CN108410906A - 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 - Google Patents
一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 Download PDFInfo
- Publication number
- CN108410906A CN108410906A CN201810177881.2A CN201810177881A CN108410906A CN 108410906 A CN108410906 A CN 108410906A CN 201810177881 A CN201810177881 A CN 201810177881A CN 108410906 A CN108410906 A CN 108410906A
- Authority
- CN
- China
- Prior art keywords
- shell
- fish
- mitochondrial genomes
- crispr
- editor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/80—Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/10—Vectors comprising a non-peptidic targeting moiety
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Mycology (AREA)
- Veterinary Medicine (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公布了一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法。该方法通过在CRISPR/Cpf1表达质粒中引入海洋甲壳类线粒体定位的MLS信号,并通过后续的gRNA设计、显微注射受精卵、受精卵的离体培养和编辑效果检测,完成对海洋甲壳类线粒体基因组的编辑。利用该方法,可以实现海洋甲壳类线粒体基因组的定向编辑,对于在海洋甲壳类线粒体基因组中引入人工增殖放流标志具有重要的价值。
Description
技术领域
本发明属于分子生物学技术领域,涉及一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法。
背景技术
基因编辑技术是在DNA水平,通过删除、插入等方式对DNA特定序列进行改造的技术,在经历了锌指核酸酶技术(Zinc-finger nuclease, ZFNs)和类转录激活因子效应物核酸酶技术(Transcription activator-like effector,TALENs)之后,自CRISPR/Cas9技术建立起开始发生质的飞跃。在CRISPR/Cas9系统的基础上,美国麻省理工学院的张锋课题组进一步改进CRISPR/Cas9建立了CRISPR/ Cpf1基因编辑系统,其与CRISPR/Cas9系统的主要区别在于利用Cpf1核酸酶代替了Cas9,但优势更加明显:第一、与Cas9核酸酶相比,该系统表达的Cpf1酶体积变小,因此更易于进入诸如线粒体等小的细胞器和组织中;第二、Cas9行驶核酸酶剪切作用时需要两个支架RNA分子辅助,而Cpf1只需要一个,因此更简单;第三、Cpf1剪切后可以在目标序列区形成粘性末端,因此方便后续实现DNA序列连接和克隆,而Cas9是在同一个位置同时剪切DNA分子的双链形成的平末端;第四、Cpf1系统在目标位置的选择上比Cas9具有更多选择性,虽然两者形成的剪切复合物必须首先连接一个叫做PAM的短序列,但Cpf1识别5’端的TTN序列,Cas9识别3’端的NGG序列,因此Cpf1蛋白剪切位点离PAM序列较远,有更多的位点供选择编辑;第五、Cpf1系统具有更高的编辑效率,这是因为Cas9 剪切位点离 PAM 序列很近,NHEJ 修复造成的核苷酸插入或缺失会改变 PAM 邻近序列,因此Cas9 无法识别和切割靶位点,从而阻碍同源重组修复在靶位点引入正确的基因编辑;而 Cpf1剪切时离识别位点很远, NHEJ 修复造成的核苷酸插入或缺失,不会改变 PAMCRISPR/Cas9邻近序列,Cpf1 仍然可以识别和切割靶基因,同源重组修复依然可以在靶位点引入正确的基因编辑,从而提高了 CRISPR 系统的基因编辑效率,也便于对同一位点进行多轮的基因编辑,这让研究人员在编辑位置的选择上有了更多的选项。
目前,CRISPR/ Cpf1基因编辑已经成功应用于核基因组中的基因编辑研究,如小鼠、水稻和细菌等物种中,但在线粒体基因组中的应用还未见报道。Jo等人在2015年首次探讨了CRISPR/Cas9基因在人类中进行线粒体基因组编辑的可能性,其把Cas9 蛋白N端融合的核基因组定位信号NLS替换为线粒体核特异性更强的MLS,构建出了线粒体靶向的 Cas9蛋白基因编辑系统。但除此(人类)之外,目前未见其它物种,尤其是关于甲壳类线粒体基因组相关基因编辑技术的研究报道。与人类相比,甲壳类生物属于较低等的生物,其线粒体基因组与人类基因组差异较大,尤其是编码蛋白质的密码子存在着一定的差别,因此要想实现其线粒体基因组的编辑,需要做进一步的研究,而不能照搬人类研究中的相应技术。
发明内容
本发明描述了一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法,为在海洋甲壳类中开展线粒体基因组的基因编辑提供了方法,主要内容为通过密码子优化构建了一个具有海洋甲壳类线粒体定位信号的、可行使线粒体基因组基因编辑功能的质粒,通过显微注射的方式注入甲壳类受精卵中,可以对受精卵中的线粒体基因组进行基因的删除、替换和插入等目的,对建立线粒体基因组人工标志技术并用于增殖放流效果评估、遗传资源调查研究等方面具有应用价值。主要包括以下步骤:
一、质粒表达载体的构建
1、在pY094质粒(http://www.addgene.org/84743/)中把Cpf1核酸酶基因末端编码细胞核定位信号NLS的DNA序列(5’AAAAGGCCGGCGGCCACGAAAAAGGCCGGCCAGGCAAAAAAGAAAAAG3’)替换为“5’ATG TCC GTC CTGACG CCG CTG CTG CTG CGG GGC TTG ACA GGC TCG GCC CGG CGG CTC CCA GTG CCG CGCGCC AAG ATC CAT TCG TTG3’ ”序列,该序列为我们通过统计海洋甲壳类生物如脊尾白虾(Exopalaemon carinicauda)、三疣梭子蟹(Portunus trituberculatus)、斑节对虾(Penaeus monodon)和中国明对虾(Fenneropenaeus chinensis)等物种中线粒体基因组编码氨基酸密码子的偏向性中获得的,该序列编码的多肽为MSVLTPLLLRGLTGSARRLPVPRAKIHSL(MLS)。
2、线粒体靶向引物(gRNA)设计:根据预编辑线粒体基因组序列的位置,设置线粒体靶向引物,保证靶向序列符合核酸酶Cpf1行使功能的序列特征,即含有PAM序列。
3、将上述合成的线粒体靶向引物,通过限制性内切酶酶切法导入pY094质粒的PRISPR序列区,即“重复序列(Direct Repeats)-间隔序列(Spacers)-直接重复序列(Direct Repeats)” 单元中的“间隔序列(Spacers)”区。
二、显微注射法导入受精卵进行线粒体基因组序列编辑
有两种方式可供选择:
1、将上述构建的质粒,通过显微注射法直接注射进甲壳类受精卵中,对线粒体基因组靶向序列进行编辑;
2、将上述构建的质粒进行线性化处理,分别把表达Cpf1的mRNA和crRNA+gRNA序列通过显微注射直接注射进受精卵中,对线粒体基因组靶向序列进行编辑。
三、受精卵离体培养及编辑结果检测
1、受精卵离体培养:注射后的受精卵通过人工充气的方法在体外进行孵化,孵化后变成仔虾或幼蟹时取相应个体或其部分组织提取基因组DNA(包含线粒体基因组DNA),对线粒体基因编辑的效果进行检测;
2、检测方法:在线粒体基因组靶向编辑序列两侧设计PCR扩增引物,利用PCR方法扩增相应序列区,通过测序确定相应序列区基因编辑的效果。
本发明的有益效果:首次获得了海洋甲壳类线粒体基因组的基因编辑方法,该方法操作简单,编辑效果好。
具体实施方式
在本发明中所使用的术语,除非有另外的说明,一般具有本领域普通技术人员通常理解的含义。
下面结合在三疣梭子蟹中应用的具体实施例,进一步详细地阐述本发明的实施方式。应理解,实施例仅用于说明本发明而不应当也不会用于限制本发明的范围。以下实施例中未详细描述的各种过程和方法是本领域中公知的常规方法。
1、质粒载体的构建
由于在pY094质粒Cpf1的NLS序列区无合适的限制性内切酶可用,故需要引入XcmI(位置:4870bp处)和BamHI(位置5201)两个酶切位点区,具体按照如下方式操作,人工合成“5’CACCATGGTGGCCCTGATCCGCAGCGTGCTGCAGATGCGGAACTCCAATGCCGCCACAGGCGAGGACTATATCAACAGCCCCGTGCGCGATCTGAATGGCGTGTGCTTCGACTCCCGGTTTCAGAACCCAGAGTGGCCCATGGACGCCGATGCCAATGGCGCCTACCACATCGCCCTGAAGGGCCAGCTGCTGCTGAATCACCTGAAGGAGAGCAAGGATCTGAAGCTGCAGAACGGCATCTCCAATCAGGACTGGCTGGCCTACATCCAGGAGCTGCGCAACAAAAGGCCGGCGGCCACGAAAAAGG CCGGCCAGGCAAAAAAGAAAAAG3’ ”序列时,把该序列区中蓝色划线部分置换成“5’ATG TCCGTC CTG ACG CCG CTG CTG CTG CGG GGC TTG ACA GGC TCG GCC CGG CGG CTC CCA GTGCCG CGC GCC AAG ATC CAT TCG TTG3’ ”序列,同时在5’和3’端合成时各分别引入XcmI和BamHI两种酶切序列,利用这两种酶的双酶切和随后的T4连接酶介导的连接反应,把合成序列插入pY094质粒载体中。
2、线粒体靶向引物(gRNA)设计
针对三疣梭子蟹线粒体基因组中D-loop区序列,依靠http://crispr.mit.edu/网站进行Guide RNA的设计;设计好的引物分别在5’和3’端引入NruI和MluI两个酶切位点,送交公司合成,并进行3’端磷酸化封闭,并经退火过程使正反向引物形成双链结构。
3、gRNA的导入和重组表达载体构建
把上述构建的质粒载体(含MLS)和gRNA引物,分别在NruI和MluI双酶切下进行连接反应,把gRNA引物插入到511-531序列区,构建重组表达载体。
4、质粒培养与抽提
将构建的重组表达载体转化至感受态细胞,扩大培养后挑选阳性克隆,测序鉴定后,进一步扩大培养以便抽提获得大量的表达质粒。
5、显微注射导入三疣梭子蟹受精卵
把上述抽提的重组表达载体利用生理盐水稀释后,同时设置对照组(不含质粒),通过显微注射仪Eppendorf TransferMan® 4注射到三疣梭子蟹受精卵中,通过荧光显微镜观察质粒中报告基因EGFP(增强型绿色荧光蛋白)的表达情况以确定是否表达质粒起作用;如不起作用或作用不明显,进一步通过体外转录的方法,获得相应基因的mRNA序列,并把mRNA序列注射入受精卵中。
5、受精卵的离体培育
注射后的受精卵立即转入甲壳类离体孵化装置进行培育,保持温度22-25℃,盐度20-26,pH8.3-8.6,全天24h充气,直至孵化为止;孵化后经正常养殖管理程序培育至3-4期幼蟹,进行后续的检测。
6、编辑效果检测
针对三疣梭子蟹线粒体基因组D-Loop区的靶向编辑序列区设计引物,通过PCR扩增的方式及后续测序的方式,对靶向编辑序列区的编辑效果进行检测。
Claims (4)
1.一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法,其特征包括用于甲壳类线粒体定位编辑的表达载体构建、gRNA的合成和导入、受精卵的显微注射和离体培养、编辑效果的检测。
2.权利要求1中所述用于海洋甲壳类线粒体定位编辑的表达载体构建中引入了经优化的海洋甲壳类密码子偏向性的信号,该信号的序列为5’ATG TCC GTC CTG ACG CCG CTGCTG CTG CGG GGC TTG ACA GGC TCG GCC CGG CGG CTC CCA GTG CCG CGC GCC AAG ATCCAT TCG TTG3’,编码的多肽为MSVLTPLLLRGLTGSARRLPVPRAKIHSL。
3.权利要求1中所述用于受精卵的显微注射和离体培养的方法为:温度22-25℃,盐度20-26,pH8.3-8.6,全天24h充气,直至孵化为止。
4.权利要求1中所述用于编辑效果的检测方法为通过构建靶向编辑序列区PCR扩增技术及测序的方式,对靶向编辑序列区的编辑效果进行检测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810177881.2A CN108410906A (zh) | 2018-03-05 | 2018-03-05 | 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810177881.2A CN108410906A (zh) | 2018-03-05 | 2018-03-05 | 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108410906A true CN108410906A (zh) | 2018-08-17 |
Family
ID=63129948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810177881.2A Pending CN108410906A (zh) | 2018-03-05 | 2018-03-05 | 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108410906A (zh) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
CN112760338A (zh) * | 2020-12-28 | 2021-05-07 | 广东省微生物研究所(广东省微生物分析检测中心) | 一种适用于深海真菌FS140的CRISPR/Cpf1载体及其构建方法和应用 |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105602993A (zh) * | 2016-01-19 | 2016-05-25 | 上海赛墨生物技术有限公司 | 线粒体靶向的基因编辑系统及方法 |
CN105602935A (zh) * | 2014-10-20 | 2016-05-25 | 聂凌云 | 一种新型线粒体基因组编辑工具 |
CN106191110A (zh) * | 2016-07-15 | 2016-12-07 | 湖南师范大学 | 一种wnt16基因缺失型斑马鱼 |
CN106520830A (zh) * | 2016-11-16 | 2017-03-22 | 福建师范大学 | 利用CRISPR/Cas9对线粒体基因组进行靶向编辑的方法 |
CN107287245A (zh) * | 2017-05-27 | 2017-10-24 | 南京农业大学 | 一种基于CRISPR/Cas9技术的Glrx1基因敲除动物模型的构建方法 |
-
2018
- 2018-03-05 CN CN201810177881.2A patent/CN108410906A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105602935A (zh) * | 2014-10-20 | 2016-05-25 | 聂凌云 | 一种新型线粒体基因组编辑工具 |
CN105602993A (zh) * | 2016-01-19 | 2016-05-25 | 上海赛墨生物技术有限公司 | 线粒体靶向的基因编辑系统及方法 |
CN106191110A (zh) * | 2016-07-15 | 2016-12-07 | 湖南师范大学 | 一种wnt16基因缺失型斑马鱼 |
CN106520830A (zh) * | 2016-11-16 | 2017-03-22 | 福建师范大学 | 利用CRISPR/Cas9对线粒体基因组进行靶向编辑的方法 |
CN107287245A (zh) * | 2017-05-27 | 2017-10-24 | 南京农业大学 | 一种基于CRISPR/Cas9技术的Glrx1基因敲除动物模型的构建方法 |
Non-Patent Citations (1)
Title |
---|
ARNAUD MARTIN ET AL.: "CRISPR/Cas9 Mutagenesis Reveals Versatile Roles of Hox Genes in Crustacean Limb Specification and Evolution", 《CURRENT BIOLOGY》 * |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
CN112760338B (zh) * | 2020-12-28 | 2022-04-26 | 广东省微生物研究所(广东省微生物分析检测中心) | 一种适用于深海真菌FS140的CRISPR/Cpf1载体及其构建方法和应用 |
CN112760338A (zh) * | 2020-12-28 | 2021-05-07 | 广东省微生物研究所(广东省微生物分析检测中心) | 一种适用于深海真菌FS140的CRISPR/Cpf1载体及其构建方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108410906A (zh) | 一种适用于海洋甲壳类线粒体基因组的CRISPR/Cpf1基因编辑方法 | |
CN105316327B (zh) | 小麦TaAGO4a基因CRISPR/Cas9载体及其应用 | |
WO2018099256A1 (zh) | 一种CRISPR/nCas9介导的定点碱基替换在植物中的应用 | |
CN104293828B (zh) | 植物基因组定点修饰方法 | |
CN107326046A (zh) | 一种提高外源基因同源重组效率的方法 | |
CN109136248B (zh) | 多靶点编辑载体及其构建方法和应用 | |
CN105112435B (zh) | 植物多基因敲除载体的构建及应用 | |
US20160060637A1 (en) | Improved Gene Targeting and Nucleic Acid Carrier Molecule, In Particular for Use in Plants | |
US11388892B2 (en) | Method for preparing CKO/KI animal model by using CAS9 technology | |
CN109880851B (zh) | 用于富集CRISPR/Cas9介导的同源重组修复细胞的筛选报告载体及筛选方法 | |
CN111019971A (zh) | 在rosa26位点条件性过表达hpv e6基因小鼠模型的构建方法 | |
CN110305896B (zh) | 一种斑马鱼肾脏祖细胞标记转基因系的构建方法 | |
CN110484538A (zh) | 识别猪ROSA26基因的sgRNA及其编码DNA、基因编辑方法、试剂盒和应用 | |
CN106282231B (zh) | 粘多糖贮积症ii型动物模型的构建方法及应用 | |
CN113337502B (zh) | 一种gRNA及其用途 | |
CN106086031B (zh) | 猪肌抑素基因编辑位点及其应用 | |
CN109706148A (zh) | 一种用于敲除BCL11A基因或者BCL11A基因增强子的gRNA、gRNA组合物以及电转方法 | |
CN112080517A (zh) | 一种提高获得基因编辑植株概率的筛选系统、构建方法及其应用 | |
CN104611368A (zh) | 重组后不产生移码突变的载体、在爪蛙基因组中进行基因定点敲入的方法及应用 | |
CN106754949B (zh) | 猪肌抑素基因编辑位点864-883及其应用 | |
CN101962657B (zh) | 一种植物表达载体 | |
Lohar | Textbook of Biotechnology | |
CN115772523A (zh) | 一种碱基编辑工具 | |
CN106755075A (zh) | 提高基因组编辑效率的方法 | |
CN111235152A (zh) | 特异性靶向CLCN7的sgRNA及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180817 |
|
WD01 | Invention patent application deemed withdrawn after publication |