[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN108431241A - 用于生产具有改进的延展性和可成形性的高强度经涂覆钢板的方法和获得的经涂覆钢板 - Google Patents

用于生产具有改进的延展性和可成形性的高强度经涂覆钢板的方法和获得的经涂覆钢板 Download PDF

Info

Publication number
CN108431241A
CN108431241A CN201680075002.4A CN201680075002A CN108431241A CN 108431241 A CN108431241 A CN 108431241A CN 201680075002 A CN201680075002 A CN 201680075002A CN 108431241 A CN108431241 A CN 108431241A
Authority
CN
China
Prior art keywords
steel plate
plate
temperature
ferrite
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680075002.4A
Other languages
English (en)
Other versions
CN108431241B (zh
Inventor
玛雅·戈斯波迪诺娃
韦罗尼克·赫伯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of CN108431241A publication Critical patent/CN108431241A/zh
Application granted granted Critical
Publication of CN108431241B publication Critical patent/CN108431241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

一种用于生产经涂覆的钢板的方法,所述经涂覆的钢板的拉伸强度TS为至少100MPa,根据ISO标准6892‑1的总延伸率TE为至少12%,拉伸强度乘以总延伸率的乘积TS×TE为至少14200MPa%,以及根据ISO标准16630:2009的扩孔率HER为至少25%,所述方法包括以下顺序步骤:‑提供冷轧钢板,以重量%计,钢的化学组成包含:0.15%≤C≤0.23%,2.0%≤Mn≤2.7%,其中C+Mn/10≥0.420%,0≤Cr≤0.40%,其中Mn+Cr≥2.25%,0.2%≤Si≤1.6%,0.02%≤Al≤1.2%,其中1.0%≤Si+Al≤2.2%,0≤Nb≤0.035%,0≤Mo≤0.1%,剩余部分为Fe和不可避免的杂质,‑使钢板在退火温度TA下退火以获得包含至少65%的奥氏体和至多35%的亚温铁素体的组织,‑在20℃/秒至50℃/秒的冷却速率下将板从至少600℃的温度淬火至200℃至270℃的淬火温度QT,‑将板加热到400℃至480℃的配分温度PT并将板在该配分温度PT下保持50秒至250秒的配分时间Pt,‑在低于515℃的温度下热浸涂板,‑使经涂覆的板冷却至室温,以表面分数计,钢板具有由以下组成的显微组织:3%至15%的残余奥氏体;至少30%的回火马氏体;至多5%的新生马氏体;至多35%的贝氏体,回火马氏体、新生马氏体和贝氏体的表面分数之和为55%至92%;以及5%至35%的铁素体。

Description

用于生产具有改进的延展性和可成形性的高强度经涂覆钢板 的方法和获得的经涂覆钢板
本发明涉及用于生产具有改善的延展性和可成形性的高强度经涂覆钢板的方法和用该方法获得的经涂覆的板。
为了制造各种设备,例如机动车辆的车身结构构件和车身面板的部件,通常使用由DP(双相)钢或TRIP(相变诱导塑性)钢制成的板。
还已知使用这样的钢:具有贝氏体组织,不含碳化物析出物,具有残余奥氏体,包含约0.2%的C、约2%的Mn、约1.7%的Si,屈服强度为约750MPa,拉伸强度为约980MPa,总延伸率为约8%。这些板在连续退火线上通过从高于Ac3转变点的退火温度冷却至高于Ms转变点的保持温度并将板在该温度下保持给定时间来制造。这些板中的一些通过金属涂覆例如镀锌或镀锌扩散退火处理进行涂覆。
考虑到全球环境保护,为了减轻汽车的重量以提高其燃料效率,期望具有改善的屈服强度和拉伸强度的板。但是这样的板还必须具有良好的延展性和良好的可成形性以及更特别地良好的拉伸凸缘性(flangeability)。
在这方面,期望具有这样经涂覆的钢板:其拉伸强度TS为至少1100MPa,总延伸率TE为至少12%,优选为至少13%,使得拉伸强度和总延伸率的乘积高于或等于14200MPa%,以及扩孔率HER为至少25%并且优选为至少30%。拉伸强度TS和总延伸率TE根据于2009年10月出版的ISO标准ISO 6892-1测量。必须强调的是,由于测量方法的差异,特别是由于所使用的试样的几何形状的差异,根据ISO标准的总延伸率TE的值是非常不同的并且特别是低于根据JIS Z 2201-05标准的总延伸率的值。扩孔率HER是根据ISO标准16630:2009测量的。由于测量方法的差异,根据ISO标准16630:2009的扩孔率HER的值是非常不同的并且与根据JFS T 1001(日本钢铁联合会标准)的扩孔率λ的值没有可比性。
还期望具有如上所述的机械性质,在0.7mm至3mm的厚度范围内,并且更优选在1mm至2mm的范围内的钢板。
因此,本发明旨在提供具有上述机械性质的经涂覆的钢板及其生产方法。
为了这个目的,本发明涉及用于生产经涂覆的钢板的方法,所述经涂覆的钢板的拉伸强度TS为至少1100MPa,根据ISO标准6892-1的总延伸率TE为至少12%,拉伸强度乘以总延伸率的乘积TS×TE为至少14200MPa%,以及根据ISO标准16630∶2009的扩孔率HER为至少25%,其中所述方法包括以下顺序步骤:
-提供冷轧钢板,以重量%计,钢的化学组成包含,
0.15%≤C≤0.23%,
2.0%≤Mn≤2.7%,
其中C+Mn/10≥0.420%,
0≤Cr≤0.40%,
其中Mn+Cr≥2.25%,
0.2%≤Si≤1.6%
0.02%≤Al≤1.2%,
其中1.0%≤Si+Al≤2.2%,
0≤Nb≤0.035%,
0≤Mo≤0.1%,
剩余部分为Fe和不可避免的杂质,
-使钢板在退火温度TA下退火以获得包含至少65%的奥氏体和至多35%的亚温铁素体(intercritical ferrite)的组织,
-以20℃/秒至50℃/秒的冷却速率将板从至少600℃的温度淬火至200℃至270℃的淬火温度QT,
-将板加热到400℃至480℃的配分温度PT并将板保持在该配分温度PT下50秒至250秒的配分时间Pt,
-在低于515℃的温度下热浸涂板,
-使经涂覆的板冷却至室温,
以表面分数计,钢板具有由以下组成的显微组织:
-3%至15%的残余奥氏体,
-至少30%的回火马氏体,
-至多5%的新生马氏体,
-至多35%的贝氏体,
回火马氏体、新生马氏体和贝氏体的表面分数之和为55%至92%,
-5%至35%的铁素体。
根据一个特定实施方案,所述方法包括在退火步骤和淬火步骤之间使板以低于10℃/秒的冷却速率缓慢冷却至少10秒的时间至高于或等于600℃的温度的步骤。
根据该实施方案,以相对于整个组织的面积分数计,铁素体优选包含0%至5%的亚温铁素体和0%至35%的转变铁素体(transformation ferrite),所述转变铁素体在缓慢冷却步骤期间形成。
根据另一个特定实施方案,铁素体由亚温铁素体组成。
优选地,经淬火的板恰在加热至配分温度PT之前具有由以下组成的组织:5%至35%的铁素体、至少3%的奥氏体、至少30%的马氏体,补足量由下贝氏体组成。
根据一个特定实施方案,提供所述冷轧钢板的步骤包括:
-对由所述钢制成的板进行热轧以获得热轧钢板,
-在400℃至650℃的温度Tc下卷取所述热轧钢板,
-在400℃至700℃的温度THBA下进行热处理,将板在所述温度THBA下保持120秒至15小时的时间,
-对所述热轧钢板进行冷轧以获得所述冷轧钢板。
例如,热处理是在550℃至700℃的温度THBA下对经热轧和卷取的板进行的分批退火,将经热轧和卷取的板在所述温度THBA下保持5小时至15小时的时间。
根据另一个实例,热处理是连续退火,所述温度THBA为600℃至700℃,将板在所述温度THBA下保持120秒至360秒的时间。
优选地,在将板淬火至淬火温度QT之后且在将板加热至配分温度PT之前,将板在淬火温度QT下保持2秒至8秒,优选3秒至7秒的保持时间。
优选地,所述钢的化学组成满足以下条件中的至少一者:C≥0.17%,C≤0.21%,Mn≤2.5%,0.010%≤Nb,Cr≤0.05%,或Cr≥0.10%。
根据一个特定实施方案,钢的化学组成为使得C+Si/10≤0.30%且Al≥6(C+Mn/10)-2.5%。
根据该实施方案,钢的化学组成优选为使得0.2%≤Si<1.0%且0.4%≤Al≤1.2%,还优选为使得0.2%≤Si≤0.8%且0.7%≤A1≤1.2%。
根据一个实施方案,热浸涂步骤是镀锌步骤或合金化温度GAT为480℃至515℃的镀锌扩散退火处理步骤。
钢板例如涂覆有Zn或Zn合金。
本发明还涉及用于生产至少两个钢板的电阻点焊部的方法,所述方法包括:
-通过根据本发明的方法生产第一钢板,使得C+Si/10≤0.30%且A1≥6(C+Mn/10)-2.5%,钢板涂覆有Zn或Zn合金,
-提供第二钢板,其组成使得C+Si/10≤0.30%且A1≥6(C+Mn/10)-2.5%,
-将所述第一钢板电阻点焊到所述第二钢板。
本发明还涉及经涂覆的钢板,其中以重量计%,钢的化学组成包含:
0.15%≤C≤0.23%
2.0%≤Mn≤2.7%,
其中C+Mn/10≥0.420%,
0≤Cr≤0.40%,
其中Mn+Cr≥2.25%,
0.2%≤Si≤1.6%
0.02%≤Al≤1.2%,
其中1.0%≤Si+Al≤2.2%,
0≤Nb≤0.035%,
0≤Mo≤0.1%,
剩余部分为Fe和不可避免的杂质,
以表面百分比计,所述钢板具有由以下组成的显微组织:
-3%至15%的残余奥氏体,
-至少30%的回火马氏体,
-至多5%的新生马氏体,
-至多35%的贝氏体,
回火马氏体、新生马氏体和贝氏体的表面分数之和为55%至92%,
-5%至35%的铁素体。
根据一个特定实施方案,以相对于整个组织的面积分数计,铁素体包含0%至5%的亚温铁素体和0%至35%的转变铁素体。
根据另一个特定实施方案,铁素体由亚温铁素体组成。
优选地,残余奥氏体中的C含量为0.9%至1.2%。
优选地,钢板的屈服强度为至少500MPa,拉伸强度为至少1100MPa,根据ISO 6892-1的总延伸率为至少12%,拉伸强度乘以总延伸率的乘积TS×TE为至少14200MPa%,以及根据ISO 16630:2009的扩孔率HER为至少25%。
优选地,钢的化学组成满足以下条件中的至少一者:
C≥0.17%,
C≤0.21%,
Mn≤2.5%,
0.010%≤Nb,
Cr≤0.05%,或
Cr≥O.10%。
根据一个特定实施方案,钢的化学组成为使得C+Si/10≤0.30%且Al≥6(C+Mn/10)–2.5%。
在该实施方案中,钢的化学组成优选为使得0.2%≤Si<1.0%且0.4%≤Al≤1.2%,还优选为使得0.2%≤Si≤0.8%且0.7%≤Al≤1.2%。
钢板例如涂覆有Zn或Zn合金。
例如,所述经涂覆的钢板的厚度为0.7mm至3mm,优选1mm至2mm。
本发明还涉及包括至少两个钢板的至少十个电阻点焊部的焊接结构,其中第一钢板是根据本发明的,涂覆有Zn或Zn合金并且使得C+Si/10≤0.30%且Al≥6(C+Mn/10)–2.5%,第二钢板的组成使得C+Si/10≤0.30%且Al≥6(C+Mn/10)–2.5%,并且每个电阻点焊部的平均裂纹数小于6。
优选地,第二钢板是根据本发明的。
本发明还涉及根据本发明制造的钢板或根据本发明的钢板用于制造机动车辆中的结构部件的用途。
本发明还涉及通过根据本发明的方法生产的电阻点焊部或根据本发明的焊接结构用于制造机动车辆中的结构部件的用途。
现在将参照附图详细地但以不引入限制的方式描述本发明。
以重量百分比计,根据本发明的钢的组成包含:
-0.15%至0.23%的碳,用于确保令人满意的强度和提高残余奥氏体(其是获得足够的延伸率所必需的)的稳定性。优选地,碳含量高于或等于0.16%,还优选高于或等于0.17%,和/或低于或等于0.21%。如果碳含量太高,则热轧板太硬而不能冷轧并且可焊接性不足。如果碳含量低于0.15%,则拉伸强度将不能达到1100MPa。
-2.0%至2.7%的锰。如果锰含量低于2.0%,则钢不具有足够的淬透性,使得不能获得包含总和为至少55%的马氏体和贝氏体的显微组织和大于1100MPa的拉伸强度。限定最大锰含量以避免具有对延展性不利的偏析问题。优选地,锰含量低于或等于2.5%。
-0%至0.40%的铬。可添加Cr以提高淬透性和使残余奥氏体稳定以大幅减少配分期间的奥氏体分解。但是大于0.40%的铬对凸缘性是不利的,并且如果Cr含量大于0.40%,则不可能获得大于25%的HER率。根据一个实施方案,可以不使用铬以及其含量可以保持小于0.05%,小于0.05%的含量对应于Cr作为杂质而存在。当主动添加Cr时,其含量为至少0.10%。
此外,碳和锰含量使得(C+Mn/10)≥0.420%,并且锰和铬含量使得(Mn+Cr)≥2.25%以获得大于1100MPa的拉伸强度和/或至少12%的根据ISO 6892-1的总延伸率。如果(C+Mn/10)<0.420和/或(Mn+Cr)<2.25%,则不能实现大于1100MPa的拉伸强度和/或至少12%的总延伸率。
-0.2%至1.6%的硅和0.02%至1.2%的铝,硅和铝含量之和为1.0%至2.2%。
一定量的铝与氧结合为Al2O3,与氮结合为AlN;该量取决于O和N含量并且保持小于0.025%。剩余部分(如果其存在的话)不结合并且构成“游离铝”。
与氧结合的铝是由液体阶段中的脱氧造成的。这对延展性质不利,并因此必须尽可能地限制其含量。
与氮结合的铝减缓了退火期间的奥氏体晶粒生长。氮是由熔炼产生的残余元素并且在钢板中小于0.010%。
本发明人已发现,Si和游离Al通过延迟碳化物的形成来使奥氏体稳定。如果钢板在一定温度下冷却以获得部分马氏体转变,并且立即再加热并保持在温度PT下(在此期间碳从马氏体再分配到奥氏体),则尤其会发生这种情况。如果Si和游离Al含量添加足够的量,则发生碳再分配而没有显著的碳化物析出。为了这个目的,Si+Al以重量计必须大于1.0%(但是小于2.2%)。此外,Si提供了固溶强化并提高了扩孔率。但是Si含量必须限制为1.6%以避免在板的表面上形成硅氧化物,这对涂布性能是不利的。
此外,本发明人已发现,当Si/10>0.30%–C(Si和C以重量百分比表示)时,由于LME(liquid metal embrittlement phenomenon,液体金属脆化现象),硅对经涂覆的板并且特别是对镀锌或镀锌扩散退火处理的或电镀锌的板的电阻点焊是不利的。LME的发生在焊接接头的热影响区中和焊缝金属中的晶界处造成裂纹。因此,(C+Si/10)必须保持小于或等于0.30%,尤其是待涂覆的板。
他们还发现,为了减少LME的发生,对于所考虑的组成范围,Al含量必须高于或等于6(C+Mn/10)–2.5%。
因此,根据第一实施方案,特别是当LME不太可能出现时,添加Al仅用于脱氧或任选地控制退火期间的奥氏体晶粒生长,并且其含量保持小于0.5%,例如小于0.1%,但是优选为至少0.020%。根据该第一实施方案,Si含量为1.2%至1.6%。在该实施方案中,根据C含量,(C+Si/10)可高于0.30%,或者低于或等于0.30%。根据第二实施方案,特别是当必须考虑LME的问题时,C和Si含量必须使得(C+Si/10)≤0.30%。因此,Al以更大量的量添加,以便至少部分地替代Si以使奥氏体稳定。在该第二实施方案中,Al含量为0.4%至1.2%,优选为0.7%至1.2%,其中Al≥6(C+Mn/10)–2.5%,Si为0.2%至1.2%,优选为0.2%至1.0%,还优选为0.2%至0.8%。Al含量被限制到1.2%以防止Ac3转变温度的升高,这将意味着当在高温下加热以在退火步骤中实现钢板的奥氏体化时成本更高。
-任选地0.010%至0.035%的铌,以在热轧期间细化奥氏体晶粒和提供析出强化。0.010%至0.035%的Nb含量使得可以获得令人满意的屈服强度和延伸率,特别是至少500MPa的屈服强度。
-任选地,至多0.1%的钼。
余量是铁和由炼钢产生的残余元素。在这方面,Ni、Cu、Ti、V、B、S、P和N至少被认为是残余元素(其是不可避免的杂质)。因此,它们的含量为Ni小于0.05%,Cu小于0.03%,V小于0.007%,B小于0.0010%,S小于0.003%,P小于0.02%且N小于0.007%。Ti含量被限制到0.05%,因为高于这样的值,大尺寸的碳氮化物将主要在液体阶段中析出并且钢板的可成形性将降低,使得更难以达到总延伸率12%的目标,并且难以达到扩孔率HER为25%的目标。
当板涂覆有Zn或Zn合金时,可热点焊性可受到LME现象(液体金属脆化)的影响。
可以通过在高温下进行的拉伸试验来评估特定钢对这种现象的敏感性。特别地,该热拉伸试验可以使用Gleeble RPI热模拟器来进行,这样的装置本身在本领域中是已知的。
这种命名为“Gleeble LME试验”的试验描述如下:
-使厚度为0.7mm至3mm的经涂覆板的样品经受高温拉伸试验以确定在焊接区周围出现裂纹的最小临界位移。在待试验的板中切割的样品具有10mm长和10mm宽的校准区域以及40mm长和30mm宽的头部,头部和校准部之间的曲率半径为5mm。
-高温拉伸试验通过如下进行:迅速加热(1000℃/秒)各样品,将样品保持在预定的温度下并使加热的样品经受预定的延伸或位移,然后使样品在空气中冷却,保持延伸或位移,位移是Gleeble RPI热模拟器的网格的位移。冷却后,观察样品以确定是否存在LME裂纹。如果在样品上形成至少一个至少2mm的裂纹,则确定样品具有裂纹。
-试验在多个预定温度例如700℃、750℃、800℃、850℃、900℃和950℃下以及以0.5mm、0.75mm、1mm、1.25mm、1.5mm、1.75mm、2mm等的延伸或位移进行;延伸或位移是将样品保持在Gleeble模拟器上的钳口(jaw)的延伸或位移。
-报告开裂开始的临界位移并且对于所考虑的温度范围确定最小临界位移,即出现裂纹的最小位移。
通常,认为当在700℃至800℃的温度下最小临界位移小于1.5mm时,在电阻点焊中发生LME的概率高,而当最小临界位移为至少1.5mm时,在电阻点焊中观察到许多LME裂纹的概率低。
在这方面,本发明人已发现,对于对应于本发明的钢或类似于这些钢的钢,只要组成使得(C+Si/10)小于或等于0.30%且Al高于或等于6(C+Mn/10)-2.5%,则最小临界位移为至少1.5mm。当(C+Si/10)高于0.30%和/或Al低于6(C+Mn/10)-2.5%时,最小临界位移小于1.5mm,甚至小于1mm。
用于评估经涂覆的板的可点焊性的另一种方法是“LME点焊试验”,其允许确定在大量数量的电阻点焊部中,例如在包括通过电阻点焊组装的部件的产品(例如,汽车车身)的工业生产中具有裂缝焊缝的概率。
该“LME点焊试验”来源于电阻点焊的电极寿命试验,其中在叠加在一起的三个板上做出复数个电阻点焊部,例如30个:待试验的板和由镀锌低碳板(例如根据EN 10346的DX54D+Z)制成的两个支撑板。板的厚度为1.6mm并且电阻点焊部根据ISO标准18278-2制成用于异质组装(heterogeneous assemblies)。参数为:
-电极尖端直径:8mm,
-焊接力:4.5kN,
-焊接时间:由40毫秒周期(冷却时间)隔开的3个180毫秒的脉冲,
-保持时间:400毫秒。
对于该试验,在电阻点焊部中裂纹的最终出现,将样品切割并抛光。然后用苦味酸腐蚀电阻点焊部并通过显微镜例如以200x倍率观察以确定每个所观察的电阻点焊部中的裂纹数和每个电阻点焊部的裂纹的长度的总和。
例如,具有分别使得(C+Si/10)≤0.30%和(C+Si/10)>0.30%的组成,每个电阻点焊部的裂纹数的比例如下:
-(C+Si/10)≤0.30%:Gleeble LME试验>1.5mm,至少80%的电阻点焊部具有小于10个裂纹,并且0%具有20个或更多个裂纹,
-(C+Si/10)>0.30%:Gleeble LME试验<1.5mm,仅40%的电阻点焊部具有小于10个裂纹,并且30%具有20个或更多个裂纹。
如果考虑每个电阻点焊部中的平均裂纹数,则结果如下:
-对于使得C+Si/10≤0.30%的组成,每个电阻点焊部中的平均裂纹数小于6,
-对于使得C+Si/10>0.30%的组成,每个电阻点焊部中的平均裂纹数大于6。
厚度为2mm至5mm的热轧板可以由上述本发明的钢组成以已知的方式生产。作为一个实例,轧制前的再加热温度可以为1200℃至1280℃,优选约1250℃,精轧温度优选为Ar3至950℃,卷取在优选400℃至650℃的温度下进行。优选地,如果(C+Si/10)≤0.30%,则卷取温度为450℃至550℃。
在卷取之后,板具有铁素体-珠光体或铁素体-珠光体-贝氏体组织。
在卷取之后,任选地对板进行热处理,例如分批退火或连续退火,以降低钢板的硬度并因此改善经热轧和卷取的钢板的可冷轧性。
例如,在400℃至700℃的温度下对经热轧和卷取的钢板进行热处理,并且在分批退火温度THBA下保持120秒至15小时的时间。
根据一个实施方案,热处理是在550℃至700℃的分批退火温度THBA下对经热轧和卷取的板进行的分批退火,将经热轧和卷取的板在温度THBA下保持5小时至15小时的时间。
根据另一个实施方案,对板进行连续退火,退火温度THBA为600℃至700℃,并且将板在所述温度THBA下保持120秒至360秒的时间。
可以将板酸洗并冷轧以获得厚度为0.7mm至3mm,例如在1mm至2mm的范围内的冷轧板。
然后,在连续退火和涂覆线上对板进行热处理。
热处理包括以下步骤:
-使板在退火温度TA下退火,使得在退火步骤结束时,钢具有包含至少65%的奥氏体(并且多至100%)和0%至35%的亚温铁素体的组织。本领域技术人员知晓如何由膨胀测定法试验或半经验公式确定退火温度TA。优选地,退火温度TA为至多Ac3+20℃以限制奥氏体晶粒的粗化,Ac3表示在加热步骤期间转变成奥氏体结束的温度。还优选地,退火温度TA为至多Ac3。将板在退火温度下保持,即保持在TA-5℃与TA+10℃之间优选大于30秒但不需要大于300秒的退火时间tA
-任选地使板以低于10℃/秒,优选低于5℃/秒的冷却速率从退火温度TA缓慢冷却至冷却停止温度,以获得5%至35%的总铁素体分数(亚温铁素体+转变铁素体)而不形成珠光体和贝氏体。该缓慢冷却步骤旨在形成铁素体,特别是如果在退火步骤之后亚温铁素体的分数小于5%的情况。在这种情况下,在缓慢冷却期间形成的铁素体的分数高于或等于5%-IF(IF为亚温铁素体的分数)且低于或等于35%-IF。如果亚温铁素体的分数为至少5%,则缓慢冷却是任选的。在任何情况下,在缓慢冷却期间形成的铁素体的分数低于或等于35%-IF,使得总铁素体分数保持至多35%。冷却停止温度为750℃至600℃。实际上,高于750℃的冷却停止温度不允许形成足够的铁素体,而低于600℃的冷却停止温度可导致贝氏体的形成。缓慢冷却优选在10秒至40秒的冷却时间期间进行。可在缓慢冷却步骤期间形成的铁素体(还称为“转变铁素体”)与在退火步骤结束时残留在组织中的亚温铁素体不同。特别地,与转变铁素体相反,亚温铁素体为多边形的。此外,转变铁素体富含碳和锰,即具有高于亚温铁素体的碳和锰含量的碳和锰含量。因此,亚温铁素体和转变铁素体可以通过在用焦亚硫酸钠腐蚀之后用利用二次电子的FEG-TEM显微镜观察显微照片来区分。在显微照片上,如附图所示,亚温铁素体呈现中灰色,而转变铁素体由于其较高的碳和锰含量而呈现深灰色。在图中,IF表示亚温铁素体,TF表示转变铁素体,FM表示新生马氏体,以及RA表示残余奥氏体。对于钢的每种特定组成,本领域技术人员知晓如何精确地确定适用于获得期望的转变铁素体分数的缓慢冷却条件。转变铁素体的形成允许更准确地控制最终组织中的铁素体的面积分数,并因此提供工艺的稳健性。
–紧接在退火或缓慢冷却步骤之后,通过以足够快以基本上形成马氏体和下贝氏体而避免形成上贝氏体和粒状贝氏体的冷却速率从至少600℃的温度冷却至低于退火和缓慢冷却后残留的奥氏体的Ms转变点的淬火温度QT来对板进行淬火。冷却速率优选为20℃/秒至100℃/秒。对于钢的每种特定组成和每种组织,本领域技术人员知晓如何确定在退火和缓慢冷却之后残留的奥氏体的Ms转变点。还知晓如何确定适合于在刚淬火之后获得期望的组织的淬火温度,所述组织由以下组成:总和为5%至35%的亚温铁素体和转变铁素体,至少3%的奥氏体和至少30%的马氏体,补足量(如果有的话)由下贝氏体组成。通常,淬火温度QT介于200℃与270℃之间。如果淬火温度QT低于200℃,则最终组织中的回火(或配分)马氏体的分数太高而不能使大于3%的足够量的残余奥氏体稳定,因此根据ISO标准ISO6892-1测量的总延伸率未达到12%。此外,如果淬火温度QT高于270℃,则最终组织中的回火马氏体的分数太低而不能获得期望的拉伸强度。优选地,淬火温度QT为200℃至250℃。
-任选地,将经淬火的板在淬火温度QT下保持2秒至8秒,优选3秒至7秒的保持时间。
-将板从淬火温度再加热至400℃至480℃,并且优选440℃至470℃的配分温度PT。当再加热通过感应加热来进行时,再加热速率可以高,例如6℃/秒至13℃/秒。如果配分温度PT高于480℃或低于400℃,则最终产品的延伸率不令人满意。
-将板在配分温度PT下保持50秒至250秒,优选50秒至200秒的配分时间Pt。在该配分步骤期间,碳被配分,即从马氏体扩散到奥氏体中,由此被富集。
-热浸涂板。热浸涂可以是例如镀锌。当对板进行镀锌时,其在通常条件下进行。根据本发明的钢板可以在480℃至515℃,例如480℃至500℃的合金化温度GAT下进行镀锌扩散退火处理以通过在将钢浸入锌浴中之后进行与铁的相互扩散来使锌涂层合金化。如果镀锌扩散退火处理温度高于515℃,则根据ISO 6892-1的总延伸率降低至小于12%。根据本发明的钢可以镀覆有Zn或Zn合金如锌-镁或锌-镁-铝。但是,所有金属热浸涂均是可能的,前提条件是在涂覆期间板所处的温度保持小于501℃。
-使板以优选高于10℃/秒,例如10℃/秒至20℃/秒的冷却速度冷却至室温。
这种热处理允许获得由以下组成的最终组织(即在配分和冷却至室温之后):
-表面分数为3%至15%的残余奥氏体,
-表面分数为至少30%的回火马氏体,
-表面分数为至多5%的新生马氏体,
-表面分数为至多35%的贝氏体;所述贝氏体包含下贝氏体,例如由下贝氏体组成,
回火马氏体、新生马氏体和贝氏体的表面分数之和为55%至92%,
-5%至35%的铁素体。相对于整个组织,铁素体包含0%(含)至35%的亚温铁素体和0%(含)至35%的转变铁素体,使得亚温铁素体和转变铁素体之和的表面分数为5%至35%。例如,铁素体由亚温铁素体组成。根据另一个实例,相对于整个组织,铁素体包含0%至5%的亚温铁素体和0%(不含)至35%的转变铁素体。
至少3%的残余奥氏体分数与5%至35%的铁素体表面分数允许获得至少12%的根据ISO 6892-1的总延伸率。
此外,这种处理允许在残余奥氏体中获得增加的C含量,其为至少0.9%,优选甚至至少1.0%,并且至多1.2%。
马氏体包括新生马氏体和回火马氏体。
作为配分马氏体的回火马氏体的C含量为至多0.45%,该含量是由在配分步骤期间碳从奥氏体配分到马氏体所导致的。在配分步骤之后由富集的奥氏体向马氏体转变而产生的新生马氏体的C含量为至少0.9%,并且通常为至多1.2%。组织中的新生马氏体的分数低于或等于5%。实际上,高于5%的新生马氏体的分数将导致低于25%的根据ISO 16630:2009的扩孔率HER。
通过这种热处理,可以获得这样的钢板:其屈服强度YS为至少500MPa,拉伸强度TS为至少1100MPa,根据ISO 6892-1的总延伸率TE为至少12%并且甚至高于13%,乘积TS×TE为至少14200MPa%并且甚至高于16000MPa%,以及根据ISO标准16630:2009的扩孔率HER为至少25%,并且甚至至少30%。
实施例
作为实例和比较,已经制造了由根据表I的钢组成制成的板,元素以重量表示。
在该表中,“res.”意指元素仅作为残余物存在并且不进行该元素的主动添加。
表I
对板进行热轧,然后在540℃或450℃下卷取。将板酸洗并冷轧以获得厚度为1.2mm的板,退火、淬火、配分、镀锌(在460℃下)并冷却至室温。不进行缓慢冷却。在酸洗和冷轧之前,对一些板进行分批退火。
处理条件报告于表II中。
在该表中,T卷取为卷取温度,THBA为分批退火温度,tHBA为分批退火时间,TA为退火温度,tA为退火时间,QT为淬火温度,PT为配分温度,Pt为配分时间。转变温度例如Ac1和Ac3也报告于表II中。Ac1和Ac3使用计算。
在相对于轧制方向的横向方向上测量机械性质。如本领域所公知的,对于这样的高强度钢,延展性水平在轧制方向上比在横向方向上略好。
所测量的性质是:根据标准ISO 16630:2009测量的扩孔率HER、屈服强度YS、拉伸应力TS、均匀延伸率UE和总延伸率TE。屈服强度YS、拉伸应力TS、均匀延伸率UE和总延伸率TE根据于2009年10月出版的ISO标准ISO 6892-1测量。显微组织报告于表III中,机械性质报告于表IV中。
表II
在表III中,TM为回火马氏体的表面分数,FM为新生马氏体的表面分数,B为贝氏体的表面分数,IF为亚温铁素体的表面分数,F为铁素体(亚温铁素体+转变铁素体)的总表面分数。
表III
这些实施例表明,用根据本发明的方法可以获得这样的钢板:其拉伸强度TS为至少1100MPa,根据ISO 6892-1的总延伸率TE为至少12%并且甚至为至少13%,乘积TS*TE大于14200MPa%。这些钢板还具有至少500MPa的屈服强度,至少8%并且通常大于9%的均匀延伸率,以及至少25%并且甚至常常大于30%的根据ISO 16630:2009的扩孔率HER。
实施例A和B表明,当C和Mn含量为使得C+Mn/10<0.420%时,不能获得期望的组织,并且所获得的拉伸强度和/或总延伸率不令人满意。
实施例C表明,当Mn+Cr<2.25%时,马氏体和贝氏体分数之和太低,使得不能实现至少1100MPa的拉伸强度。
表IV
关于可点焊性,当组成为使得C+Si/10≤0.30%且Al≥6(C+Mn/10)-2.5%时,根据本发明的板具有低的LME敏感性。这意味着这样的钢可以生产包括电阻点焊部的结构,例如车身,对于这些结构,电阻点焊部中的裂纹数的概率为使得每个电阻点焊部的平均值小于6个裂纹并且具有小于10个裂纹的概率为98%。
特别地,包括至少两个钢板的电阻点焊部的焊接结构可以通过如下来生产:通过根据本发明的方法生产第一钢板,第一板为使得C+Si/10≤0.30%且Al≥6(C+Mn/10)–2.5%并且涂覆有Zn或Zn合金;提供第二钢板,其组成使得C+Si/10≤0.30%且Al≥6(C+Mn/10)–2.5%;以及将第一钢板电阻点焊到第二钢板。第二钢板可例如通过根据本发明的方法来生产,并且涂覆有Zn或Zn合金。
因此,获得了具有低LME敏感性的焊接结构。例如,对于包括至少十个电阻点焊部的这样的焊接结构,每个电阻点焊部的平均裂纹数小于6。
根据本发明的任选地通过电阻点焊焊接的钢板有利地用于制造机动车辆中的结构部件,因为它们在制造工艺期间提供高的可成形性和在碰撞的情况下提供高能量吸收。根据本发明的电阻点焊部还有利地用于制造机动车辆中的结构部件,因为位于焊接区中的裂纹的最终引发和传播被大大减少。

Claims (31)

1.一种用于生产经涂覆的钢板的方法,所述经涂覆的钢板的拉伸强度TS为至少1100MPa,根据ISO标准6892-1的总延伸率TE为至少12%,所述拉伸强度乘以所述总延伸率的乘积TS×TE为至少14200MPa%,以及根据ISO标准16630:2009的扩孔率HER为至少25%,其中所述方法包括以下顺序步骤:
-提供冷轧钢板,以重量%计,钢的化学组成包含:
0.15%≤C≤0.23%,
2.0%≤Mn≤2.7%,
其中C+Mn/10≥0.420%,
0≤Cr≤0.40%,
其中Mn+Cr≥2.25%,
0.2%≤Si≤1.6%
0.02%≤Al≤1.2%,
其中1.0%≤Si+Al≤2.2%,
0≤Nb≤0.035%,
0≤Mo≤0.1%,
剩余部分为Fe和不可避免的杂质,
-使所述钢板在退火温度TA下退火以获得包含至少65%的奥氏体和至多35%的亚温铁素体的组织,
-以20℃/秒至50℃/秒的冷却速率将所述板从至少600℃的温度淬火至200℃至270℃的淬火温度QT,
-将所述板加热到400℃至480℃的配分温度PT并将所述板在该配分温度PT下保持50秒至250秒的配分时间Pt,
-在低于515℃的温度下热浸涂所述板,
-使经涂覆的板冷却至室温,
以表面分数计,所述钢板具有由以下组成的显微组织:
-3%至15%的残余奥氏体,
-至少30%的回火马氏体,
-至多5%的新生马氏体,
-至多35%的贝氏体,
回火马氏体、新生马氏体和贝氏体的表面分数之和为55%至92%,
-5%至35%的铁素体。
2.根据权利要求1所述的方法,其中所述方法包括在退火步骤与淬火步骤之间使所述板以低于10℃/秒的冷却速率缓慢冷却至少10秒的时间至高于或等于600℃的温度的步骤。
3.根据权利要求2所述的方法,其中以相对于整个组织的面积分数计,所述铁素体包含0%至5%的亚温铁素体和0%至35%的转变铁素体,所述转变铁素体在所述缓慢冷却步骤期间形成。
4.根据权利要求1所述的方法,其中所述铁素体由亚温铁素体组成。
5.根据权利要求1至4中任一项所述的方法,其中经淬火的板恰在加热至所述配分温度PT之前具有由以下组成的组织:5%至35%的铁素体、至少3%的奥氏体、至少30%的马氏体,补足量由下贝氏体组成。
6.根据权利要求1至5中任一项所述的方法,其中提供所述冷轧钢板的步骤包括:
-对由所述钢制成的板进行热轧以获得热轧钢板,
-在400℃至650℃的温度Tc下卷取所述热轧钢板,
-在400℃至700℃的温度THBA下进行热处理,将所述板在所述温度THBA下保持120秒至15小时的时间,
-对所述热轧钢板进行冷轧以获得所述冷轧钢板。
7.根据权利要求6所述的方法,其中所述热处理是在550℃至700℃的温度THBA下对经热轧和卷取的板进行的分批退火,将所述经热轧和卷取的板在所述温度THBA下保持5小时至15小时的时间。
8.根据权利要求6所述的方法,其中所述热处理为连续退火,所述温度THBA为600℃至700℃,将所述板在所述温度THBA下保持120秒至360秒的时间。
9.根据权利要求1至8中任一项所述的方法,其中在将所述板淬火至所述淬火温度QT之后且在将所述板加热至所述配分温度PT之前,将所述板在所述淬火温度QT下保持2秒至8秒,优选3秒至7秒的保持时间。
10.根据权利要求1至9中任一项所述的方法,其中所述钢的化学组成满足以下条件中的至少一者:
C≥0.17%,
C≤0.21%,
Mn≤2.5%,
0.010%≤Nb,
Cr≤0.05%,或
Cr≥0.10%。
11.根据权利要求1至10中任一项所述的方法,其中所述钢的化学组成为使得C+Si/10≤0.30%且Al≥6(C+Mn/10)-2.5%。
12.根据权利要求11所述的方法,其中所述钢的化学组成为使得0.2%≤Si<1.0%且0.4%≤Al≤1.2%。
13.根据权利要求12所述的方法,其中0.2%≤Si≤0.8%,0.7%≤Al≤1.2%。
14.根据权利要求1至13中任一项所述的方法,其中所述热浸涂步骤是镀锌步骤或合金化温度GAT为480℃至515℃的镀锌扩散退火处理步骤。
15.根据权利要求1至14中任一项所述的方法,其中所述钢板涂覆有Zn或Zn合金。
16.一种用于生产至少两个钢板的电阻点焊部的方法,所述方法包括:
-通过根据权利要求11和15所述的方法生产第一钢板,
-提供第二钢板,其组成使得C+Si/10≤0.30%且Al≥6(C+Mn/10)-2.5%,
-将所述第一钢板电阻点焊至所述第二钢板。
17.一种经涂覆的钢板,其中以重量%计,所述钢的化学组成包含:
0.15%≤C≤0.23%
2.0%≤Mn≤2.7%,
其中C+Mn/10≥0.420%,
0≤Cr≤0.40%,
其中Mn+Cr≥2.25%,
0.2%≤Si≤1.6%
0.02%≤Al≤1.2%,
其中1.0%≤Si+Al≤2.2%,
0≤Nb≤0.035%,
0≤Mo≤0.1%,
剩余部分为Fe和不可避免的杂质,
以表面百分比计,所述钢板具有由以下组成的显微组织:
-3%至15%的残余奥氏体,
-至少30%的回火马氏体,
-至多5%的新生马氏体,
-至多35%的贝氏体,
回火马氏体、新生马氏体和贝氏体的表面分数之和为55%至92%,
-5%至35%的铁素体。
18.根据权利要求17所述的经涂覆的钢板,其中以相对于整个组织的面积分数计,所述铁素体包含0%至5%的亚温铁素体和0%至35%的转变铁素体。
19.根据权利要求17所述的经涂覆的钢板,其中所述铁素体由亚温铁素体组成。
20.根据权利要求17至19中任一项所述的经涂覆的钢板,其中所述残余奥氏体中的C含量为0.9%至1.2%。
21.根据权利要求17至20中任一项所述的经涂覆的钢板,其中所述钢板的屈服强度为至少500MPa,拉伸强度为至少1100MPa,根据ISO 6892-1的总延伸率为至少12%,所述拉伸强度乘以所述总延伸率的乘积TS×TE为至少14200MPa%,以及根据ISO 16630:2009的扩孔率HER为全少25%。
22.根据权利要求17至21中任一项所述的经涂覆的钢板,其中所述钢的化学组成满足以下条件中的至少一者:
C≥0.17%,
C≤0.21%,
Mn≤2.5%,
0.010%≤Nb,
Cr≤0.05%,或
Cr≥0.10%。
23.根据权利要求17至22中任一项所述的经涂覆的钢板,其中所述钢的化学组成为使得C+Si/10≤0.30%且Al≥6(C+Mn/10)-2.5%。
24.根据权利要求23所述的经涂覆的钢板,其中所述钢的化学组成为使得0.2%≤Si<1.0%且0.4%≤Al≤1.2%。
25.根据权利要求24所述的经涂覆的钢板,其中0.2%≤Si≤0.8%且0.7%≤Al≤1.2%。
26.根据权利要求23至25中任一项所述的经涂覆的钢板,其中所述钢板涂覆有Zn或Zn合金。
27.根据权利要求17至26中任一项所述的经涂覆的钢板,其中所述经涂覆的钢板的厚度为0.7mm至3mm,优选1mm至2mm。
28.一种焊接结构,包括至少十个电阻点焊部,所述电阻点焊部为至少两个钢板的电阻点焊部,其中第一钢板是根据权利要求26所述的钢板,第二钢板的组成使得C+Si/10≤0.30%且Al≥6(C+Mn/10)-2.5%,其中每个电阻点焊部的平均裂纹数小于6。
29.根据权利要求28所述的焊接结构,其中所述第二钢板是根据权利要求26所述的钢板。
30.根据权利要求1至15中任一项制造的钢板或根据权利要求17至27中任一项所述的钢板用于制造机动车辆中的结构部件的用途。
31.通过根据权利要求16所述的方法生产的电阻点焊部或根据权利要求28和29中任一项所述的焊接结构用于制造机动车辆中的结构部件的用途。
CN201680075002.4A 2015-12-21 2016-12-21 用于生产具有改进的延展性和可成形性的高强度经涂覆钢板的方法和获得的经涂覆钢板 Active CN108431241B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/IB2015/059840 WO2017109541A1 (en) 2015-12-21 2015-12-21 Method for producing a high strength coated steel sheet having improved ductility and formability, and obtained coated steel sheet
IBPCT/IB2015/059840 2015-12-21
PCT/EP2016/082195 WO2017108959A1 (en) 2015-12-21 2016-12-21 Method for producing a high strength coated steel sheet having improved ductility and formability, and obtained coated steel sheet

Publications (2)

Publication Number Publication Date
CN108431241A true CN108431241A (zh) 2018-08-21
CN108431241B CN108431241B (zh) 2019-12-27

Family

ID=55273297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680075002.4A Active CN108431241B (zh) 2015-12-21 2016-12-21 用于生产具有改进的延展性和可成形性的高强度经涂覆钢板的方法和获得的经涂覆钢板

Country Status (16)

Country Link
US (2) US11827948B2 (zh)
EP (2) EP3394297B1 (zh)
JP (1) JP6946332B2 (zh)
KR (1) KR102618090B1 (zh)
CN (1) CN108431241B (zh)
BR (1) BR112018012538B1 (zh)
CA (1) CA3008069C (zh)
ES (2) ES2885324T3 (zh)
HU (2) HUE049748T4 (zh)
MA (2) MA44136B1 (zh)
MX (1) MX2018007649A (zh)
PL (2) PL3394297T3 (zh)
RU (1) RU2729671C2 (zh)
UA (1) UA123634C2 (zh)
WO (2) WO2017109541A1 (zh)
ZA (1) ZA201803919B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964969A (zh) * 2019-11-27 2020-04-07 本钢板材股份有限公司 一种高强度热镀锌淬火配分钢及其生产方法
CN110978673A (zh) * 2019-12-31 2020-04-10 安徽科蓝特铝业有限公司 一种铝合金高空作业平台型材
CN111057973A (zh) * 2019-12-31 2020-04-24 安徽科蓝特铝业有限公司 一种超耐侯拉丝木纹庭院铝合金型材及其加工工艺
CN111996467A (zh) * 2020-09-28 2020-11-27 首钢集团有限公司 一种980MPa级镀锌高强钢及其制备方法
CN112996660A (zh) * 2018-11-30 2021-06-18 奥钢联钢铁有限责任公司 包括涂锌的ahss钢板的电阻点焊的接头
CN114008234A (zh) * 2019-07-30 2022-02-01 杰富意钢铁株式会社 高强度钢板及其制造方法
CN114450427A (zh) * 2019-08-07 2022-05-06 美国钢铁公司 高延展性涂锌钢片材产品
CN114585763A (zh) * 2019-12-19 2022-06-03 安赛乐米塔尔公司 经热轧和热处理的钢板及其制造方法
CN114761596A (zh) * 2019-12-19 2022-07-15 日本制铁株式会社 钢板及其制造方法
CN114807737A (zh) * 2021-01-21 2022-07-29 宝山钢铁股份有限公司 一种热镀锌钢及其制造方法
CN115066507A (zh) * 2020-03-02 2022-09-16 安赛乐米塔尔公司 高强度冷轧且镀锌扩散退火钢板及其制造方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318566B2 (en) 2016-08-04 2022-05-03 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US11339817B2 (en) 2016-08-04 2022-05-24 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US10640854B2 (en) 2016-08-04 2020-05-05 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
WO2019122964A1 (en) 2017-12-19 2019-06-27 Arcelormittal Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
WO2019122961A1 (en) * 2017-12-19 2019-06-27 Arcelormittal High strength and high formability steel sheet and manufacturing method
KR102276741B1 (ko) * 2018-09-28 2021-07-13 주식회사 포스코 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2020067752A1 (ko) 2018-09-28 2020-04-02 주식회사 포스코 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2020080407A1 (ja) * 2018-10-18 2020-04-23 Jfeスチール株式会社 鋼板およびその製造方法
KR102544854B1 (ko) * 2018-11-30 2023-06-19 아르셀러미탈 구멍 확장비가 높은 냉연 어닐링된 강판 및 그 제조 방법
WO2020158065A1 (ja) * 2019-01-30 2020-08-06 Jfeスチール株式会社 高強度鋼板およびその製造方法
US11555234B2 (en) * 2019-04-24 2023-01-17 Nippon Steel Corporation Steel sheet
BR112021021467A2 (pt) * 2019-05-07 2022-01-04 United States Steel Corp Método para produzir um produto de chapa de aço laminada a quente lingotada continuamente de alta resistência, e, produto de chapa de aço laminada lingotado continuamente de alta resistência
WO2020245627A1 (en) * 2019-06-03 2020-12-10 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
ES2911656T3 (es) 2019-06-17 2022-05-20 Tata Steel Ijmuiden Bv Método de tratamiento térmico de un fleje de acero laminado en frío
PT3754037T (pt) 2019-06-17 2022-04-19 Tata Steel Ijmuiden Bv Método de tratamento térmico de uma tira de aço laminada a frio de alta resistência
WO2021020787A1 (ko) * 2019-07-29 2021-02-04 주식회사 포스코 고강도 강판 및 이의 제조방법
EP4006192A4 (en) * 2019-07-29 2022-09-07 Posco HIGH STRENGTH STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
WO2021116741A1 (en) * 2019-12-13 2021-06-17 Arcelormittal Heat treated cold rolled steel sheet and a method of manufacturing thereof
US11511375B2 (en) 2020-02-24 2022-11-29 Honda Motor Co., Ltd. Multi component solid solution high-entropy alloys
CN111394661B (zh) * 2020-04-30 2021-07-27 西京学院 一种低合金高强韧性马贝复相钢的制备工艺
SE545210C2 (en) 2020-12-23 2023-05-23 Voestalpine Stahl Gmbh Coiling temperature influenced cold rolled strip or steel
WO2022136689A1 (en) * 2020-12-23 2022-06-30 Voestalpine Stahl Gmbh A zinc or zinc-alloy coated strip or steel with improved zinc adhesion
US20240141467A1 (en) * 2021-03-25 2024-05-02 Nippon Steel Corporation Steel sheet and welded joint
DE102021108448A1 (de) * 2021-04-01 2022-10-06 Salzgitter Flachstahl Gmbh Stahlband aus einem hochfesten Mehrphasenstahl und Verfahren zur Herstellung eines derartigen Stahlbandes
SE545181C2 (en) * 2021-07-20 2023-05-02 Voestalpine Stahl Gmbh High strength cold rolled steel strip sheet for automotive use having good withstandability to retained austentite decomposition
KR20230073569A (ko) * 2021-11-19 2023-05-26 주식회사 포스코 우수한 강도 및 성형성을 갖는 냉연강판 및 그 제조방법
DE102022102418A1 (de) 2022-02-02 2023-08-03 Salzgitter Flachstahl Gmbh Hochfestes schmelztauchbeschichtetes Stahlband mit durch Gefügeumwandlung bewirkter Plastizität und Verfahren zu dessen Herstellung
WO2024121608A1 (en) * 2022-12-09 2024-06-13 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149840A (zh) * 2008-09-10 2011-08-10 杰富意钢铁株式会社 高强度钢板及其制造方法
CN102449180A (zh) * 2009-05-29 2012-05-09 株式会社神户制钢所 耐氢脆化特性优异的高强度钢板
CN103842542A (zh) * 2011-09-30 2014-06-04 新日铁住金株式会社 耐冲击特性优良的高强度热浸镀锌钢板及其制造方法、和高强度合金化热浸镀锌钢板及其制造方法
CN104204259A (zh) * 2012-03-29 2014-12-10 株式会社神户制钢所 成形性和形状冻结性优异的高强度冷轧钢板、高强度熔融镀锌钢板以及高强度合金化熔融镀锌钢板及其制造方法
CN104508163A (zh) * 2012-07-31 2015-04-08 杰富意钢铁株式会社 成形性及定形性优异的高强度热浸镀锌钢板及其制造方法
JP5719545B2 (ja) * 2010-08-13 2015-05-20 新日鐵住金株式会社 伸びとプレス成形安定性に優れた高強度薄鋼板

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2664369A (en) * 1951-08-06 1953-12-29 United States Steel Corp Method of softening low-carbon medium-alloy steel
JP3750789B2 (ja) * 1999-11-19 2006-03-01 株式会社神戸製鋼所 延性に優れる溶融亜鉛めっき鋼板およびその製造方法
FR2850671B1 (fr) 2003-02-05 2006-05-19 Usinor Procede de fabrication d'une bande d'acier dual-phase a structure ferrito-martensitique, laminee a froid et bande obtenue
EP2679699A3 (en) 2005-03-31 2014-08-20 Kabushiki Kaisha Kobe Seiko Sho High strength cold-rolled steel sheet and automobile components of steel having excellent properties in coating film adhesion, workability, and hydrogen embrittlement resistivity
AU2008238998B2 (en) 2007-04-11 2011-02-24 Nippon Steel Corporation Hot-dip metal coated high-strength steel sheet for press working excellent in low-temperature toughness and process for production thereof
JP5402007B2 (ja) * 2008-02-08 2014-01-29 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR100985375B1 (ko) * 2008-05-20 2010-10-04 주식회사 포스코 고강도 고가공성 냉연강판, 용융아연도금강판 및 그제조방법
JP5287770B2 (ja) * 2010-03-09 2013-09-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
MX2013001456A (es) 2010-08-12 2013-04-29 Jfe Steel Corp Lamina de acero laminada en frio, de alta resistencia, que tiene excelente trabajabilidad y resistencia al impacto, y metodo para manufacturar la misma.
PL2617849T3 (pl) * 2010-09-16 2017-07-31 Nippon Steel & Sumitomo Metal Corporation Walcowana na zimno blacha stalowa o dużej wytrzymałości z doskonałą ciągliwością i podatnością na wywijanie kołnierza, ocynkowana blacha stalowa o dużej wytrzymałości, oraz sposób ich wytwarzania
WO2012120020A1 (en) * 2011-03-07 2012-09-13 Tata Steel Nederland Technology Bv Process for producing high strength formable steel and high strength formable steel produced therewith
KR101549317B1 (ko) * 2011-03-28 2015-09-01 신닛테츠스미킨 카부시키카이샤 냉연 강판 및 그 제조 방법
JP5825119B2 (ja) 2011-04-25 2015-12-02 Jfeスチール株式会社 加工性と材質安定性に優れた高強度鋼板およびその製造方法
UA112771C2 (uk) 2011-05-10 2016-10-25 Арселормітталь Інвестігасьон І Десароло Сл Сталевий лист з високою механічною міцністю, пластичністю і формованістю, спосіб виготовлення та застосування таких листів
JP5856002B2 (ja) * 2011-05-12 2016-02-09 Jfeスチール株式会社 衝突エネルギー吸収能に優れた自動車用衝突エネルギー吸収部材およびその製造方法
TWI507538B (zh) 2011-09-30 2015-11-11 Nippon Steel & Sumitomo Metal Corp With excellent burn the attachment strength of the hardenable galvannealed steel sheet, a high strength galvannealed steel sheet and manufacturing method, etc.
TWI468534B (zh) 2012-02-08 2015-01-11 Nippon Steel & Sumitomo Metal Corp 高強度冷軋鋼板及其製造方法
EP2631333A1 (de) 2012-02-24 2013-08-28 Henkel AG & Co. KGaA Vorbehandlung von Zinkoberflächen vor einer Passivierung
KR102044693B1 (ko) * 2012-03-30 2019-11-14 뵈스트알파인 스탈 게엠베하 고강도 냉연 강판 및 그러한 강판을 생산하는 방법
JP5821911B2 (ja) * 2013-08-09 2015-11-24 Jfeスチール株式会社 高降伏比高強度冷延鋼板およびその製造方法
WO2015088523A1 (en) 2013-12-11 2015-06-18 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled and annealed steel sheet
JP6306481B2 (ja) * 2014-03-17 2018-04-04 株式会社神戸製鋼所 延性及び曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらの製造方法
EP3181715B1 (en) * 2014-10-24 2019-01-02 JFE Steel Corporation High-strength hot-pressing member and method for producing same
WO2017109542A1 (en) 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149840A (zh) * 2008-09-10 2011-08-10 杰富意钢铁株式会社 高强度钢板及其制造方法
CN102449180A (zh) * 2009-05-29 2012-05-09 株式会社神户制钢所 耐氢脆化特性优异的高强度钢板
JP5719545B2 (ja) * 2010-08-13 2015-05-20 新日鐵住金株式会社 伸びとプレス成形安定性に優れた高強度薄鋼板
CN103842542A (zh) * 2011-09-30 2014-06-04 新日铁住金株式会社 耐冲击特性优良的高强度热浸镀锌钢板及其制造方法、和高强度合金化热浸镀锌钢板及其制造方法
CN104204259A (zh) * 2012-03-29 2014-12-10 株式会社神户制钢所 成形性和形状冻结性优异的高强度冷轧钢板、高强度熔融镀锌钢板以及高强度合金化熔融镀锌钢板及其制造方法
CN104508163A (zh) * 2012-07-31 2015-04-08 杰富意钢铁株式会社 成形性及定形性优异的高强度热浸镀锌钢板及其制造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112996660A (zh) * 2018-11-30 2021-06-18 奥钢联钢铁有限责任公司 包括涂锌的ahss钢板的电阻点焊的接头
CN114008234A (zh) * 2019-07-30 2022-02-01 杰富意钢铁株式会社 高强度钢板及其制造方法
CN114450427A (zh) * 2019-08-07 2022-05-06 美国钢铁公司 高延展性涂锌钢片材产品
CN110964969B (zh) * 2019-11-27 2021-09-21 本钢板材股份有限公司 一种高强度热镀锌淬火配分钢及其生产方法
CN110964969A (zh) * 2019-11-27 2020-04-07 本钢板材股份有限公司 一种高强度热镀锌淬火配分钢及其生产方法
CN114761596A (zh) * 2019-12-19 2022-07-15 日本制铁株式会社 钢板及其制造方法
CN114585763A (zh) * 2019-12-19 2022-06-03 安赛乐米塔尔公司 经热轧和热处理的钢板及其制造方法
CN114761596B (zh) * 2019-12-19 2023-05-09 日本制铁株式会社 钢板及其制造方法
CN111057973A (zh) * 2019-12-31 2020-04-24 安徽科蓝特铝业有限公司 一种超耐侯拉丝木纹庭院铝合金型材及其加工工艺
CN110978673A (zh) * 2019-12-31 2020-04-10 安徽科蓝特铝业有限公司 一种铝合金高空作业平台型材
CN115066507A (zh) * 2020-03-02 2022-09-16 安赛乐米塔尔公司 高强度冷轧且镀锌扩散退火钢板及其制造方法
CN115066507B (zh) * 2020-03-02 2023-12-22 安赛乐米塔尔公司 高强度冷轧且镀锌扩散退火钢板及其制造方法
CN111996467A (zh) * 2020-09-28 2020-11-27 首钢集团有限公司 一种980MPa级镀锌高强钢及其制备方法
CN114807737A (zh) * 2021-01-21 2022-07-29 宝山钢铁股份有限公司 一种热镀锌钢及其制造方法

Also Published As

Publication number Publication date
ZA201803919B (en) 2019-02-27
RU2018122448A (ru) 2019-12-25
BR112018012538B1 (pt) 2021-12-28
JP6946332B2 (ja) 2021-10-06
EP3653738B1 (en) 2021-07-21
PL3653738T3 (pl) 2022-01-03
KR20180095541A (ko) 2018-08-27
MX2018007649A (es) 2018-09-21
EP3653738A1 (en) 2020-05-20
EP3394297A1 (en) 2018-10-31
WO2017109541A1 (en) 2017-06-29
CA3008069A1 (en) 2017-06-29
CA3008069C (en) 2023-09-12
RU2018122448A3 (zh) 2020-03-27
UA123634C2 (uk) 2021-05-05
US20230193412A1 (en) 2023-06-22
KR102618090B1 (ko) 2023-12-26
BR112018012538A2 (pt) 2018-12-11
CN108431241B (zh) 2019-12-27
RU2729671C2 (ru) 2020-08-11
MA49586A (fr) 2021-03-24
MA44136B1 (fr) 2020-04-30
MA49586B1 (fr) 2021-10-29
ES2885324T3 (es) 2021-12-13
HUE056202T2 (hu) 2022-01-28
EP3394297B1 (en) 2020-02-12
US11827948B2 (en) 2023-11-28
HUE049748T4 (hu) 2022-02-28
PL3394297T3 (pl) 2020-07-27
WO2017108959A1 (en) 2017-06-29
HUE049748T2 (hu) 2020-10-28
ES2780927T3 (es) 2020-08-27
JP2019505693A (ja) 2019-02-28
US20200270713A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
CN108431241A (zh) 用于生产具有改进的延展性和可成形性的高强度经涂覆钢板的方法和获得的经涂覆钢板
EP3656880B1 (en) Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
JP6921109B2 (ja) 改善された延性及び成形加工性を有する高強度鋼板を製造するための方法並びに得られた鋼板
WO2018202916A1 (en) Method for producing a high strength steel sheet having high ductility, formability and weldability, and obtained steel sheet
CN108513591A (zh) 用于生产具有改善的强度、延展性和成形性的钢板的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant