
tggcgttcga cgttccagca gttacctggt acgggagtca aaccggatca attccactct 180
caaacgcgtg aatatttccg ccgcctggcg aaagacgctt cacgttactc ttcaacgatc 240
tccgaccctg acaccaatgt gaagcaggtt aaagtcctgc agctcattaa cgcataccgc 300
ttccgtggtc accagcatgc gaatctcgat ccgctgggac tgtggcagca agataaagtg 360
gccgatctgg atccgtcttt ccacgatctg accgaagcag acttccagga gaccttcaac 420
gtcggttcat ttgccagcgg caaagaaacc atgaaactcg gcgagctgct ggaagccctc 480
aagcaaacct actgcggccc gattggtgcc gagtatatgc acattaccag caccgaagaa 540
aaacgctgga tccaacagcg tatcgagtct ggtcgcgcga ctttcaatag cgaagagaaa 600
aaacgcttct taagcgaact gaccgccgct gaaggtcttg aacgttacct cggcgcaaaa 660
ttccctggcg caaaacgctt ctcgctggaa ggcggtgacg cgttaatccc gatgcttaaa 720
gagatgatcc gccacgctgg caacagcggc acccgcgaag tggttctcgg gatggcgcac 780
cgtggtcgtc tgaacgtgct ggtgaacgtg ctgggtaaaa aaccgcaaga cttgttcgac 840
gagttcgccg gtaaacataa agaacacctc ggcacgggtg acgtgaaata ccacatgggc 900
ttctcgtctg acttccagac cgatggcggc ctggtgcacc tggcgctggc gtttaacccg 960
tctcaccttg agattgtaag cccggtagtt atcggttctg ttcgtgcccg tctggacaga 1020
cttgatgagc cgagcagcaa caaagtgctg ccaatcacca tccacggtga cgccgcagtg 1080
accgggcagg gcgtggttca ggaaaccctg aacatgtcga aagcgcgtgg ttatgaagtt 1140
ggcggtacgg tacgtatcgt tatcaacaac caggttggtt tcaccacctc taatccgctg 1200
gatgcccgtt ctacgccgta ctgtactgat atcggtaaga tggttcaggc cccgattttc 1260
cacgttaacg cggacgatcc ggaagccgtt gcctttgtga cccgtctggc gctcgatttc 1320
cgtaacacct ttaaacgtga tgtcttcatc gacctggtgt gctaccgccg tcacggccac 1380
aacgaagccg acgagccgag cgcaacccag ccgctgatgt atcagaaaat caaaaaacat 1440
ccgacaccgc gcaaaatcta cgctgacaag ctggagcagg aaaaagtggc gacgctggaa 1500
gatgccaccg agatggttaa cctgtaccgc gatgcgctgg atgctggcga ttgcgtagtg 1560
gcagagtggc gtccgatgaa catgcactct ttcacctggt cgccgtacct caaccacgaa 1620
tgggacgaag agtacccgaa caaagttgag atgaagcgcc tgcaggagct ggcgaaacgc 1680
atcagcacgg tgccggaagc agttgaaatg cagtctcgcg ttgccaagat ttatggcgat 1740
cgccaggcga tggctgccgg tgagaaactg ttcgactggg gcggtgcgga aaacctcgct 1800
tacgccacgc tggttgatga aggcattccg gttcgcctgt cgggtgaaga ctccggtcgc 1860
ggtaccttct tccaccgcca cgcggtgatc cacaaccagt ctaacggttc cacttacacg 1920
ccgctgcaac atatccataa cgggcagggc gcgttccgtg tctgggactc cgtactgtct 1980
gaagaagcag tgctggcgtt tgaatatggt tatgccaccg cagaaccacg cactctgacc 2040
atctgggaag cgcagttcgg tgacttcgcc aacggtgcgc aggtggttat cgaccagttc 2100
atctcctctg gcgaacagaa atggggccgg atgtgtggtc tggtgatgtt gctgccgcac 2160
ggttacgaag ggcaggggcc ggagcactcc tccgcgcgtc tggaacgtta tctgcaactt 2220
tgtgctgagc aaaacatgca ggtttgcgta ccgtctaccc cggcacaggt ttaccacatg 2280
ctgcgtcgtc aggcgctgcg cgggatgcgt cgtccgctgg tcgtgatgtc gccgaaatcc 2340
ctgctgcgtc atccgctggc ggtttccagc ctcgaagaac tggcgaacgg caccttcctg 2400
ccagccatcg gtgaaatcga cgagcttgat ccgaagggcg tgaagcgcgt agtgatgtgt 2460
tctggtaagg tttattacga cctgctggaa cagcgtcgta agaacaatca acacgatgtc 2520
gccattgtgc gtatcgagca actctacccg ttcccgcata aagcgatgca ggaagtgttg 2580
cagcagtttg ctcacgtcaa ggattttgtc tggtgccagg aagagccgct caaccagggc 2640
gcatggtact gcagccagca tcatttccgt gaagtgattc cgtttggggc ttctctgcgt 2700
tatgcaggcc gcccggcctc cgcctctccg gcggtagggt atatgtccgt tcaccagaaa 2760
cagcaacaag atctggttaa tgacgcgctg aacgtcgaat aa 2802
<210> 14
<211> 1277
<212> DNA
<213> 未知(Unknown)
<400> 14
aagaagattg tgattcgccc gctgccaggt ttaccggtga tccgcgattt ggtggtagac 60
atgggacaat tctatgcgca atatgagaaa attaagcctt acctgttgaa taatggacaa 120
aatccgccag ctcgcgagca tttacagatg ccagagcagc gcgaaaaact cgacgggctg 180
tatgaatgta ttctctgcgc atgttgttca acctcttgtc cgtctttctg gtggaatccc 240
gataagttta tcggcccggc aggcttgtta gcggcatatc gtttcctgat tgatagccgt 300
gataccgaga ctgacagccg cctcgacggt ttgagtgatg cattcagcgt attccgctgt 360
cacagcatca tgaactgcgt cagtgtatgt ccgaaggggc tgaacccgac gcgcgccatc 420
ggccatatca agtcgatgtt gttgcaacgt aatgcgtaaa ccgtaggcct gataagacgc 480
gcaagcgtcg catcaggcaa ccagtgccgg atgcggcgtg aacgccttat ccggcctaca 540
agtcattacc cgtaggcctg ataagcgcag cgcatcaggc gtaacaaaga aatgcaggaa 600
atcttgacaa ttaatcatcc ggctcgtata atgtgtggtc acaaaggaga tatacatgca 660
gaacagcgct ttgaaagcct ggttggactc ttcttacctc tctggcgcaa accagagctg 720
gatagaacag ctctatgaag acttcttaac cgatcctgac tcggttgacg ctaactggcg 780
ttcgacgttc cagcagttac ctggtacggg agtcaaaccg gatcaattcc actctcaaac 840
gcgtgaatat ttccgccgcc tggcgaaaga cgcttcacgt tactcttcaa cgatctccga 900
ccctgacacc aatgtgaagc aggttaaagt cctgcagctc attaacgcat accgcttccg 960
tggtcaccag catgcgaatc tcgatccgct gggactgtgg cagcaagata aagtggccga 1020
tctggatccg tctttccacg atctgaccga agcagacttc caggagacct tcaacgtcgg 1080
ttcatttgcc agcggcaaag aaaccatgaa actcggcgag ctgctggaag ccctcaagca 1140
aacctactgc ggcccgattg gtgccgagta tatgcacatt accagcaccg aagaaaaacg 1200
ctggatccaa cagcgtatcg agtctggtcg cgcgactttc aatagcgaag agaaaaaacg 1260
cttcttaagc gaactga 1277
<210> 15
<211> 930
<212> DNA
<213> 未知(Unknown)
<400> 15
atgccgattc gtgtgccgga cgagctaccc gccgtcaatt tcttgcgtga agaaaacgtc 60
tttgtgatga caacttctcg tgcgtctggt caggaaattc gtccacttaa ggttctgatc 120
cttaacctga tgccgaagaa gattgaaact gaaaatcagt ttctgcgcct gctttcaaac 180
tcacctttgc aggtcgatat tcagctgttg cgcatcgatt cccgtgaatc gcgcaacacg 240
cccgcagagc atctgaacaa cttctactgt aactttgaag atattcagga tcagaacttt 300
gacggtttga ttgtaactgg tgcgccgctg ggcctggtgg agtttaatga tgtcgcttac 360
tggccgcaga tcaaacaggt gctggagtgg tcgaaagatc acgtcacctc gacgctgttt 420
gtctgctggg cggtacaggc cgcgctcaat atcctctacg gcattcctaa gcaaactcgc 480
accgaaaaac tctctggcgt ttacgagcat catattctcc atcctcatgc gcttctgacg 540
cgtggctttg atgattcatt cctggcaccg cattcgcgct atgctgactt tccggcagcg 600
ttgattcgtg attacaccga tctggaaatt ctggcagaga cggaagaagg ggatgcatat 660
ctgtttgcca gtaaagataa gcgcattgcc tttgtgacgg gccatcccga atatgatgcg 720
caaacgctgg cgcaggaatt tttccgcgat gtggaagccg gactagaccc ggatgtaccg 780
tataactatt tcccgcacaa tgatccgcaa aatacaccgc gagcgagctg gcgtagtcac 840
ggtaatttac tgtttaccaa ctggctcaac tattacgtct accagatcac gccatacgat 900
ctacggcaca tgaatccaac gctggattaa 930
<210> 16
<211> 309
<212> PRT
<213> 未知(Unknown)
<400> 16
Met Pro Ile Arg Val Pro Asp Glu Leu Pro Ala Val Asn Phe Leu Arg
1 5 10 15
Glu Glu Asn Val Phe Val Met Thr Thr Ser Arg Ala Ser Gly Gln Glu
20 25 30
Ile Arg Pro Leu Lys Val Leu Ile Leu Asn Leu Met Pro Lys Lys Ile
35 40 45
Glu Thr Glu Asn Gln Phe Leu Arg Leu Leu Ser Asn Ser Pro Leu Gln
50 55 60
Val Asp Ile Gln Leu Leu Arg Ile Asp Ser Arg Glu Ser Arg Asn Thr
65 70 75 80
Pro Ala Glu His Leu Asn Asn Phe Tyr Cys Asn Phe Glu Asp Ile Gln
85 90 95
Asp Gln Asn Phe Asp Gly Leu Ile Val Thr Gly Ala Pro Leu Gly Leu
100 105 110
Val Glu Phe Asn Asp Val Ala Tyr Trp Pro Gln Ile Lys Gln Val Leu
115 120 125
Glu Trp Ser Lys Asp His Val Thr Ser Thr Leu Phe Val Cys Trp Ala
130 135 140
Val Gln Ala Ala Leu Asn Ile Leu Tyr Gly Ile Pro Lys Gln Thr Arg
145 150 155 160
Thr Glu Lys Leu Ser Gly Val Tyr Glu His His Ile Leu His Pro His
165 170 175
Ala Leu Leu Thr Arg Gly Phe Asp Asp Ser Phe Leu Ala Pro His Ser
180 185 190
Arg Tyr Ala Asp Phe Pro Ala Ala Leu Ile Arg Asp Tyr Thr Asp Leu
195 200 205
Glu Ile Leu Ala Glu Thr Glu Glu Gly Asp Ala Tyr Leu Phe Ala Ser
210 215 220
Lys Asp Lys Arg Ile Ala Phe Val Thr Gly His Pro Glu Tyr Asp Ala
225 230 235 240
Gln Thr Leu Ala Gln Glu Phe Phe Arg Asp Val Glu Ala Gly Leu Asp
245 250 255
Pro Asp Val Pro Tyr Asn Tyr Phe Pro His Asn Asp Pro Gln Asn Thr
260 265 270
Pro Arg Ala Ser Trp Arg Ser His Gly Asn Leu Leu Phe Thr Asn Trp
275 280 285
Leu Asn Tyr Tyr Val Tyr Gln Ile Thr Pro Tyr Asp Leu Arg His Met
290 295 300
Asn Pro Thr Leu Asp
305
<210> 17
<211> 1257
<212> DNA
<213> 未知(Unknown)
<400> 17
atgagtggac tcaaacaaga actggggctg gcccagggca ttggcctgct atcgacgtca 60
ttattaggca ctggcgtgtt tgccgttcct gcgttagctg cgctggtagc gggcaataac 120
agcctgtggg cgtggcccgt tttgattatc ttagtgttcc cgattgcgat tgtgtttgcg 180
attctgggtc gccactatcc cagcgcaggc ggcgtcgcgc acttcgtcgg tatggcgttt 240
ggttcgcggc ttgagcgagt caccggctgg ctgtttttat cggtcattcc cgtgggtttg 300
cctgccgcac tacaaattgc cgccgggttc ggccaggcga tgtttggctg gcatagctgg 360
caactgttgt tggcagaact cggtacgctg gcgctggtgt ggtatatcgg tactcgcggt 420
gccagttcca gtgctaatct acaaaccgtt attgccggac ttatcgtcgc gctgattgtc 480
gctatctggt gggcgggcga tatcaaacct gcgaatatcc cctttccggc acctggtaat 540
atcgaactta ccgggttatt tgctgcgtta tcagtgatgt tctggtgttt tgtcggtctg 600
gaggcatttg cccatctcgc ctcggaattt aaaaatccag agcgtgattt tcctcgtgct 660
ttgatgattg gtctgctgct ggcaggatta gtctactggg gctgtacggt agtcgtctta 720
cacttcgacg cctatggtga aaaaatggcg gcggcagcat cgcttccaaa aattgtagtg 780
cagttgttcg gtgtaggagc gttatggatt gcctgcgtga ttggctatct ggcctgcttt 840
gccagtctca acatttatat acagagcttc gcccgcctgg tctggtcgca ggcgcaacat 900
aatcctgacc actacctggc acgcctctct tctcgccata tcccgaataa tgccctcaat 960
gcggtgctcg gctgctgtgt ggtgagcact ttggtgattc atgctttaga gatcaatctg 1020
gacgctctta ttatttatgc caatggcatc tttattatga tttatctgtt atgcatgctg 1080
gcaggctgta aattattgca aggacgttat cgactactgg cggtggttgg cgggctgtta 1140
tgcgttctgt tactggcaat ggtcggctgg aaaagtctct atgcgctgat catgctggcg 1200
gggttatggc tgttgctgcc aaaacgaaaa acgccggaaa atggcataac cacataa 1257
<210> 18
<211> 72
<212> DNA
<213> 未知(Unknown)
<400> 18
ttgacgtcca ttaacacaat gtttactctg gtgcctgaca tttcaccgac aaagcccagg 60
gaacttcatc ac 72
<210> 19
<211> 226
<212> DNA
<213> 未知(Unknown)
<400> 19
ttgacttagg tcactaaata ctttaaccaa tataggcata gcgcacagac agataaaaat 60
tacagagtac acaacatcca tgaaacgcat tagcaccacc attaccacca ccatcaccat 120
taccacaggt aacggtgcgg gctgacgcgt acaggaaaca cagaaaaaag cccgcacctg 180
acagtgcggg cttttttttt cgaccaaagg taacgaggta acaacc 226
<210> 20
<211> 156
<212> DNA
<213> 未知(Unknown)
<400> 20
tttaaaaact gcccctgaca ctaagacagt ttttaaaggt tccttcgcga gccactacgt 60
agacaagagc tcgcaagtga accccggcac gcacatcact gtgcgtggta gtatccacgg 120
cgaagtaagc ataaaaaaga tgcttaaggg atcacg 156
<210> 21
<211> 52
<212> DNA
<213> 未知(Unknown)
<400> 21
ttgacaatta atcatccggc tcgtataatg tgtggtcaca aaggagatat ac 52

Claims (9)

1.一种产O-琥珀酰-L-高丝氨酸的重组大肠杆菌,其特征在于所述重组大肠杆菌是将大肠杆菌中编码L-蛋氨酸运输蛋白的metI基因、编码负调控阻遏因子的metJ基因、编码胱硫醚γ合成酶的metB基因、编码高丝氨酸激酶的thrB基因依次敲除后,再分别将编码高丝氨酸脱氢酶I的thrA基因、编码高丝氨酸脱氢酶II的metL基因和编码α-酮戊二酸脱羧酶的sucA基因的启动子均替换为Ptrc启动子,最后再导入编码高丝氨酸转琥珀酰基酶的metA突变基因和编码L-蛋氨酸外运蛋白的yjeH基因,所述metA突变基因是将metA基因编码蛋白第64位谷氨酸替换为谷氨酰胺获得的。
2.如权利要求1所述产O-琥珀酰-L-高丝氨酸的重组大肠杆菌,其特征在于所述Ptrc启动子核苷酸序列为SEQ ID NO.21所示。
3.如权利要求1所述产O-琥珀酰-L-高丝氨酸的重组大肠杆菌,其特征在于所述metI基因核苷酸序列为SEQ ID NO.1所示、metJ基因核苷酸序列为SEQ ID NO.3所示、metB基因核苷酸序列为SEQ ID NO.5所示、thrB基因核苷酸序列为SEQ ID NO.7所示。
4.如权利要求1所述产O-琥珀酰-L-高丝氨酸的重组大肠杆菌,其特征在于所述yjeH基因核苷酸序列为SEQ ID NO.17所示、metA基因编码蛋白的氨基酸序列为SEQ ID NO.16所示。
5.一种权利要求1所述产O-琥珀酰-L-高丝氨酸的重组大肠杆菌在发酵产O-琥珀酰-L-高丝氨酸中的应用。
6.如权利要求5所述的应用,其特征在于所述应用是将所述的重组大肠杆菌接种至发酵培养基,在30℃、180-200rpm条件下发酵培养,将培养液分离纯化,获得O-琥珀酰-L-高丝氨酸。
7.如权利要求6所述的应用,其特征在于所述发酵培养基终浓度组成为:葡萄糖40/L、磷酸二氢钾2g/L、硫酸铵17g/L、酵母粉4g/L、碳酸钙30g/L、L-苏氨酸0.2g/L、L-蛋氨酸0.2g/L、L-异亮氨酸0.2g/L、维生素B1 0.0001g/L、MgSO4 2g/L、FeSO4 0.005g/L、MnSO40.005g/L、ZnSO4 0.005g/L,溶剂为去离子水,pH值6.8。
8.如权利要求6所述的应用,其特征在于所述发酵培养前先进行斜面活化和种子培养,将种子液以体积浓度5-10%的接种量接种至发酵培养基,所述斜面活化方法为:将重组大肠杆菌接种在LB平板上,在37℃培养过夜,获得斜面菌体;所述种子培养方法为:挑取斜面菌体单菌落接种至LB培养基中,在37℃、200rpm的条件下培养过夜,获得种子液。
9.如权利要求6所述的应用,其特征在于所述发酵培养在发酵罐中进行,通过添加补料培养基控制发酵罐中葡萄糖浓度2-10g/L;发酵条件为DO水平在30%,搅拌转速200-600rpm,通气速率控制在1-2vvm;发酵过程中控制培养温度在30℃并用50%的氨水调节pH6.8~7.0;发酵罐中发酵培养基组成:葡萄糖40g/L、磷酸二氢钾2g/L、硫酸铵17g/L、酵母粉4g/L、L-苏氨酸0.2g/L、L-蛋氨酸0.2g/L、L-异亮氨酸0.2g/L、MgSO4 2g/L、FeSO4 0.005g/L、MnSO4 0.005g/L、ZnSO4 0.005g/L、维生素B1 0.0001g/L,溶剂为去离子水,pH值6.8;补料培养基组成:葡萄糖500g/L、磷酸二氢钾12.5g/L、L-苏氨酸2g/L、L-蛋氨酸2g/L、L-异亮氨酸2g/L,溶剂为去离子水。
CN201810845460.2A 2018-07-27 2018-07-27 一种产o-琥珀酰-l-高丝氨酸重组大肠杆菌及其应用 Active CN108949661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810845460.2A CN108949661B (zh) 2018-07-27 2018-07-27 一种产o-琥珀酰-l-高丝氨酸重组大肠杆菌及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810845460.2A CN108949661B (zh) 2018-07-27 2018-07-27 一种产o-琥珀酰-l-高丝氨酸重组大肠杆菌及其应用

Publications (2)

Publication Number Publication Date
CN108949661A true CN108949661A (zh) 2018-12-07
CN108949661B CN108949661B (zh) 2021-06-08

Family

ID=64465898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810845460.2A Active CN108949661B (zh) 2018-07-27 2018-07-27 一种产o-琥珀酰-l-高丝氨酸重组大肠杆菌及其应用

Country Status (1)

Country Link
CN (1) CN108949661B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109929791A (zh) * 2019-04-15 2019-06-25 扬州日兴生物科技股份有限公司 一种积累氨基葡萄糖的重组大肠杆菌及其应用
CN112063572A (zh) * 2020-09-22 2020-12-11 浙江工业大学 一种高产o-乙酰-l-高丝氨酸的重组大肠杆菌及其应用
CN112094872A (zh) * 2020-09-22 2020-12-18 浙江工业大学 一种产o-乙酰l-高丝氨酸菌株发酵方法
CN112725251A (zh) * 2019-10-14 2021-04-30 江南大学 一种生产亚精胺的工程菌
CN113388564A (zh) * 2021-06-04 2021-09-14 浙江工业大学 一种o-乙酰-l-高丝氨酸生产菌、构建方法及应用
CN115521954A (zh) * 2022-10-09 2022-12-27 南京盛德生物科技研究院有限公司 一种高丝氨酸的发酵生产工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705636A (zh) * 2013-10-23 2016-06-22 Cj第制糖株式会社 生产o-琥珀酰高丝氨酸的微生物和使用其生产o-琥珀酰高丝氨酸的方法
CN105705635A (zh) * 2013-10-23 2016-06-22 Cj第制糖株式会社 生产o-琥珀酰高丝氨酸的微生物和使用其生产o-琥珀酰高丝氨酸的方法
CN105829529A (zh) * 2013-10-23 2016-08-03 Cj第制糖株式会社 生产o-琥珀酰高丝氨酸的微生物和通过使用其生产o-琥珀酰高丝氨酸的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705636A (zh) * 2013-10-23 2016-06-22 Cj第制糖株式会社 生产o-琥珀酰高丝氨酸的微生物和使用其生产o-琥珀酰高丝氨酸的方法
CN105705635A (zh) * 2013-10-23 2016-06-22 Cj第制糖株式会社 生产o-琥珀酰高丝氨酸的微生物和使用其生产o-琥珀酰高丝氨酸的方法
CN105829529A (zh) * 2013-10-23 2016-08-03 Cj第制糖株式会社 生产o-琥珀酰高丝氨酸的微生物和通过使用其生产o-琥珀酰高丝氨酸的方法
CN110468168A (zh) * 2013-10-23 2019-11-19 Cj第一制糖株式会社 生产o-琥珀酰高丝氨酸的微生物和使用其生产o-琥珀酰高丝氨酸的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. LI等: "Metabolic engineering of Escherichia coli W3110 for L-homoserine production", 《PROCESS BIOCHEM》 *
JIAN-FENG HUANG等: "Metabolic engineering of E. coli for the production of O-succinyl-lhomoserine with high yield", 《3 BIOTECH》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109929791A (zh) * 2019-04-15 2019-06-25 扬州日兴生物科技股份有限公司 一种积累氨基葡萄糖的重组大肠杆菌及其应用
CN112725251A (zh) * 2019-10-14 2021-04-30 江南大学 一种生产亚精胺的工程菌
CN112725251B (zh) * 2019-10-14 2022-07-22 江南大学 一种生产亚精胺的工程菌
CN112063572A (zh) * 2020-09-22 2020-12-11 浙江工业大学 一种高产o-乙酰-l-高丝氨酸的重组大肠杆菌及其应用
CN112094872A (zh) * 2020-09-22 2020-12-18 浙江工业大学 一种产o-乙酰l-高丝氨酸菌株发酵方法
CN113388564A (zh) * 2021-06-04 2021-09-14 浙江工业大学 一种o-乙酰-l-高丝氨酸生产菌、构建方法及应用
CN115521954A (zh) * 2022-10-09 2022-12-27 南京盛德生物科技研究院有限公司 一种高丝氨酸的发酵生产工艺
CN115521954B (zh) * 2022-10-09 2024-04-26 南京盛德生物科技研究院有限公司 一种高丝氨酸的发酵生产工艺

Also Published As

Publication number Publication date
CN108949661B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
CN108949661A (zh) 一种产o-琥珀酰-l-高丝氨酸重组大肠杆菌及其应用
CN109055290B (zh) 一种高产l-高丝氨酸的重组大肠杆菌及其应用
CN103492553B (zh) 用于生产尸胺的方法和重组微生物
JP5486029B2 (ja) 遺伝子増幅によるリジン産生の増加
CN104812906B (zh) 使用改良的肠杆菌科菌株发酵产生l-氨基酸的方法
CN101230355A (zh) 通过发酵制备精细化学品的方法
RU2671106C1 (ru) Микроорганизм рода Corynebacterium для продуцирования L-аргинина и способ получения L-аргинина с использованием этого микроорганизма
SK285870B6 (sk) Spôsob mikrobiálnej prípravy L-valínu a transformovaný mikroorganizmus
KR102074841B1 (ko) 피드백-내성 알파-이소프로필말레이트 신타제
SK15292000A3 (sk) Nukleotidové sekvencie kódujúce gén pck a spôsoby fermentačnej výroby l-aminokyselín
CN109055289B (zh) 一种高产l-甲硫氨酸的重组大肠杆菌及其应用
SK10142000A3 (sk) Coryneformné baktérie produkujúce l-lyzín a spôsob prípravy l-lyzínu
CN114958888A (zh) 一种缬氨酸生产菌及其构建方法
BR112019019376B1 (pt) microorganismo do gênero corynebacterium que produz l-aminoácidos e método para produzir l-aminoácidos com o uso do mesmo
CN105849249A (zh) 具有增强的l-赖氨酸生产能力的棒杆菌属物种的微生物及使用其生产l-赖氨酸的方法
CN1298019A (zh) 编码基因sucC和sucD的新核苷酸序列
CN1367823A (zh) 氨基酸生产的代谢工程
CN109722459B (zh) 一种5-氨基乙酰丙酸高产菌株及其制备方法与应用
WO2002074944A1 (en) Process for the preparation of l-amino acids by using coryneform bacteria
ES2344248T3 (es) Secuencias de nucleotidos que codifican el gen dapc, y procedimiento para la preparacion de l-lisina.
CN111286520B (zh) 用于发酵生产l-赖氨酸的重组dna、菌株及其应用
CN111763699B (zh) 用于发酵生产1,5-戊二胺的重组dna、菌株及其应用
KR20080006799A (ko) 역가가 향상된 유전자 argF 염기서열 및 그를 포함하는형질전환 균주를 이용한 L―알지닌의 생산방법
CN114426983B (zh) 敲除谷氨酸棒杆菌中转录调控因子Ncgl0580生产5-氨基乙酰丙酸的方法
US7160703B2 (en) Nucleotide sequences coding for the PtsI protein

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant