CN108470680B - Method of making a semiconductor structure - Google Patents
Method of making a semiconductor structure Download PDFInfo
- Publication number
- CN108470680B CN108470680B CN201710100565.0A CN201710100565A CN108470680B CN 108470680 B CN108470680 B CN 108470680B CN 201710100565 A CN201710100565 A CN 201710100565A CN 108470680 B CN108470680 B CN 108470680B
- Authority
- CN
- China
- Prior art keywords
- type well
- gate
- implantation
- well
- ion implantation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 238000002513 implantation Methods 0.000 claims abstract description 87
- 238000005468 ion implantation Methods 0.000 claims abstract description 83
- 238000000034 method Methods 0.000 claims abstract description 54
- 150000002500 ions Chemical class 0.000 claims description 30
- 125000006850 spacer group Chemical group 0.000 claims description 30
- 238000000137 annealing Methods 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 239000007943 implant Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 238000002955 isolation Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 239000002784 hot electron Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/017—Manufacturing their source or drain regions, e.g. silicided source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0223—Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
- H10D30/0227—Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate having both lightly-doped source and drain extensions and source and drain regions self-aligned to the sides of the gate, e.g. lightly-doped drain [LDD] MOSFET or double-diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/266—Bombardment with radiation with high-energy radiation producing ion implantation using masks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- General Physics & Mathematics (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明揭示了一种半导体结构的制作方法。本发明提供的半导体结构的制作方法,包括:形成有第一类型阱和第二类型阱,以及分别位于第一类型阱和第二类型阱上的栅极;进行第一次离子注入形成第一注入区;在所述第一类型阱上和第二类型阱的栅极上形成第一掩膜层并进行第二次离子注入形成第二注入区;在所述第二类型阱上和第一类型阱的栅极上形成第二掩膜层并进行第三次离子注入,使得第一类型阱中的第一注入区转变为第三注入区,并形成第四注入区。由此,能够至少节省两层LDD的光罩,以及对应的至少两道工序,能够节约成本,优化制作工艺,缩短生产周期。
The invention discloses a fabrication method of a semiconductor structure. The method for fabricating a semiconductor structure provided by the present invention includes: forming a first-type well and a second-type well, and gates respectively located on the first-type well and the second-type well; performing a first ion implantation to form a first-type well an implantation region; a first mask layer is formed on the first type well and on the gate of the second type well and a second ion implantation is performed to form a second implantation region; on the second type well and the first A second mask layer is formed on the gate of the type well and a third ion implantation is performed, so that the first implantation region in the first type well is transformed into a third implantation region and a fourth implantation region is formed. Therefore, at least two layers of LDD masks and corresponding at least two processes can be saved, which can save costs, optimize the manufacturing process, and shorten the production cycle.
Description
技术领域technical field
本发明涉及半导体技术领域,特别是涉及一种半导体结构的制作方法。The present invention relates to the technical field of semiconductors, and in particular, to a method for fabricating a semiconductor structure.
背景技术Background technique
互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,简称CMOS)是在集成电路设计中,同时采用NMOS管和PMOS管两种器件,并通常配对出现的一种电路结构。由于CMOS电路的静态功耗非常小,电路结构简单,使得它可以用于大规模集成电路、超大规模集成电路。Complementary Metal Oxide Semiconductor (Complementary Metal Oxide Semiconductor, CMOS for short) is a circuit structure in which two devices, NMOS transistor and PMOS transistor, are used at the same time in integrated circuit design, and are usually paired. Because the static power consumption of the CMOS circuit is very small and the circuit structure is simple, it can be used in large-scale integrated circuits and ultra-large-scale integrated circuits.
随着半导体制造技术想着栅极沟道尺寸越做越小和外加电压越来越低的方向发展,传统的CMOS结构通过对离子注入的把控来控制源/漏极偏压引起的电场垂直分量,并减小可穿通的电子数量而抑制热电子效应。但是,目前的工艺通常都比较复杂,需要进行改善。With the development of semiconductor manufacturing technology in the direction of smaller gate channel size and lower applied voltage, the traditional CMOS structure controls the vertical electric field caused by source/drain bias voltage by controlling ion implantation. component, and reduce the number of electrons that can pass through and suppress the hot electron effect. However, current processes are often complex and need to be improved.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种半导体结构的制作方法,在提高MOS性能的基础上,节约生产成本,并缩短生产周期。The purpose of the present invention is to provide a method for fabricating a semiconductor structure, which can save production cost and shorten production cycle on the basis of improving MOS performance.
为解决上述技术问题,本发明提供一种半导体结构的制作方法,包括:In order to solve the above-mentioned technical problems, the present invention provides a method for fabricating a semiconductor structure, comprising:
提供前端结构,所述前端结构形成有第一类型阱和第二类型阱,以及分别位于第一类型阱和第二类型阱上的栅极;providing a front end structure formed with a first type well and a second type well, and gates on the first type well and the second type well, respectively;
对所述前端结构进行第一次离子注入,以分别在第一类型阱和第二类型阱中栅极两侧形成第一注入区;performing a first ion implantation on the front-end structure to form first implantation regions on both sides of the gate in the first-type well and the second-type well, respectively;
在所述第一类型阱上和第二类型阱的栅极上形成第一掩膜层,并对所述第二类型阱进行第二次离子注入,在第二类型阱中栅极两侧形成第二注入区,所述第一次注入的离子和第二次注入的离子类型相同;A first mask layer is formed on the first type well and on the gate of the second type well, and a second ion implantation is performed on the second type well, and the gate is formed on both sides of the gate in the second type well In the second implantation region, the ions implanted for the first time are of the same type as the ions implanted in the second time;
移除所述第一掩膜层;removing the first mask layer;
在所述第二类型阱上和第一类型阱的栅极上形成第二掩膜层,并对所述第一类型阱进行第三次离子注入,使得第一类型阱中的第一注入区转变为第三注入区,并在第一类型阱中栅极两侧形成第四注入区,所述第一次注入的离子和第三次注入的离子类型不同;A second mask layer is formed on the second type well and on the gate of the first type well, and a third ion implantation is performed on the first type well, so that the first implantation region in the first type well transforming into a third implantation region, and forming a fourth implantation region on both sides of the gate in the first type well, wherein the ions implanted for the first time and the ions implanted for the third time are of different types;
移除所述第二掩膜层。The second mask layer is removed.
可选的,对于所述的半导体结构的制作方法,所述第一类型阱为N阱,所述第二类型阱为P阱。Optionally, for the method for fabricating the semiconductor structure, the first type well is an N well, and the second type well is a P well.
可选的,对于所述的半导体结构的制作方法,所述N阱的栅极上的第二掩膜层厚度小于所述P阱的栅极上的第一掩膜层厚度。Optionally, for the manufacturing method of the semiconductor structure, the thickness of the second mask layer on the gate of the N-well is smaller than the thickness of the first mask layer on the gate of the P-well.
可选的,对于所述的半导体结构的制作方法,所述P阱的栅极上的第一掩膜层的厚度为所述N阱的栅极上的第二掩膜层厚度为 Optionally, for the manufacturing method of the semiconductor structure, the thickness of the first mask layer on the gate of the P well is The thickness of the second mask layer on the gate of the N well is
可选的,对于所述的半导体结构的制作方法,所述第二注入区的掺杂浓度和注入深度大于所述第一注入区的掺杂浓度和注入深度;所述第四注入区的掺杂浓度和注入深度大于所述第三注入区的掺杂浓度和注入深度。Optionally, for the fabrication method of the semiconductor structure, the doping concentration and the implantation depth of the second implantation region are greater than the doping concentration and implantation depth of the first implantation region; the doping concentration and implantation depth of the fourth implantation region are The impurity concentration and the implantation depth are greater than those of the third implantation region.
可选的,对于所述的半导体结构的制作方法,所述第一次离子注入为普注N型离子。Optionally, for the fabrication method of the semiconductor structure, the first ion implantation is a general implantation of N-type ions.
可选的,对于所述的半导体结构的制作方法,所述第二次离子注入为注入N型离子,所述第三次离子注入为注入P型离子。Optionally, for the method for fabricating the semiconductor structure, the second ion implantation is N-type ion implantation, and the third ion implantation is P-type ion implantation.
可选的,对于所述的半导体结构的制作方法,所述第三次离子注入的角度为与前端结构上表面的法向呈30°-60°夹角。Optionally, for the manufacturing method of the semiconductor structure, the angle of the third ion implantation is an included angle of 30°-60° with the normal direction of the upper surface of the front-end structure.
可选的,对于所述的半导体结构的制作方法,在对所述前端结构进行第一次离子注入,以分别在第一类型阱和第二类型阱中栅极两侧形成第一注入区之后;在所述第一类型阱和第二类型阱的栅极上形成第一掩膜层,并对所述第二类型阱进行第二次离子注入之前,还包括:Optionally, for the fabrication method of the semiconductor structure, after the first ion implantation is performed on the front-end structure to form first implantation regions on both sides of the gate in the first-type well and the second-type well respectively ; forming a first mask layer on the gates of the first type well and the second type well, and before performing the second ion implantation on the second type well, further comprising:
在所述栅极两侧形成栅极侧墙。Gate spacers are formed on both sides of the gate.
可选的,对于所述的半导体结构的制作方法,位于第一类型阱的栅极侧的栅极侧墙厚度小于位于第二类型阱的栅极侧的栅极侧墙厚度。Optionally, for the manufacturing method of the semiconductor structure, the thickness of the gate spacer on the gate side of the first-type well is smaller than the thickness of the gate spacer on the gate side of the second-type well.
可选的,对于所述的半导体结构的制作方法,位于第二类型阱的栅极侧的栅极侧墙厚度为90nm-110nm,位于第一类型阱的栅极侧的栅极侧墙厚度为80nm-90nm。Optionally, for the fabrication method of the semiconductor structure, the thickness of the gate spacer on the gate side of the second type well is 90 nm-110 nm, and the thickness of the gate spacer on the gate side of the first type well is 80nm-90nm.
可选的,对于所述的半导体结构的制作方法,所述前端结构还包括栅氧化层,所述栅氧化层位于所述第一类型阱和第二类型阱上,所述栅极位于所述栅氧化层上。Optionally, for the fabrication method of the semiconductor structure, the front-end structure further includes a gate oxide layer, the gate oxide layer is located on the first type well and the second type well, and the gate is located on the on the gate oxide.
可选的,对于所述的半导体结构的制作方法,所述栅氧化层的厚度为 Optionally, for the manufacturing method of the semiconductor structure, the thickness of the gate oxide layer is
可选的,对于所述的半导体结构的制作方法,在提供前端结构之后,在对所述前端结构进行第一次离子注入之前,还包括:Optionally, for the fabrication method of the semiconductor structure, after the front end structure is provided, and before the first ion implantation is performed on the front end structure, the method further includes:
对所述栅极进行快速热氧化处理。The gate is subjected to rapid thermal oxidation treatment.
可选的,对于所述的半导体结构的制作方法,在移除所述第二掩膜层之后,还包括:Optionally, for the manufacturing method of the semiconductor structure, after removing the second mask layer, the method further includes:
进行退火工艺。Carry out the annealing process.
本发明提供的半导体结构的制作方法,包括:提供前端结构,所述前端结构形成有第一类型阱和第二类型阱,以及分别位于第一类型阱和第二类型阱上的栅极;对所述前端结构进行第一次离子注入,以分别在第一类型阱和第二类型阱中栅极两侧形成第一注入区;在所述第一类型阱上和第二类型阱的栅极上形成第一掩膜层,并对所述第二类型阱进行第二次离子注入,在第二类型阱中栅极两侧形成第二注入区,所述第一次注入的离子和第二次注入的离子类型相同;移除所述第一掩膜层;在所述第二类型阱上和第一类型阱的栅极上形成第二掩膜层,并对所述第一类型阱进行第三次离子注入,使得第一类型阱中的第一注入区转变为第三注入区,并在第一类型阱中栅极两侧形成第四注入区,所述第一次注入的离子和第三次注入的离子类型不同;移除所述第二掩膜层。由此,通过第一次注入和第三次注入即可形成作为LDD的第一注入区和第三注入区,相比现有技术能够至少节省两层LDD的光罩,以及对应的至少两道工序,可见能够大大的节约成本,优化制作工艺,缩短生产周期。The method for fabricating a semiconductor structure provided by the present invention includes: providing a front-end structure, the front-end structure is formed with a first type well and a second type well, and gates respectively located on the first type well and the second type well; The front-end structure is subjected to the first ion implantation to form first implantation regions on both sides of the gate in the first-type well and the second-type well respectively; on the first-type well and the gate of the second-type well A first mask layer is formed on the second type well, and a second ion implantation is performed on the second type well, and a second implantation region is formed on both sides of the gate in the second type well. The ion types of the secondary implants are the same; the first mask layer is removed; a second mask layer is formed on the second type well and on the gate of the first type well, and the first type well is For the third ion implantation, the first implanted region in the first type well is transformed into a third implantation region, and a fourth implantation region is formed on both sides of the gate in the first type well. The ions and The third implant is of a different ion type; the second mask layer is removed. Therefore, the first implantation region and the third implantation region as LDD can be formed by the first implantation and the third implantation. Compared with the prior art, at least two layers of LDD masks and corresponding at least two layers can be saved. It can be seen that the cost can be greatly saved, the production process can be optimized, and the production cycle can be shortened.
并且,可以通过第一次离子注入和第二次离子注入实现NMOS性能的调节;通过第一次离子注入和第三次离子注入,并进一步结合栅极侧墙的厚度、掩膜层的厚度以及第三次离子注入角度的选择,实现对PMOS性能的调节,例如改善了MOS结构的漏电流,使得产品的性能得以保证。In addition, the adjustment of NMOS performance can be achieved through the first ion implantation and the second ion implantation; through the first ion implantation and the third ion implantation, and further combined with the thickness of the gate spacer, the thickness of the mask layer, and the The selection of the third ion implantation angle can adjust the performance of the PMOS, such as improving the leakage current of the MOS structure, so that the performance of the product can be guaranteed.
附图说明Description of drawings
图1-图6为一种CMOS结构的制作过程示意图;1-6 are schematic diagrams of a fabrication process of a CMOS structure;
图7位本发明一实施例中半导体结构的制作方法的流程图;7 is a flowchart of a method for fabricating a semiconductor structure in an embodiment of the present invention;
图8为本发明一实施例中提供前端结构的示意图;8 is a schematic diagram of a front-end structure provided in an embodiment of the present invention;
图9为本发明一实施例中进行第一次离子注入的示意图;9 is a schematic diagram of the first ion implantation in an embodiment of the present invention;
图10为本发明一实施例中形成栅极侧墙的示意图;10 is a schematic diagram of forming a gate spacer according to an embodiment of the present invention;
图11为本发明一实施例中进行第二次离子注入的示意图;11 is a schematic diagram of performing a second ion implantation in an embodiment of the present invention;
图12为本发明一实施例中进行第二次离子注入的示意图;12 is a schematic diagram of performing a second ion implantation in an embodiment of the present invention;
图13为本发明一实施例中获得的半导体结构的示意图。13 is a schematic diagram of a semiconductor structure obtained in an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合示意图对本发明的半导体结构的制作方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。The method for fabricating the semiconductor structure of the present invention will be described in more detail below with reference to the schematic diagrams, wherein the preferred embodiments of the present invention are shown. It should be understood that those skilled in the art can modify the present invention described herein and still achieve the advantages of the present invention. Effect. Therefore, the following description should be construed as widely known to those skilled in the art and not as a limitation of the present invention.
在下列段落中参照附图以举例方式更具体地描述本发明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The invention is described in more detail by way of example in the following paragraphs with reference to the accompanying drawings. The advantages and features of the present invention will become apparent from the following description and claims. It should be noted that, the accompanying drawings are all in a very simplified form and in inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.
发明人在长期的研究中发现,当栅极宽度小于2μm时,源极与漏极之间偏压导致的电场垂直分量将高到足以加速电子使其隧道穿通薄的氧化层,这种热电子效应引起的漏电流将影响晶体管性能,也会因为栅极氧化层的电子俘获效应造成集成电路芯片可靠性问题。The inventors have found in long-term research that when the gate width is less than 2 μm, the vertical component of the electric field caused by the bias between the source and drain will be high enough to accelerate the electrons to tunnel through the thin oxide layer. This hot electron The leakage current caused by the effect will affect the performance of the transistor, and it will also cause reliability problems in the integrated circuit chip due to the electron trapping effect of the gate oxide layer.
传统的LDD(轻掺杂漏极)结通过使用低能量、低电流的离子注入工艺实现。沉积和回刻蚀电介质之后,侧壁间隔层会在多晶硅栅极两侧形成。高电流、低能量的离子注入形成重掺杂源/漏极,利用侧壁间隔层与栅极分开,从而可以降低源/漏极偏压引起的电场垂直分量,并减小可穿通的电子数量而抑制热电子效应。Conventional LDD (Lightly Doped Drain) junctions are implemented using a low energy, low current ion implantation process. After deposition and etchback of the dielectric, sidewall spacers are formed on both sides of the polysilicon gate. High-current, low-energy ion implantation forms heavily doped source/drain, separated from the gate by sidewall spacers, thereby reducing the vertical component of the electric field caused by the source/drain bias and reducing the number of electrons that can pass through while suppressing the hot electron effect.
请参考图1-图6,示出了一种CMOS结构的制作方法,包括如下步骤:Please refer to FIG. 1-FIG. 6, which shows a method for fabricating a CMOS structure, including the following steps:
如图1所示,包括提供衬底1,通过离子注入形成PMOS区和NMOS区,具体为PMOS区包括N阱2,NMOS区包括P阱3,并由隔离结构(STI)4隔离,在衬底1上还形成有栅氧化层5。As shown in FIG. 1, a
如图2所示,形成栅极6,然后形成光阻7覆盖N阱2,暴露出P阱3,进行离子注入,获得LDD结构8。As shown in FIG. 2 , a
如图3所示,去除光阻7并形成光阻9,覆盖P阱3,暴露出N阱2,进行离子注入,获得LDD结构10。As shown in FIG. 3 , the
如图4所示,去除光阻9并形成侧墙11。As shown in FIG. 4 , the photoresist 9 is removed and
如图5所示,形成掩膜层12,覆盖N阱2和P阱3上的栅极结构(包括栅极16和侧墙),进行离子注入,获得N型重掺杂区13。As shown in FIG. 5 , a
如图6所示,去除掩膜层12,形成掩膜层14覆盖P阱3和N阱2上的栅极结构(包括栅极16和侧墙),进行离子注入,获得P型重掺杂区15。As shown in FIG. 6 , the
当图形化尺寸小于0.18μm时,LDD离子注入的剂量就不再属于轻注入,即源/漏扩展离子注入。同时,LDD是光罩选择性区域的离子注入,需要的光罩数为2或4层,对于多晶硅栅极CD(关键尺寸)较大的器件(例如≥0.18μm),如果投入的光罩层数较多,势必导致成本较高,并且延长芯片的生产周期。When the pattern size is less than 0.18μm, the dose of LDD ion implantation is no longer a light implant, that is, source/drain extended ion implantation. At the same time, LDD is ion implantation in the selective area of the mask, and the number of masks required is 2 or 4 layers. For devices with large polysilicon gate CD (critical dimension) (eg ≥ 0.18 μm), if the input mask layer If the number is large, it will inevitably lead to higher cost and prolong the production cycle of the chip.
于是,本发明提供一种半导体结构的制作方法,改善这一问题。Therefore, the present invention provides a method for fabricating a semiconductor structure to improve this problem.
如图7所示,本发明实施例提供一种半导体结构的制作方法,包括:As shown in FIG. 7 , an embodiment of the present invention provides a method for fabricating a semiconductor structure, including:
步骤S11,提供前端结构,所述前端结构形成有第一类型阱和第二类型阱,以及分别位于第一类型阱和第二类型阱上的栅极;Step S11, providing a front-end structure, the front-end structure is formed with a first-type well and a second-type well, and gates respectively located on the first-type well and the second-type well;
步骤S12,对所述前端结构进行第一次离子注入,以分别在第一类型阱和第二类型阱中栅极两侧形成第一注入区;Step S12, performing a first ion implantation on the front-end structure to form a first implantation region on both sides of the gate in the first-type well and the second-type well, respectively;
步骤S13,在所述第一类型阱上和第二类型阱的栅极上形成第一掩膜层,并对所述第二类型阱进行第二次离子注入,在第二类型阱中栅极两侧形成第二注入区,所述第一次注入的离子和第二次注入的离子类型相同;Step S13, forming a first mask layer on the first type well and the gate of the second type well, and performing a second ion implantation on the second type well, and the gate in the second type well A second implantation region is formed on both sides, and the ions implanted in the first time are of the same type as the ions implanted in the second time;
步骤S14,移除所述第一掩膜层;Step S14, removing the first mask layer;
步骤S15,在所述第二类型阱上和第一类型阱的栅极上形成第二掩膜层,并对所述第一类型阱进行第三次离子注入,使得第一类型阱中的第一注入区转变为第三注入区,并在第一类型阱中栅极两侧形成第四注入区,所述第一次注入的离子和第三次注入的离子类型不同;Step S15, forming a second mask layer on the second type well and the gate of the first type well, and performing a third ion implantation on the first type well, so that the first type well in the first type well is implanted. An implantation region is transformed into a third implantation region, and a fourth implantation region is formed on both sides of the gate in the first type well, and the ions implanted for the first time and the ions implanted for the third time are of different types;
步骤S16,移除所述第二掩膜层。Step S16, removing the second mask layer.
下面结合图8-13对上述步骤进行详细说明。The above steps will be described in detail below with reference to FIGS. 8-13 .
如图8所示,对于步骤S11,提供前端结构,所述前端结构形成有第一类型阱101和第二类型阱102,以及分别位于第一类型阱101和第二类型阱102上的栅极105。As shown in FIG. 8, for step S11, a front-end structure is provided, the front-end structure is formed with a first-
具体的,可以是提供一衬底100,所述衬底100构成材料可以采用未掺杂的单晶硅、掺杂有杂质的单晶硅、绝缘体上硅(SOI)等。作为示例,在本实施例中,衬底100选用单晶硅材料构成。在所述衬底100中还可以形成有埋层(图中未示出)等。Specifically, a
并且,所述衬底100通过离子注入形成第一类型阱101和第二类型阱102,所述第一类型阱101和第二类型阱102可以由隔离结构(例如是STI)103隔离。In addition, the
进一步的,还在所述衬底100上形成栅氧化层104,例如可以经过炉管形成所述栅氧化层104,其厚度可以为 Further, a
所述栅极105可以是多晶硅材质。The
在本发明实施例中,以所述第一类型阱101为N阱,第二类型阱102为P阱为例进行说明。本领域技术人员在下文的基础上,通过改变离子注入的类型,也可以选择第一类型阱101为P阱,第二类型阱102为N阱进行制作,本发明对比并不做特别限制。In the embodiment of the present invention, the first type well 101 is an N well and the second type well 102 is a P well as an example for description. On the basis of the following, those skilled in the art can also select the first type well 101 to be a P well and the second type well 102 to be an N well by changing the type of ion implantation. The comparison of the present invention is not particularly limited.
上述前端结构的提供可以采用现有工艺来完成,依据实际需要,可以灵活调整注入离子种类、浓度和膜层的厚度等尺寸。The provision of the above-mentioned front-end structure can be completed by using the existing technology. According to actual needs, the size of the implanted ions, such as the type, the concentration, and the thickness of the film layer, can be flexibly adjusted.
请参考图9,对于步骤S12,对所述前端结构进行第一次离子注入,以分别在N阱101和P阱102中栅极两侧形成第一注入区106。Referring to FIG. 9 , in step S12 , first ion implantation is performed on the front-end structure to form
具体的,所述第一次离子注入为普注N型离子,即无光罩整面注入(Blanket LDDIMP),例如,注入离子可以为磷(P)离子,注入浓度可以为2.2*103/cm2-2.5*103/cm2,深度约为 Specifically, the first ion implantation is a general N-type ion implantation, that is, a mask-less full-surface implantation (Blanket LDDIMP). For example, the implanted ions may be phosphorus (P) ions, and the implantation concentration may be 2.2*10 3 / cm 2 -2.5*10 3 /cm 2 , with a depth of approx.
较佳的,为了在第一次离子注入时对栅极进行保护,可以在步骤S11之后,对所述栅极105进行快速热氧化处理,从而形成一层氧化层(未图示),防止离子注入对栅极105造成损伤。Preferably, in order to protect the gate during the first ion implantation, the
请参考图9-图10,步骤S13,在所述N阱101上和P阱102的栅极105上形成第一掩膜层108,并对所述P阱102进行第二次离子注入,在P阱102中栅极105两侧形成第二注入区109,所述第一次注入的离子和第二次注入的离子类型相同。此步骤也即是形成NMOS的过程。Please refer to FIG. 9 to FIG. 10 , in step S13 , a
具体的,如图10所示,先在所述栅极105两侧形成栅极侧墙107。为了有助于本发明获得较佳的MOS性能,可以使得N阱101上和P阱102上的栅极侧墙107有着不同的厚度(即如图10所示的横向宽度),使得位于N阱101的栅极105侧的栅极侧墙107厚度D1小于位于P阱102的栅极105侧的栅极侧墙107厚度D2。例如,位于P阱102的栅极105侧的栅极侧墙107厚度D1为90nm-110nm,如100nm等,位于N阱101的栅极105侧的栅极侧墙107厚度D2为80nm-90nm,如85nm等。这一设计的作用将在步骤S15中具体探讨。Specifically, as shown in FIG. 10 ,
本步骤可以是所述第一掩膜层108完全覆盖N阱101(包括栅极105及栅极侧墙107),而在P阱102上方则仅覆盖栅极105及栅极侧墙107。为了获得较佳的注入效果,所述第一掩膜层108在P阱102处的厚度H1为例如可以是等。在本实施例中,所述第一掩膜层108可以选择为光阻,以既能够实现离子注入的防护,又能够方便的去除。In this step, the
进一步的,为了调整NMOS的性能,本步骤中的第二次离子注入还可以有着一定的夹角(如图11所示)。Further, in order to adjust the performance of the NMOS, the second ion implantation in this step may also have a certain angle (as shown in FIG. 11 ).
所述第二次离子注入为注入N型离子,例如可以是磷、砷等,注入浓度可以为2.8*103/cm2-3.2*103/cm2,深度约为 The second ion implantation is to implant N-type ions, such as phosphorus, arsenic, etc., the implantation concentration can be 2.8*10 3 /cm 2 -3.2*10 3 /cm 2 , and the depth is about
在本步骤的第二次离子注入后,可以在P阱102中形成第二注入区109作为N型重掺杂区,所述第二注入区109的掺杂浓度和注入深度大于所述第一注入区106的掺杂浓度和注入深度。After the second ion implantation in this step, a
步骤S14为移除所述第一掩膜层108,可以采用常规工艺来完成,例如灰化和清洗即可。Step S14 is to remove the
请参考图12,对于步骤S15,在所述P阱102上和N阱101的栅极105上形成第二掩膜层110,并对所述N阱101进行第三次离子注入,使得N阱101中的第一注入区106转变为第三注入区111,并在N阱101中栅极105两侧形成第四注入区112,所述第一次注入的离子和第三次注入的离子类型不同。此步骤也即是形成PMOS的过程。Referring to FIG. 12, for step S15, a
在本实施例中,所述第二掩膜层110可以选择为光阻,以既能够实现离子注入的防护,又能够方便的去除。In this embodiment, the
可以理解的是,在N阱101中和P阱102中的LDD结构(即第一注入区106和第三注入区111)其掺杂类型是不一致的,而之前进行的第一次离子注入已经在N阱101中形成第一注入区106,因此,本步骤首先是通过第三次离子注入实现对N阱101中第一注入区106的中和,然后进一步将第一注入区106转变为第三注入区111。It can be understood that the doping types of the LDD structures in the N well 101 and the P well 102 (ie, the
为了较好的实现这一目的,如上文所述,在N阱101处的栅极侧墙107较薄,由此能够确保第三次离子注入可以影响到整个第一注入区106所在区域。In order to better achieve this purpose, as mentioned above, the
此外,也可以是调整第三次离子注入的角度,例如是所述第三次离子注入的角度为与前端结构上表面的法向呈30°-60°夹角θ,如35°等。In addition, the angle of the third ion implantation can also be adjusted, for example, the angle of the third ion implantation is an included angle θ of 30°-60°, such as 35°, with the normal direction of the upper surface of the front-end structure.
可以理解的是,上述栅极侧墙厚度、掩膜层厚度及注入角度这几个条件可以依据实际需要选择或者不选择,并且可以是多个条件结合在一起使用。It can be understood that the above-mentioned conditions of the thickness of the gate spacer, the thickness of the mask layer and the injection angle can be selected or not selected according to actual needs, and multiple conditions can be used in combination.
进一步的还可以对所述第二掩膜层110位于N阱101上的那部分的厚度进行调整,使得所述N阱101的栅极105上的第二掩膜层110厚度小于所述P阱102的栅极105上的第一掩膜层108厚度。例如,所述N阱101的栅极105上的第二掩膜层110厚度H2为如等。由此降低对离子注入的遮挡区域,也能够实现较好的离子注入。Further, the thickness of the part of the
所述第三次离子注入为注入P型离子,例如可以是硼、镓等,注入浓度可以为1.5*104/cm2-1.8*104/cm2,深度约为 The third ion implantation is to implant P-type ions, such as boron, gallium, etc., the implantation concentration can be 1.5*10 4 /cm 2 -1.8*10 4 /cm 2 , and the depth is about
在本步骤的第三次离子注入后,一方面形成了第三注入区111,另一方面也形成了第四注入区112,其中第三注入区111为LDD结构,第四注入区112作为N型重掺杂区,所述第四注入区112的掺杂浓度和注入深度大于所述第三注入区111的掺杂浓度和注入深度。After the third ion implantation in this step, a
步骤S16为移除所述第二掩膜层110,可以采用常规工艺来完成,例如灰化和清洗即可。在移除后,可以获得如图13所示的结构,以本发明实施例的CMOS而言,包括衬底100,N阱101和P阱102,所述N阱101和P阱102由隔离结构103隔离,在N阱101中形成有第三注入区111和第四注入区112,在P阱102中形成有第一注入区106和第二注入区109,在N阱101上和P阱102上形成有栅氧化层104,以及栅极105和栅极侧墙107。Step S16 is to remove the
进一步的,在移除所述第二掩膜层之后,还包括:进行退火工艺,可以采用常规工艺完成。Further, after removing the second mask layer, the method further includes: performing an annealing process, which may be completed by a conventional process.
可以理解的是,本发明同样可以适用于调节其他MOS结构,例如对于LV/HVMOS的工艺,同样可以通过调节光阻厚度或者离子注入角度等来保证一种结构(比如HVMOS)性能完善的情况下,反过来调节两道LDD工序保证另一种结构(比如LVMOS)性能满足要求,该种方法同样可以节省至少两层LDD光罩及对应的至少两道工序,从而节省制造成本,缩短了芯片生产周期。It can be understood that the present invention can also be applied to adjust other MOS structures. For example, for the LV/HVMOS process, the thickness of the photoresist or the angle of ion implantation can also be adjusted to ensure that a structure (such as HVMOS) has perfect performance. , in turn, adjust the two LDD processes to ensure that the performance of another structure (such as LVMOS) meets the requirements. This method can also save at least two layers of LDD masks and at least two corresponding processes, thereby saving manufacturing costs and shortening chip production. cycle.
综上所述,本发明提供的半导体结构的制作方法,包括:提供前端结构,所述前端结构形成有第一类型阱和第二类型阱,以及分别位于第一类型阱和第二类型阱上的栅极;对所述前端结构进行第一次离子注入,以分别在第一类型阱和第二类型阱中栅极两侧形成第一注入区;在所述第一类型阱上和第二类型阱的栅极上形成第一掩膜层,并对所述第二类型阱进行第二次离子注入,在第二类型阱中栅极两侧形成第二注入区,所述第一次注入的离子和第二次注入的离子类型相同;移除所述第一掩膜层;在所述第二类型阱上和第一类型阱的栅极上形成第二掩膜层,并对所述第一类型阱进行第三次离子注入,使得第一类型阱中的第一注入区转变为第三注入区,并在第一类型阱中栅极两侧形成第四注入区,所述第一次注入的离子和第三次注入的离子类型不同;移除所述第二掩膜层。由此,通过第一次注入和第三次注入即可形成作为LDD的第一注入区和第三注入区,相比现有技术能够至少节省两层LDD的光罩,以及对应的至少两道工序,可见能够大大的节约成本,优化制作工艺,缩短生产周期。To sum up, the method for fabricating a semiconductor structure provided by the present invention includes: providing a front-end structure, wherein the front-end structure is formed with a first-type well and a second-type well, and is located on the first-type well and the second-type well, respectively the gate; perform the first ion implantation on the front-end structure to form first implantation regions on both sides of the gate in the first-type well and the second-type well, respectively; on the first-type well and the second A first mask layer is formed on the gate of the type well, and a second ion implantation is performed on the second type well, and a second implantation region is formed on both sides of the gate in the second type well, and the first implantation The ions of the second type are of the same type as the ions implanted for the second time; the first mask layer is removed; a second mask layer is formed on the second type well and the gate of the first type well, and the A third ion implantation is performed in the first type well, so that the first implantation region in the first type well is transformed into a third implantation region, and a fourth implantation region is formed on both sides of the gate in the first type well, and the first implantation region is formed in the first type well. The ions of the second implant are of a different type than the third implant; the second mask layer is removed. Therefore, the first implantation region and the third implantation region as LDD can be formed by the first implantation and the third implantation. Compared with the prior art, at least two layers of LDD masks and corresponding at least two layers can be saved. It can be seen that the cost can be greatly saved, the production process can be optimized, and the production cycle can be shortened.
并且,可以通过第一次离子注入和第二次离子注入实现NMOS性能的调节;通过第一次离子注入和第三次离子注入,并进一步结合栅极侧墙的厚度、掩膜层的厚度以及第三次离子注入角度的选择,实现对PMOS性能的调节,例如改善了MOS结构的漏电流,使得产品的性能得以保证。In addition, the adjustment of NMOS performance can be achieved through the first ion implantation and the second ion implantation; through the first ion implantation and the third ion implantation, and further combined with the thickness of the gate spacer, the thickness of the mask layer, and the The selection of the third ion implantation angle can adjust the performance of the PMOS, such as improving the leakage current of the MOS structure, so that the performance of the product can be guaranteed.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710100565.0A CN108470680B (en) | 2017-02-23 | 2017-02-23 | Method of making a semiconductor structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710100565.0A CN108470680B (en) | 2017-02-23 | 2017-02-23 | Method of making a semiconductor structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108470680A CN108470680A (en) | 2018-08-31 |
CN108470680B true CN108470680B (en) | 2020-11-03 |
Family
ID=63266720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710100565.0A Active CN108470680B (en) | 2017-02-23 | 2017-02-23 | Method of making a semiconductor structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108470680B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111383997A (en) * | 2020-03-02 | 2020-07-07 | 上海华虹宏力半导体制造有限公司 | Manufacturing method of complementary metal oxide semiconductor for high-voltage BCD platform |
CN113555362A (en) * | 2021-07-29 | 2021-10-26 | 上海华虹宏力半导体制造有限公司 | CMOS device and process method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7348233B1 (en) * | 2005-08-19 | 2008-03-25 | Advanced Micro Devices, Inc. | Methods for fabricating a CMOS device including silicide contacts |
US20100244152A1 (en) * | 2009-03-27 | 2010-09-30 | Bahl Sandeep R | Configuration and fabrication of semiconductor structure having extended-drain field-effect transistor |
KR102138385B1 (en) * | 2014-03-06 | 2020-07-28 | 매그나칩 반도체 유한회사 | Low-cost semiconductor device manufacturing method |
CN105226022B (en) * | 2014-05-28 | 2018-06-01 | 中芯国际集成电路制造(上海)有限公司 | The forming method of semiconductor structure |
CN104465344A (en) * | 2014-11-28 | 2015-03-25 | 上海华力微电子有限公司 | Ion implantation method for improving performance of PMOS device |
-
2017
- 2017-02-23 CN CN201710100565.0A patent/CN108470680B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108470680A (en) | 2018-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7741138B2 (en) | Semiconductor device and fabricating method thereof | |
CN107039506B (en) | Source/drain extension control for improved transistors | |
US7396713B2 (en) | Structure and method for forming asymmetrical overlap capacitance in field effect transistors | |
US20130109145A1 (en) | Method of manufacturing semiconductor device | |
SG185185A1 (en) | Mos semiconductor device and methods for its fabrication | |
US20140199818A1 (en) | Method for fabricating an esd protection device | |
US20150270399A1 (en) | Semiconductor structure and method for manufacturing the same | |
US10177246B2 (en) | Semiconductor structure and fabrication method thereof | |
TWI556320B (en) | Low thermal budget solution for semiconductor device manufacturing | |
CN111933696A (en) | Preparation method of semiconductor device | |
EP3267476A1 (en) | Semiconductor structure and fabrication method thereof | |
CN108470680B (en) | Method of making a semiconductor structure | |
CN102044438B (en) | MOS (Metal Oxide Semiconductor) transistor and manufacturing method thereof | |
CN108122850B (en) | Semiconductor structure and forming method thereof | |
CN108565212A (en) | A kind of production method and MOS transistor of MOS transistor | |
US20170200809A1 (en) | Method to improve gate dielectric quality for finfet | |
WO2013155760A1 (en) | Semiconductor structure and manufacturing method thereof | |
CN111785774A (en) | CMOS device in BCD process and its manufacturing method | |
CN103247528B (en) | The manufacture method of metal oxide semiconductor field effect tube | |
US10727130B2 (en) | Semiconductor device and fabrication method thereof | |
CN109427681A (en) | Semiconductor structure and forming method thereof | |
CN114038758B (en) | Method for forming NMOS with improved hot carrier injection | |
US8962410B2 (en) | Transistors with different threshold voltages | |
KR20070013032A (en) | Manufacturing Method of Flash Memory Device | |
CN108281482B (en) | Semiconductor structure and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |