CN108809271B - ALC circuit and radio frequency signal source - Google Patents
ALC circuit and radio frequency signal source Download PDFInfo
- Publication number
- CN108809271B CN108809271B CN201710301334.6A CN201710301334A CN108809271B CN 108809271 B CN108809271 B CN 108809271B CN 201710301334 A CN201710301334 A CN 201710301334A CN 108809271 B CN108809271 B CN 108809271B
- Authority
- CN
- China
- Prior art keywords
- radio frequency
- temperature
- voltage
- module
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 44
- 238000012545 processing Methods 0.000 claims abstract description 25
- 230000008859 change Effects 0.000 claims description 49
- 230000003321 amplification Effects 0.000 claims description 36
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 36
- 238000001514 detection method Methods 0.000 claims description 14
- 230000010354 integration Effects 0.000 claims description 10
- 230000002238 attenuated effect Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 230000006872 improvement Effects 0.000 description 9
- 230000009466 transformation Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/38—One-way transmission networks, i.e. unilines
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3036—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
- H03G3/3042—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/24—Frequency-independent attenuators
Landscapes
- Amplifiers (AREA)
Abstract
本发明提供一种ALC电路以及射频信号源,所述ALC电路包括输入端口、与所述输入端口相连接的射频链路、与所述射频链路相连接的反馈环路以及输出端口,所述射频链路包括与所述输入端口相连接的可变衰减器、与所述可变衰减器相连接的第一射频放大器、与所述第一射频放大器相连接的温度补偿模块、与所述温度补偿模块相连接的第二射频放大器、与所述第二射频放大器相连接的功率分配器;所述反馈环路包括与所述功率分配器相连接的检波器、与所述检波器相连接的数字采集模块、与所述数字采集模块相连接的数字处理模块、与所述数字处理模块相连接的数模转化模块。本发明降低了温度对射频链路增益的影响,进而能够节约校准时间,提高生产效率。
The present invention provides an ALC circuit and a radio frequency signal source. The ALC circuit includes an input port, a radio frequency link connected to the input port, a feedback loop connected to the radio frequency link, and an output port. The radio frequency link includes a variable attenuator connected to the input port, a first radio frequency amplifier connected to the variable attenuator, a temperature compensation module connected to the first radio frequency amplifier, and the temperature compensation module a second radio frequency amplifier connected to the compensation module, and a power divider connected to the second radio frequency amplifier; the feedback loop includes a detector connected to the power divider, and a detector connected to the detector. A digital acquisition module, a digital processing module connected to the digital acquisition module, and a digital-to-analog conversion module connected to the digital processing module. The invention reduces the impact of temperature on the radio frequency link gain, thereby saving calibration time and improving production efficiency.
Description
技术领域Technical field
本发明关于微波射频技术领域,特别是关于微波射频领域的通用仪器,具体的讲是一种ALC电路以及射频信号源。The present invention relates to the field of microwave radio frequency technology, and in particular to general instruments in the field of microwave radio frequency. Specifically, it relates to an ALC circuit and a radio frequency signal source.
背景技术Background technique
射频信号源是微波射频领域的通用仪器,可以提供稳定输出的特定射频信号。广泛应用于科研、教育、工业等各领域。射频信号源最主要的两个主要指标是频率范围以及幅度动态。幅度方面主要指标包括幅度精度、最小幅度步进以及动态范围。自动电平控制ALC电路是实现幅度控制部分主要电路。RF signal source is a general instrument in the field of microwave RF, which can provide stable output of specific RF signals. It is widely used in scientific research, education, industry and other fields. The two most important main indicators of an RF signal source are frequency range and amplitude dynamics. The main indicators of amplitude include amplitude accuracy, minimum amplitude step and dynamic range. The automatic level control ALC circuit is the main circuit that realizes the amplitude control part.
射频信号源要输出准确幅度的射频信号,就需要稳幅装置。传统方法是使用模拟ALC环路,模拟ALC环路具体实现如图1所示,射频输入信号经过可变衰减单元送给后级放大电路输出,在输出端使用功率分配分路一小部分信号,通过检波单元电路将幅度信号转换为电压信号,该电压信号经过变换1(如对数放大)与参考电压值比较经过积分累加电路输出,经变换2控制射频链路中可变衰减电路。To output an RF signal of accurate amplitude, an RF signal source requires an amplitude stabilizing device. The traditional method is to use an analog ALC loop. The specific implementation of the analog ALC loop is shown in Figure 1. The RF input signal is sent to the output of the subsequent amplifier circuit through the variable attenuation unit, and a small part of the signal is split using power distribution at the output end. The amplitude signal is converted into a voltage signal through the detection unit circuit. The voltage signal is compared with the reference voltage value through transformation 1 (such as logarithmic amplification) and output through the integral accumulation circuit. After transformation 2, the variable attenuation circuit in the radio frequency link is controlled.
随着数字处理能力的提高,数字电路的稳定性可以降低模拟变换的难度,提高环路的稳定性,数字ALC实现框图如图2所示。射频信号(RF_in)经过可调衰减器、射频放大器和定向耦合器输出;同时,定向耦合器按固定比例将部分射频信号耦合至检波器输入端。检波器输出信号直接使用ADC数字化,进入FPGA。处理器对检波信号进行处理后直接产生可调衰减器的控制信号(数字形式),通过DAC转化为模拟信号后控制可调衰减器,实现自动电平控制功能。匹配电阻为配合定向耦合器使用。With the improvement of digital processing capabilities, the stability of digital circuits can reduce the difficulty of analog conversion and improve the stability of the loop. The digital ALC implementation block diagram is shown in Figure 2. The RF signal (RF_in) is output through an adjustable attenuator, RF amplifier and directional coupler; at the same time, the directional coupler couples part of the RF signal to the detector input in a fixed ratio. The detector output signal is directly digitized using the ADC and entered into the FPGA. The processor directly generates the control signal (digital form) of the adjustable attenuator after processing the detection signal, and then converts it into an analog signal through the DAC to control the adjustable attenuator to realize the automatic level control function. Matching resistors are used with directional couplers.
图2中的处理器的内部结构框图如图3所示,将ADC采样的电压值与零点值101(没有RF信号输入时ADC采样电压)相减,送到后级对数放大器模块102经过线性放大单元103与参考DAC 104比较输出误差与预置电压(预置电压作用提供衰减曲线的预置初始电压,提高ALC环路稳定时间。最后图7部分已简单介绍。)累加器105相加,经过输出级电压转换106控制DAC器件,电压转换106部分变换的作用是拟合衰减单元的衰减曲线。使其输入端为线性。线性曲线容易控制衰减量以及后继功能扩展,进而改变可变衰减器的控制电压或电流。The internal structural block diagram of the processor in Figure 2 is shown in Figure 3. The voltage value sampled by the ADC is subtracted from the zero point value 101 (the ADC sampled voltage when there is no RF signal input), and is sent to the post-stage logarithmic amplifier module 102 through linear The amplification unit 103 compares the output error with the reference DAC 104 and the preset voltage (the preset voltage acts to provide the preset initial voltage of the attenuation curve and improves the ALC loop stabilization time. The last part of Figure 7 has been briefly introduced.) The accumulator 105 adds, The DAC device is controlled through the output stage voltage conversion 106, and the function of the partial conversion of the voltage conversion 106 is to fit the attenuation curve of the attenuation unit. Make its input linear. The linear curve makes it easy to control the attenuation and subsequent function expansion, thereby changing the control voltage or current of the variable attenuator.
数字方案中温度补偿是在对数放大102模块中实现,极大改善温度对ALC环路的影响。该方案在ALC ON状态下是可行的,温度补偿可以降低其ALC on状态下的温度对幅度的影响。但是该方案实施过程中需要对温度变化对ALC环路影响进行校准,该环节时间比较长,效率低下。此外,ALC模块电路中还存在ALC OFF状态,该方案中不能解决在ALC OFF状态下的温度变化对幅度的影响。In the digital solution, temperature compensation is implemented in the logarithmic amplification 102 module, which greatly improves the impact of temperature on the ALC loop. This solution is feasible in the ALC ON state, and temperature compensation can reduce the impact of temperature on the amplitude in the ALC on state. However, during the implementation of this solution, the impact of temperature changes on the ALC loop needs to be calibrated, which takes a long time and is inefficient. In addition, the ALC OFF state also exists in the ALC module circuit, and the impact of temperature changes on the amplitude in the ALC OFF state cannot be solved in this solution.
发明内容Contents of the invention
为了克服现有技术存在的上述缺陷,本发明提供了一种ALC电路以及射频信号源,通过在射频链路中增加温度补偿模块,降低了温度对射频链路增益的影响,进而能够节约校准时间,提高生产效率。In order to overcome the above-mentioned defects of the existing technology, the present invention provides an ALC circuit and a radio frequency signal source. By adding a temperature compensation module in the radio frequency link, the impact of temperature on the gain of the radio frequency link is reduced, thereby saving calibration time. ,Increase productivity.
本发明的目的之一是,提供一种ALC电路,所述ALC电路包括输入端口、与所述输入端口相连接的射频链路、与所述射频链路相连接的反馈环路以及输出端口;One object of the present invention is to provide an ALC circuit, which includes an input port, a radio frequency link connected to the input port, a feedback loop connected to the radio frequency link, and an output port;
其中,所述输入端口,用于输入一射频信号;Wherein, the input port is used to input a radio frequency signal;
所述射频链路包括:The radio frequency link includes:
与所述输入端口相连接的可变衰减器,用于对所述射频信号进行衰减处理;A variable attenuator connected to the input port, used to attenuate the radio frequency signal;
与所述可变衰减器相连接的第一射频放大器,用于对衰减处理后的射频信号进行放大处理;A first radio frequency amplifier connected to the variable attenuator, used to amplify the attenuated radio frequency signal;
与所述第一射频放大器相连接的温度补偿模块,用于对放大处理后的射频信号进行温度补偿;a temperature compensation module connected to the first radio frequency amplifier, used for temperature compensation of the amplified radio frequency signal;
与所述温度补偿模块相连接的第二射频放大器,用于对温度补偿后的射频信号进行放大处理;a second radio frequency amplifier connected to the temperature compensation module, used to amplify the temperature compensated radio frequency signal;
与所述第二射频放大器相连接的功率分配器,用于将放大处理后的射频信号通过所述输出端口输出,并将所述射频信号按照预先设定的比例值输出一耦合射频信号;A power divider connected to the second radio frequency amplifier, used to output the amplified radio frequency signal through the output port, and output a coupled radio frequency signal according to a preset proportional value of the radio frequency signal;
所述反馈环路包括:The feedback loop includes:
与所述功率分配器相连接的检波器,用于将所述耦合射频信号转化为对应的电压信号;A detector connected to the power divider, used to convert the coupled radio frequency signal into a corresponding voltage signal;
与所述检波器相连接的数字采集模块,用于采集所述电压信号;a digital acquisition module connected to the detector, used to acquire the voltage signal;
与所述数字采集模块相连接的数字处理模块,用于根据所述电压信号拟合输出一控制信号;a digital processing module connected to the digital acquisition module, configured to output a control signal according to the voltage signal fitting;
与所述数字处理模块相连接的数模转化模块,用于对所述控制信号进行数模准换后输出至所述可变衰减器,以控制所述可变衰减器。A digital-to-analog conversion module connected to the digital processing module is used to perform digital-to-analog conversion on the control signal and then output it to the variable attenuator to control the variable attenuator.
在本发明的优选实施方式中,所述温度补偿模块为温度补偿衰减器或使用逆向热敏电阻构建的pi网衰减器。In a preferred embodiment of the present invention, the temperature compensation module is a temperature compensation attenuator or a pi-net attenuator constructed using an inverse thermistor.
在本发明的优选实施方式中,所述ALC电路还包括匹配电阻,与所述功率分配器相连接。In a preferred embodiment of the present invention, the ALC circuit further includes a matching resistor connected to the power divider.
在本发明的优选实施方式中,所述检波器还包括第一温度传感器,用于采集所述检波器的温度数据,称为第一温度数据。In a preferred embodiment of the present invention, the detector further includes a first temperature sensor for collecting temperature data of the detector, which is called first temperature data.
在本发明的优选实施方式中,所述数字采集模块还包括第二温度传感器,用于采集所述数字采集模块的温度数据,称为第二温度数据。In a preferred embodiment of the present invention, the digital acquisition module further includes a second temperature sensor for collecting temperature data of the digital acquisition module, which is called second temperature data.
在本发明的优选实施方式中,所述数字处理模块包括:与所述数字采集模块相连接的对数放大器,用于对所述电压信号进行对数放大处理;In a preferred embodiment of the present invention, the digital processing module includes: a logarithmic amplifier connected to the digital acquisition module, used to perform logarithmic amplification processing on the voltage signal;
与所述对数放大器相连接的线性放大单元,用于对对数放大处理后的电压信号进行线性放大;A linear amplification unit connected to the logarithmic amplifier, used to linearly amplify the voltage signal after logarithmic amplification;
与所述线性放大模块相连接的积分单元,用于对所述线性放大后的电压信号进行积分处理,并将积分处理后的电压信号通过与所述积分单元相连接的环路状态控制模块发送至与所述环路状态控制模块相连接的后级累加器;The integrating unit connected to the linear amplification module is used to integrate the linearly amplified voltage signal, and send the integrated voltage signal through the loop state control module connected to the integrating unit. To the downstream accumulator connected to the loop state control module;
所述后级累加器,用于将预先设定的预置电压、所述积分处理后的电压信号、所述第一温度数据以及所述第二温度数据对应的电压变化量进行累加,得到累加值;The post-stage accumulator is used to accumulate the voltage changes corresponding to the preset preset voltage, the voltage signal after integration processing, the first temperature data and the second temperature data, to obtain an accumulated value. value;
与所述后级累加器相连接的电压变换单元,用于对所述累加值进行电压变化,得到控制信号。A voltage conversion unit connected to the downstream accumulator is used to change the voltage of the accumulated value to obtain a control signal.
在本发明的优选实施方式中,所述对数放大器包括第一预先开关;In a preferred embodiment of the invention, the logarithmic amplifier includes a first pre-switch;
第二预选开关;second preselector switch;
线性放大单元;linear amplification unit;
与所述线性放大单元并联的减法器以及对数放大变换单元,所述减法器与所述对数放大变换单元串联;A subtractor and a logarithmic amplification conversion unit connected in parallel with the linear amplification unit, the subtractor and the logarithmic amplification conversion unit being connected in series;
与所述减法器相连接的参考值输入单元。A reference value input unit connected to the subtractor.
在本发明的优选实施方式中,所述积分单元包括积分器以及与上述积分器相连接的变化系数输出单元。In a preferred embodiment of the present invention, the integrating unit includes an integrator and a variation coefficient output unit connected to the integrator.
在本发明的优选实施方式中,所述后级累加器包括:In a preferred embodiment of the present invention, the subsequent accumulator includes:
第一温度补偿变换单元,用于接收所述第一温度数据,根据所述第一温度数据确定出第一温度变化量,根据预先存储的所述检波器的温度漂移指数、检波斜率以及衰减斜率曲线,结合所述第一温度变化量计算出第一电压变化量;A first temperature compensation conversion unit, configured to receive the first temperature data, determine the first temperature change amount according to the first temperature data, and determine the first temperature change amount according to the pre-stored temperature drift index, detection slope and attenuation slope of the detector. Curve, combined with the first temperature change, the first voltage change is calculated;
第二温度补偿变换单元,用于接收所述第二温度数据,根据所述第二温度数据确定出第二温度变化量,根据预先存储的所述数字采集模块的温度漂移系数,结合所述第二温度变化量计算出第二电压变化量;A second temperature compensation conversion unit is configured to receive the second temperature data, determine a second temperature change amount according to the second temperature data, and combine the second temperature change amount with the pre-stored temperature drift coefficient of the digital acquisition module. The second temperature change is used to calculate the second voltage change;
预置电压输入单元,用于存储预先设定的预置电压;Preset voltage input unit, used to store preset preset voltage;
累加器,分别与所述预置电压输入单元、第一温度补偿变换单元、第二温度补偿变换单元以及环路状态控制单元相连接,用于将所述预置电压、所述第一电压变化量、所述第二电压变化量以及所述环路状态控制单元输出的电压信号进行累加,得到累加值。Accumulator, respectively connected to the preset voltage input unit, the first temperature compensation conversion unit, the second temperature compensation conversion unit and the loop state control unit, for converting the preset voltage, the first voltage change The amount, the second voltage change amount and the voltage signal output by the loop state control unit are accumulated to obtain an accumulated value.
本发明的目的之一是,提供了一种射频信号源,所述射频信号源包括射频信号源本体以及ALC电路。One object of the present invention is to provide a radio frequency signal source, which includes a radio frequency signal source body and an ALC circuit.
本发明的有益效果在于,提供了一种ALC电路以及射频信号源,通过在射频链路中增加温度补偿模块,在检波器、数字采集模块中增加温度传感器以进行温度监测,通过器件的温度特性实时补偿温度引起的误差,降低了温度对射频链路增益的影响,进而能够节约校准时间,提高生产效率,降低环路在ALC OFF状态下的温度幅度的影响。The beneficial effect of the present invention is to provide an ALC circuit and a radio frequency signal source. By adding a temperature compensation module to the radio frequency link and adding a temperature sensor to the detector and digital acquisition module for temperature monitoring, the temperature characteristics of the device can be used to monitor the temperature. Real-time compensation for errors caused by temperature reduces the impact of temperature on the RF link gain, thereby saving calibration time, improving production efficiency, and reducing the impact of the temperature amplitude of the loop in the ALC OFF state.
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more clearly understood, preferred embodiments are described in detail below along with the accompanying drawings.
附图说明Description of the drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1为现有技术中的模拟ALC的结构示意图;Figure 1 is a schematic structural diagram of an analog ALC in the prior art;
图2为现有技术中的数字ALC环路的结构示意图;Figure 2 is a schematic structural diagram of a digital ALC loop in the prior art;
图3为现有技术中的数字ALC的内部结构示意图;Figure 3 is a schematic diagram of the internal structure of a digital ALC in the prior art;
图4为本发明实施例提供的一种射频信号源的结构示意图;Figure 4 is a schematic structural diagram of a radio frequency signal source provided by an embodiment of the present invention;
图5为本发明实施例提供的一种ALC电路的结构示意图;Figure 5 is a schematic structural diagram of an ALC circuit provided by an embodiment of the present invention;
图6为本发明实施例提供的一种ALC电路中数字处理模块的结构示意;Figure 6 is a schematic structural diagram of a digital processing module in an ALC circuit provided by an embodiment of the present invention;
图7为射频放大器的高低温情况下器件的增益曲线示意图;Figure 7 is a schematic diagram of the gain curve of the device under high and low temperature conditions of the radio frequency amplifier;
图8为温度补偿衰减器的衰减曲线示意图。Figure 8 is a schematic diagram of the attenuation curve of the temperature compensation attenuator.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
下面参考本发明的若干代表性实施方式,详细阐释本发明的原理和精神。The principle and spirit of the present invention will be explained in detail below with reference to several representative embodiments of the present invention.
本发明针对现有技术中的数字ALC环路的温度补偿由于是在对数放大模块中实现的,因此不能解决在ALC OFF状态下的温度变化对幅度的影响,提出了一种ALC电路以及射频信号源。In view of the fact that the temperature compensation of the digital ALC loop in the prior art is implemented in the logarithmic amplification module, it cannot solve the impact of the temperature change on the amplitude in the ALC OFF state, and proposes an ALC circuit and a radio frequency signal source.
图4为本发明实施例提供的一种射频信号源的结构框图,请参阅图4,所述射频信号源包括射频信号源本体100以及ALC电路200。FIG. 4 is a structural block diagram of a radio frequency signal source provided by an embodiment of the present invention. Please refer to FIG. 4 . The radio frequency signal source includes a radio frequency signal source body 100 and an ALC circuit 200 .
图5为本发明实施例提供的一种ALC电路的结构示意图,请参阅图5,所述ALC电路包括输入端口、与所述输入端口相连接的射频链路、与所述射频链路相连接的反馈环路以及输出端口。Figure 5 is a schematic structural diagram of an ALC circuit provided by an embodiment of the present invention. Please refer to Figure 5. The ALC circuit includes an input port, a radio frequency link connected to the input port, and a radio frequency link connected to the feedback loop and output port.
其中,所述输入端口(即图5中的IN),用于输入一射频信号;Wherein, the input port (i.e. IN in Figure 5) is used to input a radio frequency signal;
所述射频链路包括:The radio frequency link includes:
与所述输入端口相连接的可变衰减器201,用于对所述射频信号进行衰减处理;A variable attenuator 201 connected to the input port is used to attenuate the radio frequency signal;
与所述可变衰减器相连接的第一射频放大器202,用于对衰减处理后的射频信号进行放大处理;The first radio frequency amplifier 202 connected to the variable attenuator is used to amplify the attenuated radio frequency signal;
与所述第一射频放大器相连接的温度补偿模块203,用于对放大处理后的射频信号进行温度补偿。在具体的实施方式中,温度补偿模块为温度补偿衰减器或者使用逆向热敏电阻搭建的pi网衰减器。The temperature compensation module 203 connected to the first radio frequency amplifier is used to perform temperature compensation on the amplified radio frequency signal. In a specific implementation, the temperature compensation module is a temperature compensation attenuator or a pi network attenuator built using an inverse thermistor.
与所述温度补偿模块相连接的第二射频放大器204,用于对温度补偿后的射频信号进行放大处理;The second radio frequency amplifier 204 connected to the temperature compensation module is used to amplify the temperature compensated radio frequency signal;
在本发明的其他实施方式中,射频放大器的个数还可以为多个,如大于两个,设置在可变衰减器201与温度补偿模块203之间以及温度补偿模块203与功率分配器205之间。In other embodiments of the present invention, the number of radio frequency amplifiers can also be multiple, such as more than two, and they are arranged between the variable attenuator 201 and the temperature compensation module 203 and between the temperature compensation module 203 and the power divider 205 between.
与所述第二射频放大器相连接的功率分配器205,用于将放大处理后的射频信号通过所述输出端口(即图5中的OUT)输出,并将所述射频信号按照预先设定的比例值输出一耦合射频信号。The power divider 205 connected to the second radio frequency amplifier is used to output the amplified radio frequency signal through the output port (ie, OUT in Figure 5), and distribute the radio frequency signal according to the preset The proportional value outputs a coupled radio frequency signal.
在具体的实施方式中,预先设定一比例值,该比例值诸如介于1%至2%之间,该比例值的具体含义为:耦合出该比例值的部分射频信号输入至反馈环路,该部分射频信号占总总射频信号的比重为该比例值,将该部分射频信号成为耦合射频信号。在实际的使用过程中,该比例值可参考检波器206的灵敏度进行设置。In a specific implementation, a proportional value is preset, such as between 1% and 2%. The specific meaning of the proportional value is: a part of the radio frequency signal coupled out of the proportional value is input to the feedback loop. , the proportion of this part of the radio frequency signal to the total total radio frequency signal is this proportional value, and this part of the radio frequency signal becomes a coupled radio frequency signal. In actual use, the ratio value can be set with reference to the sensitivity of the detector 206 .
所述反馈环路包括:The feedback loop includes:
与所述功率分配器相连接的检波器206,用于将所述耦合射频信号转化为对应的电压信号;A detector 206 connected to the power divider is used to convert the coupled radio frequency signal into a corresponding voltage signal;
与所述检波器相连接的数字采集模块ADC207,用于采集所述电压信号;The digital acquisition module ADC207 connected to the detector is used to collect the voltage signal;
与所述数字采集模块相连接的数字处理模块FPGA208,用于根据所述电压信号拟合输出一控制信号;The digital processing module FPGA208 connected to the digital acquisition module is used to output a control signal according to the voltage signal fitting;
与所述数字处理模块相连接的数模转化模块DAC209,用于对所述控制信号进行数模准换后输出至所述可变衰减器,以控制所述可变衰减器。The digital-to-analog conversion module DAC209 connected to the digital processing module is used to perform digital-to-analog conversion on the control signal and then output it to the variable attenuator to control the variable attenuator.
本发明在射频链路中增加温度补偿模块,参加逆向补偿链路中温度变化曲线。ALC环路内射频链路上器件受温度影响变化明显的主要是射频放大器。常见射频放大器的增益会随着温度升高而减小,而温度补偿电路的差损温度特性随着温度升高损耗减小。The present invention adds a temperature compensation module to the radio frequency link and participates in the temperature change curve in the reverse compensation link. The components on the RF link in the ALC loop that change significantly due to temperature are mainly RF amplifiers. The gain of common RF amplifiers decreases as the temperature increases, while the differential loss temperature characteristics of the temperature compensation circuit decreases as the temperature increases.
举例说明:使用温度补偿衰减器优化温度对主干路的影响。常见放大器器件增益温度变化系数(Gain Varition Over Temperature)为(A)dB/℃,即放大器在特定温度下的增益为:Example: Use a temperature compensation attenuator to optimize the impact of temperature on the trunk line. The gain variation coefficient (Gain Variation Over Temperature) of common amplifier devices is (A)dB/℃, that is, the gain of the amplifier at a specific temperature is:
Gain_T=[Gain-A*(T-T0)]dB (公式1)Gain_T=[Gain-A*(T-T0)]dB (Formula 1)
其中,Gain_T为T温度时放大器件的增益;Among them, Gain_T is the gain of the amplifier device at T temperature;
T为实时温度;T is the real-time temperature;
A为放大器件增益温度系数(常见系数为0.015dB/℃);A is the gain temperature coefficient of the amplifier device (a common coefficient is 0.015dB/℃);
T0为常温,通常为25℃。T0 is normal temperature, usually 25℃.
常见放大芯片会给出高低温情况下器件的增益曲线如图7所示。Common amplification chips will give the gain curve of the device under high and low temperature conditions, as shown in Figure 7.
温补衰减器的衰减曲线是相反的,即温度高时候衰减器的衰减量变小,使用公式标示如下:The attenuation curve of the temperature compensation attenuator is opposite, that is, when the temperature is high, the attenuation of the attenuator becomes smaller. The formula is marked as follows:
Att_T(dB)=Att(dB)-B*(T-T0) (公式2)Att_T(dB)=Att(dB)-B*(T-T0) (Formula 2)
其中,Att_T表示T温度下衰减器的衰减量;Among them, Att_T represents the attenuation of the attenuator at T temperature;
Att表示常温衰减量;Att represents the attenuation at normal temperature;
B为温度变化系数(常见为0.003~0.01dB/℃区间);B is the temperature change coefficient (commonly in the range of 0.003~0.01dB/℃);
T0为常温,通常为25℃。T0 is normal temperature, usually 25℃.
常见温度补偿衰减器203(热敏电阻搭建)的衰减曲线如图8所示。The attenuation curve of a common temperature compensation attenuator 203 (built with a thermistor) is shown in Figure 8.
硬件补偿后的链路增益Link gain after hardware compensation
Gain=[G1-A1*(T-T0)]+[G2-A2*(T-T0)]-ATT_VVA-[Att-B*(T-T0)]-IL_coupler=G1+G2-ATT_VVA-Att-IL_coupler+(B-A1-A2)*(T-T0) (公式3)Gain=[G1-A1*(T-T0)]+[G2-A2*(T-T0)]-ATT_VVA-[Att-B*(T-T0)]-IL_coupler=G1+G2-ATT_VVA-Att- IL_coupler+(B-A1-A2)*(T-T0) (Formula 3)
其中,G1A1表示第一射频放大器202的增益及增益温度系数;Among them, G1A1 represents the gain and gain temperature coefficient of the first radio frequency amplifier 202;
G2A2表示第二射频放大器204的增益及增益温度系数;G2A2 represents the gain and gain temperature coefficient of the second radio frequency amplifier 204;
Att B表示温度补偿模块203的衰减量及温度系数;Att B represents the attenuation and temperature coefficient of the temperature compensation module 203;
ATT_VVA为可变衰减器201的衰减量;ATT_VVA is the attenuation of the variable attenuator 201;
IL_coupler为功率分配器205的差损。IL_coupler is the differential loss of the power divider 205 .
由公式3可以看出,平衡好B与A1、A2之间的关系可以消除温度对射频链路的影响。It can be seen from Equation 3 that balancing the relationship between B, A1, and A2 can eliminate the impact of temperature on the RF link.
如上所述即为本发明实施例提供的一种ALC电路,射频信号从IN端口输入,经过可变衰减器201、温度补偿模块203、射频放大器202/204以及功率分配器205到达OUT输出端,同时功率分配器205会根据模预先设定的比例值耦合出一定幅度的射频信号送入检波器206,检波器206将链路中功率幅度转化为对应的电压信号(dB~V),数字采集模块ADC207采集转化后的电压,送给后级的数字处理模块208,数字处理模块208经过内部算法拟合输出的控制信号经过数模转化模块209进行数模准换后输出,以控制调节可变衰减器201,进而实现幅度稳定功能。The above is an ALC circuit provided by the embodiment of the present invention. The radio frequency signal is input from the IN port, passes through the variable attenuator 201, the temperature compensation module 203, the radio frequency amplifier 202/204 and the power divider 205 and reaches the OUT output end. At the same time, the power divider 205 will couple out a radio frequency signal of a certain amplitude according to the preset ratio value of the module and send it to the detector 206. The detector 206 will convert the power amplitude in the link into a corresponding voltage signal (dB~V), and the digital acquisition The module ADC207 collects the converted voltage and sends it to the digital processing module 208 of the subsequent stage. The control signal output by the digital processing module 208 is fitted by the internal algorithm and output after digital-to-analog conversion by the digital-to-analog conversion module 209 to control and adjust the variable Attenuator 201, thereby achieving the amplitude stabilization function.
请参阅图5,在本发明的一种实施方式中,所述ALC电路还包括匹配电阻,与所述功率分配器相连接。匹配电阻为配合功率分配器使用。Please refer to Figure 5. In one embodiment of the present invention, the ALC circuit further includes a matching resistor connected to the power divider. Matching resistors are used with power dividers.
请参阅图5,在本发明的又一种实施方式中,所述检波器还包括第一温度传感器,用于采集所述检波器的温度数据,称为第一温度数据,所述数字采集模块还包括第二温度传感器,用于采集所述数字采集模块的温度数据,称为第二温度数据。Please refer to Figure 5. In another embodiment of the present invention, the detector further includes a first temperature sensor for collecting temperature data of the detector, which is called first temperature data. The digital acquisition module It also includes a second temperature sensor for collecting temperature data of the digital acquisition module, which is called second temperature data.
图6为本发明实施例提供的一种ALC电路中数字处理模块的结构示意,请参阅图6,所述数字处理模块包括:Figure 6 is a schematic structural diagram of a digital processing module in an ALC circuit provided by an embodiment of the present invention. Please refer to Figure 6. The digital processing module includes:
与所述数字采集模块相连接的对数放大器301,用于对所述电压信号进行对数放大处理,在图6中,所述对数放大器包括第一预先开关、第二预选开关、线性放大单元、与所述线性放大单元并联的减法器以及对数放大变换单元,所述减法器与所述对数放大变换单元串联;与所述减法器相连接的参考值输入单元。第一预先开关、第二预选开关判断输出信号是满足线性放大链路还是对数放大链路,经过对数放大链路时公式如下y=k(ln(x-A)/B),其中A为参考值输入单元中存储的参考值,k与B是对数放大变换单元的系数。线性放大变换单元与对数放大曲线最后拟合为一条线性很理想的(幅度~电压)曲线。The logarithmic amplifier 301 connected to the digital acquisition module is used to perform logarithmic amplification processing on the voltage signal. In Figure 6, the logarithmic amplifier includes a first pre-switch, a second pre-selection switch, a linear amplification unit, a subtractor connected in parallel with the linear amplification unit and a logarithmic amplification conversion unit, the subtractor is connected in series with the logarithmic amplification conversion unit; a reference value input unit connected with the subtractor. The first pre-switch and the second pre-selection switch determine whether the output signal satisfies the linear amplification link or the logarithmic amplification link. When passing through the logarithmic amplification link, the formula is as follows: y=k(ln(x-A)/B), where A is the reference The reference value stored in the value input unit, k and B are the coefficients of the logarithmic amplification transformation unit. The linear amplification transformation unit and the logarithmic amplification curve are finally fitted into a linear and ideal (amplitude ~ voltage) curve.
与所述对数放大器相连接的线性放大单元302,用于对对数放大处理后的电压信号进行线性放大;The linear amplification unit 302 connected to the logarithmic amplifier is used to linearly amplify the voltage signal after logarithmic amplification;
与所述线性放大模块相连接的积分单元303,用于对所述线性放大后的电压信号进行积分处理,并将积分处理后的电压信号通过与所述积分单元相连接的环路状态控制单元304发送至与所述环路状态控制模块相连接的后级累加器305。在图6所示的实施方式中,所述积分单元包括积分器以及与所述积分器相连接的变化系数输出单元。变化系数输出单元中存储有变换系数,可以理解为检波曲线与衰减器衰减曲线的对应关系。变化系数输出单元还与后级累加器中的阈值电压输入单元相连接。变化系数的初始值会根据设置参考DAC变化而调整,作用为快速稳定ALC环路,提高环路的稳定时间;提高环路的稳定性,减少ALC失效概率。一定程度上保证ALC输出动态。在参考DAC与预置DAC数据链中增加变换系数,直接拟合可变衰减器件衰减电压曲线与检波器件检波特性曲线间的数据关系。使其环路预置值与最终预置电压比较接近,减少积分次数,提高环路稳定性,降低环路的稳定时间。The integration unit 303 connected to the linear amplification module is used to perform integration processing on the linearly amplified voltage signal, and pass the integrated voltage signal through the loop state control unit connected to the integration unit. 304 is sent to the subsequent accumulator 305 connected with the loop state control module. In the embodiment shown in FIG. 6 , the integrating unit includes an integrator and a variation coefficient output unit connected to the integrator. The transformation coefficient is stored in the variation coefficient output unit, which can be understood as the corresponding relationship between the detection curve and the attenuator attenuation curve. The variation coefficient output unit is also connected to the threshold voltage input unit in the subsequent stage accumulator. The initial value of the variation coefficient will be adjusted according to the change of the set reference DAC, which serves to quickly stabilize the ALC loop and improve the loop's stabilization time; improve the stability of the loop and reduce the probability of ALC failure. ALC output dynamics are guaranteed to a certain extent. Add transformation coefficients to the reference DAC and preset DAC data links to directly fit the data relationship between the attenuation voltage curve of the variable attenuation device and the detection characteristic curve of the detection device. Make the loop preset value closer to the final preset voltage, reduce the number of integrations, improve loop stability, and reduce loop stabilization time.
所述后级累加器305,用于将预先设定的预置电压、所述积分处理后的电压信号、所述第一温度数据以及所述第二温度数据对应的电压变化量进行累加,得到累加值。The post-stage accumulator 305 is used to accumulate the voltage changes corresponding to the preset preset voltage, the integrated voltage signal, the first temperature data and the second temperature data, to obtain Accumulated value.
在具体的实施方式中,后级累加器包括:In a specific implementation, the subsequent accumulator includes:
第一温度补偿变换单元,用于接收所述第一温度数据,根据所述第一温度数据确定出第一温度变化量,根据预先存储的所述检波器的温度漂移指数、检波斜率以及衰减斜率曲线,结合所述第一温度变化量计算出第一电压变化量;A first temperature compensation conversion unit, configured to receive the first temperature data, determine the first temperature change amount according to the first temperature data, and determine the first temperature change amount according to the pre-stored temperature drift index, detection slope and attenuation slope of the detector. Curve, combined with the first temperature change, the first voltage change is calculated;
第二温度补偿变换单元,用于接收所述第二温度数据,根据所述第二温度数据确定出第二温度变化量,根据预先存储的所述数字采集模块的温度漂移系数,结合所述第二温度变化量计算出第二电压变化量;A second temperature compensation conversion unit is configured to receive the second temperature data, determine a second temperature change amount according to the second temperature data, and combine the second temperature change amount with the pre-stored temperature drift coefficient of the digital acquisition module. The second temperature change is used to calculate the second voltage change;
预置电压输入单元,用于存储预先设定的预置电压;Preset voltage input unit, used to store preset preset voltage;
累加器,分别与所述预置电压输入单元、第一温度补偿变换单元、第二温度补偿变换单元以及环路状态控制单元相连接,用于将所述预置电压、所述第一电压变化量、所述第二电压变化量以及所述环路状态控制单元输出的电压信号进行累加,得到累加值。Accumulator, respectively connected to the preset voltage input unit, the first temperature compensation conversion unit, the second temperature compensation conversion unit and the loop state control unit, for converting the preset voltage, the first voltage change The amount, the second voltage change amount and the voltage signal output by the loop state control unit are accumulated to obtain an accumulated value.
在实际的使用过程中,预置电压输入单元中的预置电压的初始值是给定的常量,该初始值可能会与稳定时的预置值差距比较大,正常环路积分次数会比较多,积分时间比较长,更有恶劣情况,积分数据会因为设置不理想,环路不可控,或可控区间较小。影响环路工作动态范围。In actual use, the initial value of the preset voltage in the preset voltage input unit is a given constant. This initial value may be far different from the stable preset value, and the number of normal loop integrations will be larger. , the integration time is relatively long, and in worse cases, the integration data will be uncontrollable due to unsatisfactory settings, or the controllable interval will be small. Affects the dynamic range of loop operation.
第一温度补偿变换单元对应处理检波器件单元温度传感器采集数据。通过采集的检波器的温度信号数据可以检测计算出检波电路周期温度情况,根据检波器给出的温度漂移指数以及检波器的检波斜率(ALC ON)/衰减器的衰减斜率曲线(ALC OFF),计算出第一温度补偿变换单元的变化最初值,通过温漂状态下的校准输出端口幅度变化值,进一步修正得到第一温度补偿变换单元的变化关系。在实际的使用中,可根据ALC状态的不同,第一温度补偿变换单元的补偿数据可进行调整切换。举例说明,第一温度传感器的采集数据变化曲线为200/10℃,即传感器数据变化200(od)时表征温度变化10℃;检波器的温漂系数为0.08dB/10℃,检波器的检波斜率(幅度~检波电压)为50mV/dB,可变衰减器的控制斜率(衰减量~控制电压)为-40mV/dB。当温度传感器反馈数据变化200时,对应检波器的周围温度变化10℃,在ALC ON状态下,根据检波器的温漂系数,检波幅度变化0.08dB,对应幅度变化0.08dB时检波器的参考电压需调整0.08dB*50mV/dB=4mV即可以保证检波幅度的准确;通过校准输出幅度变化ΔAdB,则此时链路需要补偿的功率为AdB,修正第一温度补偿变换单元为(4+50A)mV即可保证单元电路输出端口幅度准确。在ALCOFF状态下,根据校准输出幅度变化为ΔAdB,根据可变衰减器的控制斜率,可变衰减器的调谐电压需调整(-40A)mV即可以保证单元电路输出端口幅度准确。The first temperature compensation conversion unit corresponds to processing data collected by the temperature sensor of the detection device unit. Through the collected temperature signal data of the detector, the periodic temperature of the detector circuit can be detected and calculated. According to the temperature drift index given by the detector and the detection slope of the detector (ALC ON)/the attenuation slope curve of the attenuator (ALC OFF), The initial value of change of the first temperature compensation conversion unit is calculated, and the change relationship of the first temperature compensation conversion unit is further corrected through the change value of the calibrated output port amplitude in the temperature drift state. In actual use, the compensation data of the first temperature compensation conversion unit can be adjusted and switched according to different ALC states. For example, the change curve of the collected data of the first temperature sensor is 200/10°C, that is, when the sensor data changes by 200 (od), it represents a temperature change of 10°C; the temperature drift coefficient of the detector is 0.08dB/10°C. The slope (amplitude ~ detection voltage) is 50mV/dB, and the control slope (attenuation ~ control voltage) of the variable attenuator is -40mV/dB. When the temperature sensor feedback data changes by 200, the corresponding ambient temperature of the detector changes by 10°C. In the ALC ON state, according to the temperature drift coefficient of the detector, the detection amplitude changes by 0.08dB, corresponding to the reference voltage of the detector when the amplitude changes by 0.08dB. It is necessary to adjust 0.08dB*50mV/dB=4mV to ensure the accuracy of the detection amplitude; by calibrating the output amplitude change ΔAdB, the power that the link needs to compensate at this time is AdB, and the first temperature compensation conversion unit is modified to (4+50A) mV can ensure that the output port amplitude of the unit circuit is accurate. In the ALCOFF state, according to the calibration output amplitude change is ΔAdB, according to the control slope of the variable attenuator, the tuning voltage of the variable attenuator needs to be adjusted (-40A) mV to ensure that the output port amplitude of the unit circuit is accurate.
第二温度补偿变换单元补偿数字采集模块ADC器件温度传感器件采集数据。根据传感器反馈数据变化计算出ADC器件温度变化,根据ADC器件的温度漂移系数计算出采样数据的电压偏移量,得到第二温度补偿变换单元的变化公式。此变换关系不受ALC状态切换的影响。补偿曲线根据器件对温度变化系数做调整修正。常规数字温度补偿部分在积分器单元303输入端处理,此方案不能补偿在长时间工作后链路温度变化对输出幅度产生的影响。本方案可以满足实时补偿链路中ALC ON、ALC OFF不同状态下链路的温度影响。The second temperature compensation conversion unit compensates the digital acquisition module ADC device to collect data from the temperature sensing device. The temperature change of the ADC device is calculated according to the change of the sensor feedback data, the voltage offset of the sampling data is calculated according to the temperature drift coefficient of the ADC device, and the change formula of the second temperature compensation conversion unit is obtained. This transformation relationship is not affected by ALC state switching. The compensation curve is adjusted and corrected according to the temperature change coefficient of the device. The conventional digital temperature compensation part is processed at the input end of the integrator unit 303. This solution cannot compensate for the impact of link temperature changes on the output amplitude after long-term operation. This solution can satisfy the real-time compensation of the temperature impact of the link in different states of ALC ON and ALC OFF.
与所述后级累加器相连接的电压变换模块306,用于对所述累加值进行电压变化,得到控制信号。The voltage conversion module 306 connected to the downstream accumulator is used to change the voltage of the accumulated value to obtain a control signal.
ADC采样数据经过对数放大器301处理输出给线性放大模块302,变换为跟参考DAC数据格式一致的数据,经过积分单元303(积分输入差(运放输入端V+≠V-)不为零时调节其输出按照一定速率向一个方向累加)输出给后级累加器305,第一温度补偿变换单元对应补偿检波器件温度漂移系数,第二温度补偿变换单元对应补偿ADC器件温度漂移系数,最后经过电压变换单元306输出控制DAC器件控制可变衰减器。模块304为环路控制状态单元。The ADC sampling data is processed by the logarithmic amplifier 301 and output to the linear amplification module 302, converted into data consistent with the reference DAC data format, and adjusted by the integrating unit 303 (the integral input difference (op amp input terminal V+≠V-) is not zero) Its output is accumulated in one direction at a certain rate and is output to the subsequent accumulator 305. The first temperature compensation conversion unit corresponds to the compensation of the temperature drift coefficient of the detection device, the second temperature compensation conversion unit corresponds to the compensation of the temperature drift coefficient of the ADC device, and finally through voltage conversion The unit 306 output controls the DAC device controlling the variable attenuator. Module 304 is a loop control status unit.
综上所述,本发明提供了一种ALC电路以及射频信号源,针对不同情况下温度补偿做出相关的补偿,在硬件电路中增加温度补偿模块,降低温度对射频链路增益的影响;在检波器、数字采集模块周围增加温度传感器做温度监测,通过器件的温度特性实时补偿温度引起的误差,优化数字温度补偿部分设计,节约校准时间,提高生产效率,降低环路在ALCOFF状态下的温度幅度的影响,减少环路锁定时间,提高环路的稳定性,减少温度补偿环节数据校准工作,同时提高在ALC OFF状态下幅度稳定度,提高系统技术指标,优化性能。To sum up, the present invention provides an ALC circuit and a radio frequency signal source, which makes relevant compensation for temperature compensation under different situations, adds a temperature compensation module in the hardware circuit, and reduces the impact of temperature on the gain of the radio frequency link; in Temperature sensors are added around the detector and digital acquisition module for temperature monitoring. Errors caused by temperature are compensated in real time through the temperature characteristics of the device. The design of the digital temperature compensation part is optimized to save calibration time, improve production efficiency, and reduce the temperature of the loop in the ALCOFF state. The influence of amplitude can reduce the loop lock time, improve the stability of the loop, reduce the data calibration work of the temperature compensation link, and at the same time improve the amplitude stability in the ALC OFF state, improve the system technical indicators, and optimize performance.
此外,尽管在上文详细描述中提及了系统的若干单元模块,但是这种划分仅仅并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元的特征和功能可以在一个单元中具体化。同样,上文描述的一个单元的特征和功能也可以进一步划分为由多个单元来具体化。以上所使用的术语“模块”和“单元”,可以是实现预定功能的软件和/或硬件。尽管以下实施例所描述的模块较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。Furthermore, although several unit modules of the system are mentioned in the above detailed description, this division is merely not mandatory. In fact, according to embodiments of the present invention, the features and functions of two or more units described above may be embodied in one unit. Likewise, the features and functions of one unit described above can also be further divided into being embodied by multiple units. The terms "module" and "unit" used above may be software and/or hardware that implement predetermined functions. Although the modules described in the following embodiments are preferably implemented in software, implementation in hardware, or a combination of software and hardware, is also possible and contemplated.
对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(ProgrammableLogic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logiccompiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware DescriptionLanguage,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced BooleanExpression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java HardwareDescription Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware DescriptionLanguage)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated CircuitHardware Description Language)与Verilog2。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。Improvements in a technology can be clearly distinguished as improvements in hardware (for example, improvements in circuit structures such as diodes, transistors, switches, etc.) or improvements in software (improvements in method processes). However, with the development of technology, many improvements in today's method processes can be regarded as direct improvements in hardware circuit structures. Designers almost always obtain the corresponding hardware circuit structure by programming the improved method flow into the hardware circuit. Therefore, it cannot be said that an improvement of a method flow cannot be implemented using hardware entity modules. For example, a Programmable Logic Device (PLD) (such as a Field Programmable Gate Array (FPGA)) is such an integrated circuit whose logic functions are determined by the user programming the device. Designers can program themselves to "integrate" a digital system on a PLD, instead of asking chip manufacturers to design and produce dedicated integrated circuit chips. Moreover, nowadays, instead of manually making integrated circuit chips, this kind of programming is mostly implemented using "logic compiler" software, which is similar to the software compiler used in program development and writing. The original code must also be written in a specific programming language, which is called Hardware Description Language (HDL). There is not only one type of HDL, but many types, such as ABEL (Advanced BooleanExpression Language), AHDL ( Altera Hardware Description Language), Confluence, CUPL (Cornell University Programming Language), HDCal, JHDL (Java Hardware Description Language), Lava, Lola, MyHDL, PALASM, RHDL (Ruby Hardware Description Language), etc. The most commonly used one at present is VHDL (Very Hardware Description Language). -High-Speed Integrated CircuitHardware Description Language) and Verilog2. Those skilled in the art should also know that by simply logically programming the method flow using the above-mentioned hardware description languages and programming it into the integrated circuit, the hardware circuit that implements the logical method flow can be easily obtained.
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。The controller may be implemented in any suitable manner, for example, the controller may take the form of, for example, a microprocessor or processor and a computer readable medium storing computer readable program code (eg, software or firmware) executable by the (micro)processor. , logic gates, switches, Application Specific Integrated Circuit (ASIC), programmable logic controllers and embedded microcontrollers. Examples of controllers include but are not limited to the following microcontrollers: ARC625D, Atmel AT91SAM, Microchip For the PIC18F26K20 and Silicone Labs C8051F320, the memory controller can also be implemented as part of the memory's control logic.
本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。Those skilled in the art also know that in addition to implementing the controller in the form of pure computer-readable program code, the controller can be completely programmed with logic gates, switches, application-specific integrated circuits, programmable logic controllers and embedded logic by logically programming the method steps. Microcontroller, etc. to achieve the same function. Therefore, this controller can be considered as a hardware component, and the devices included therein for implementing various functions can also be considered as structures within the hardware component. Or even, the means for implementing various functions can be considered as structures within hardware components as well as software modules implementing the methods.
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。For the convenience of description, when describing the above device, the functions are divided into various units and described separately. Of course, when implementing this application, the functions of each unit can be implemented in the same or multiple software and/or hardware.
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机系统(可以是个人计算机,服务器,或者网络系统等)执行本申请各个实施例或者实施例的某些部分所述的方法。From the above description of the embodiments, those skilled in the art can clearly understand that the present application can be implemented by means of software plus the necessary general hardware platform. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology. The computer software product can be stored in a storage medium, such as ROM/RAM, disk , optical disk, etc., including a number of instructions to cause a computer system (which can be a personal computer, a server, or a network system, etc.) to execute the methods described in various embodiments or certain parts of the embodiments of this application.
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a progressive manner. The same and similar parts between the various embodiments can be referred to each other. Each embodiment focuses on its differences from other embodiments. In particular, for the system embodiment, since it is basically similar to the method embodiment, the description is relatively simple. For relevant details, please refer to the partial description of the method embodiment.
本申请可用于众多通用或专用的计算机系统环境或配置中。例如:个人计算机、服务器计算机、手持系统或便携式系统、平板型系统、多处理器系统、基于微处理器的系统、置顶盒、可编程的消费电子系统、网络PC、小型计算机、大型计算机、包括以上任何系统或系统的分布式计算环境等等。The application may be used in a variety of general or special purpose computer system environments or configurations. For example: personal computers, server computers, handheld or portable systems, tablet systems, multiprocessor systems, microprocessor-based systems, set-top boxes, programmable consumer electronics systems, network PCs, minicomputers, mainframe computers, including Any of the above systems or distributed computing environments for systems, etc.
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理系统来执行任务。在分布式计算环境中,程序模块可以位于包括存储系统在内的本地和远程计算机存储介质中。The application may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types. The present application may also be practiced in distributed computing environments where tasks are performed by remote processing systems connected through communications networks. In a distributed computing environment, program modules may be located in both local and remote computer storage media including storage systems.
虽然通过实施例描绘了本申请,本领域普通技术人员知道,本申请有许多变形和变化而不脱离本申请的精神,希望所附的权利要求包括这些变形和变化而不脱离本申请的精神。Although this application has been described by way of example, those skilled in the art will appreciate that many modifications and variations can be made without departing from the spirit of this application, and it is intended that the appended claims cover such modifications and variations without departing from the spirit of this application.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710301334.6A CN108809271B (en) | 2017-05-02 | 2017-05-02 | ALC circuit and radio frequency signal source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710301334.6A CN108809271B (en) | 2017-05-02 | 2017-05-02 | ALC circuit and radio frequency signal source |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108809271A CN108809271A (en) | 2018-11-13 |
CN108809271B true CN108809271B (en) | 2023-09-22 |
Family
ID=64053951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710301334.6A Active CN108809271B (en) | 2017-05-02 | 2017-05-02 | ALC circuit and radio frequency signal source |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108809271B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110311633A (en) * | 2019-07-08 | 2019-10-08 | 成都锐芯盛通电子科技有限公司 | Millimeter wave broadband detection warm linearity autocompensation installation and its method entirely |
CN110543205A (en) * | 2019-08-07 | 2019-12-06 | 中电科仪器仪表有限公司 | method for improving dynamic range of vector network analyzer source under wide temperature condition |
CN111884601A (en) * | 2020-08-05 | 2020-11-03 | 星识通南京通信科技有限公司 | Broadband precise temperature-adjustable complementary amplifier and broadband precise temperature compensation method |
CN112180156A (en) * | 2020-09-30 | 2021-01-05 | 成都科创时空科技有限公司 | A multi-channel microwave power meter |
CN113098548B (en) * | 2021-04-09 | 2022-11-29 | 波达通信设备(广州)有限公司 | Transmitting link, transmitting link calibration method, device and digital transceiver |
CN113504742B (en) * | 2021-06-15 | 2022-07-26 | 电子科技大学 | Double-fed automatic level control system based on FPGA |
CN114527699B (en) * | 2022-02-25 | 2024-10-29 | 普源精电科技股份有限公司 | Control method and device of radio frequency signal, programmable device and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102136826A (en) * | 2010-12-09 | 2011-07-27 | 东莞理工学院 | ACL control and temperature compensation method and device |
CN203632622U (en) * | 2013-12-11 | 2014-06-04 | 深圳国人通信股份有限公司 | Power amplifying circuit and printed circuit board thereof |
CN105262451A (en) * | 2015-10-27 | 2016-01-20 | 广州海格通信集团股份有限公司 | Fast automatic power closed-loop control device and method of wireless power amplifier |
CN106301247A (en) * | 2016-08-10 | 2017-01-04 | 成都芯通科技股份有限公司 | A kind of gain compensation circuit for MRI power amplifier and method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9225290B2 (en) * | 2013-11-26 | 2015-12-29 | Microelectronics Technology, Inc. | Radio frequency signal amplifying system |
-
2017
- 2017-05-02 CN CN201710301334.6A patent/CN108809271B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102136826A (en) * | 2010-12-09 | 2011-07-27 | 东莞理工学院 | ACL control and temperature compensation method and device |
CN203632622U (en) * | 2013-12-11 | 2014-06-04 | 深圳国人通信股份有限公司 | Power amplifying circuit and printed circuit board thereof |
CN105262451A (en) * | 2015-10-27 | 2016-01-20 | 广州海格通信集团股份有限公司 | Fast automatic power closed-loop control device and method of wireless power amplifier |
CN106301247A (en) * | 2016-08-10 | 2017-01-04 | 成都芯通科技股份有限公司 | A kind of gain compensation circuit for MRI power amplifier and method |
Also Published As
Publication number | Publication date |
---|---|
CN108809271A (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108809271B (en) | ALC circuit and radio frequency signal source | |
TWI413362B (en) | Circuit and method for automatic gain control and amplification apparatus | |
CN106841731B (en) | An oscilloscope front-end processing circuit for improving DC precision | |
US10840866B2 (en) | Amplifier circuit arrangement and method to calibrate the same | |
CN103208970A (en) | Gate voltage temperature compensation circuit and method of radio frequency power amplifier | |
US11835398B2 (en) | Method and circuit for temperature sensing, temperature sensor and electrical appliance | |
CN110068394A (en) | A kind of chip temperature detection circuit and audio-frequency power amplifier | |
CN214954041U (en) | Intelligent self-calibration current Hall sensor | |
CN103066926B (en) | The steady zero circuit of automatic digital for integrating circuit | |
US20210391836A1 (en) | Reference precharge system | |
CN209841948U (en) | Adjustable Hall voltage sensor | |
Samoylov et al. | Selection of the band-pass range of the normalizing signal transducer of the sensing element in the instrumentation and control systems | |
CN111342785A (en) | Signal conditioning circuit | |
US8941438B2 (en) | Bandwidth limiting for amplifiers | |
US20220214212A1 (en) | Optical measurement apparatus | |
WO2024051149A1 (en) | Adaptive wide dynamic analog-to-digital conversion circuit | |
CN106885929B (en) | A measuring device with double-loop ALC circuit | |
GB2595546A (en) | Current sensing circuitry | |
TW202230999A (en) | Analog front-end circuit capable of dynamically adjusting gain | |
CN112653459A (en) | Radio frequency signal source capable of being calibrated in real time | |
US7576673B2 (en) | Increasing the dynamic range of pulse width modulation in analog to digital converters | |
CN117559922A (en) | Amplifier dynamic current constant measurement and control circuit based on AD/DA | |
WO2019113931A1 (en) | Negative feedback amplification circuit | |
CN219328889U (en) | Analog circuit with automatic zero setting function and oscilloscope | |
KR102310459B1 (en) | Digitally-controlled push-pull amplification device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
GR01 | Patent grant | ||
GR01 | Patent grant |