CN107988577B - 一种CrSiBCN纳米复合薄膜的制备方法 - Google Patents
一种CrSiBCN纳米复合薄膜的制备方法 Download PDFInfo
- Publication number
- CN107988577B CN107988577B CN201710971127.1A CN201710971127A CN107988577B CN 107988577 B CN107988577 B CN 107988577B CN 201710971127 A CN201710971127 A CN 201710971127A CN 107988577 B CN107988577 B CN 107988577B
- Authority
- CN
- China
- Prior art keywords
- crsibcn
- target
- nano composite
- metal
- composite film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 230000007704 transition Effects 0.000 claims abstract description 17
- 238000004544 sputter deposition Methods 0.000 claims abstract description 13
- 238000004140 cleaning Methods 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 25
- 238000000151 deposition Methods 0.000 claims description 13
- 229910019918 CrB2 Inorganic materials 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 7
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 claims description 7
- 238000000295 emission spectrum Methods 0.000 claims description 6
- 230000003213 activating effect Effects 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 16
- 239000010935 stainless steel Substances 0.000 abstract description 16
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract 1
- 238000001755 magnetron sputter deposition Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 36
- 239000011651 chromium Substances 0.000 description 16
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 239000013077 target material Substances 0.000 description 4
- 238000005477 sputtering target Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910017875 a-SiN Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101150013999 CRBN gene Proteins 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000000861 blow drying Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 101150016677 ohgt gene Proteins 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0664—Carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
- C23C14/0057—Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
- C23C14/025—Metallic sublayers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
本发明提供了一种CrSiBCN纳米复合薄膜的制备方法,属于薄膜摩擦学及表面工程领域,能够提高CrN薄膜的硬度,降低CrN薄膜的干摩擦系数。本发明包括不锈钢基材的清洗、过渡层制备及纳米复合薄膜制备三个步骤,利用非平衡磁控溅射技术,在Ar、N2或含Si、C元素气体的混合气氛中,共溅射直流(DC)和射频(RF)磁控靶,在不锈钢基材上制备CrSiBCN纳米复合薄膜,本发明提供的CrSiBCN纳米复合薄膜制备方法中,Si、C元素可以来源于反应气氛也可以来源于溅射靶材,制备工艺可操作性强,对靶位和气路配置数不同的非平衡磁控溅射系统均适用。
Description
技术领域
本发明属于薄膜摩擦学及表面工程领域,尤其涉及一种CrSiBCN纳米复合薄膜的制备方法。
背景技术
氮化铬(CrN)作为第一代表面防护涂层,因其良好的机械性能和化学惰性,无论在表面耐磨或防腐应用中均占有一席之地。然而经过大量的研究发现,通过不同制备方法沉积的CrN薄膜,硬度中等(10 GPa)且在干摩擦条件下摩擦系数较高(0.5左右),这就使CrN薄膜不宜应用在对表面材料磨损率和摩擦系数要求苛刻的特殊工况中。为了提高CrN薄膜的硬度和降低其干摩擦系数,对CrN进行纳米复合结构的构筑及润滑组元的添加。通过元素Si、B的掺杂,使制备的CrSiN、CrBN薄膜具有nc-CrN/a-SiNx、nc-CrN/a-BN纳米复合结构,这种纳米晶粒镶嵌在非晶基质中的优化结构提高了CrN薄膜的硬度;通过自润滑元素C、Mo的引入,制备的CrCN或CrMoN薄膜在摩擦过程中易形成利于润滑的非晶碳(a-C)或氧化钼(MoO3),从而降低CrN薄膜的摩擦系数。如果将元素Si、B和C同时引入CrN薄膜,形成CrN/a-BN/a-SiNx/a-C纳米多功能结构,既可以提高CrN薄膜的硬度,又可以降低CrN薄膜的干摩擦系数。
发明内容
本发明提供了一种CrSiBCN纳米复合薄膜的制备方法,可根据不同物理气相沉积系统靶源和气路的配置数,有针对性地选择反应气体和溅射靶材数量和种类,制备CrSiBCN纳米复合薄膜。
为了实现以上目的,本发明采用如下方案:
一种CrSiBCN纳米复合薄膜的制备方法,包括以下步骤:
(1)基材清洗:去除基材表面残留物并活化基材沉积表面;
(2)过渡层制备:通过直流磁控源溅射金属Cr靶,在所述基材上沉积厚度为100-200 nm的金属Cr过渡层;
(3)CrSiBCN纳米复合薄膜制备:在高纯Ar、三甲基硅烷SiH(CH3)3和N2的混合气氛中,通过直流磁控源溅射金属Cr靶,射频磁控源溅射CrB2靶,在所述金属Cr过渡层上制备CrSiBCN纳米复合薄膜。
以上步骤中步骤(3)中所述的高纯Ar、三甲基硅烷SiH(CH3)3的通入量分别为0-50sccm、0-50sccm,N2通入量通过预设的光发射谱监控OEM=50 %自动控制,所述的高纯Ar、三甲基硅烷SiH(CH3)3和N2分别在不同的气路,所述的金属Cr靶加载功率为0-2000W,所述CrB2靶加载功率为0-2000W。
一种CrSiBCN纳米复合薄膜的制备方法,包括以下步骤:
(1)基材清洗:去除基材表面残留物并活化基材沉积表面;
(2)过渡层制备:通过直流磁控源溅射金属Cr靶,在所述基材上沉积厚度为100-200 nm的金属Cr过渡层;
(3)CrSiBCN纳米复合薄膜制备:在高纯Ar和N2的混合气氛中,通过直流磁控源溅射金属Cr靶,射频磁控源溅射CrB2靶和SiC靶,在所述金属Cr过渡层上制备CrSiBCN纳米复合薄膜。
以上步骤中步骤(3)中所述的高纯Ar的通入量为0-50sccm,N2通入量通过预设的光发射谱监控OEM=50 %自动控制,所述的高纯Ar和N2分别在不同的气路,所述的金属Cr靶加载功率为0-2000W,所述CrB2靶加载功率为0-2000W,所述SiC靶加载功率为0-2000W。
本发明的有益效果为:本发明提供了一种CrSiBCN纳米复合薄膜的制备方法,可以将元素Si、B和C同时引入CrN薄膜,如图2和图3所示既提高了CrN薄膜的硬度,又降低了CrN薄膜的干摩擦系数;在制备CrSiBCN纳米复合膜的步骤中可以根据不同物理气相沉积系统的靶源和气路的配置数自由选择Si、C元素的来源,还可以通过反应气体或溅射靶材种类的选择方便地调节CrSiBCN纳米复合薄膜中Si、C元素的比例。
附图说明
图1是本发明制备CrSiBCN纳米复合薄膜的沉积系统布局示意图。其中,虚线部分为两种方法的区别点,实施例1需要三个气路,两个靶位;实施例2需要两个气路,三个靶位。
图2是采用本发明方法制备的CrSiBCN纳米复合薄膜与SiC球在干摩擦条件下摩擦系数随滑移距离的变化曲线。
图3是采用本发明方法制备的CrSiBCN纳米复合薄膜的纳米压痕加载-卸载曲线及相应的硬度H和弹性模量E。
具体实施方式
下面结合附图和实施例对本发明的技术方案进行详细说明。
实施例1
(1)基材清洗:将粗糙度精抛至50 nm的316L不锈钢(Φ30×6 mm2)依次在丙酮,酒精和去离子水中进行超声清洗各10分钟,用电吹风吹干并装夹在物理气相沉积系统的载物台上,距离靶材17 cm;当物理气相沉积系统本底真空度达到3.0×10-6 Torr时,通入50sccm的Ar气,设定不锈钢基材偏压-450V,利用离子束源产生的Ar+离子加速轰击316L不锈钢表面30分钟,清除基材表面的污染物并活化沉积表面;
(2)过渡层制备:Ar+离子轰击清洗基材后,保持Ar气通入量50 sccm,调节不锈钢基材偏压至-80V,通过直流(DC)磁控电源对金属Cr靶加载功率1200 W,运行10分钟,在316L不锈钢基材上沉积厚度为200 nm的金属Cr过渡层,增加上层CrSiBCN纳米复合薄膜与316L不锈钢基材的结合力;
(3)CrSiBCN纳米复合薄膜制备:通入10 sccm的三甲基硅烷SiH(CH3)3,保持Ar气通入量50 sccm,打开N2流量阀,通过预设的光发射谱监控(OEM=50 %)自动控制N2通入量;利用射频(RF)磁控电源对CrB2加载功率1400W;利用直流(DC)磁控电源对金属Cr靶加载功率1400W,保持316L不锈钢基材偏压-80V,在室温下制备CrSiBCN纳米复合薄膜,制备时间1小时10分钟。
实施例2
(1)基材清洗:将粗糙度精抛至50 nm的316L不锈钢(Φ30×6 mm2)依次在丙酮,酒精和去离子水中进行超声清洗各10分钟,用电吹风吹干并装夹在物理气相沉积系统的载物台上,距离靶材17 cm;当物理气相沉积系统本底真空度达到3.0×10-6 Torr时,通入50sccm的Ar气,设定不锈钢基材偏压-450V,利用离子束源产生的Ar+离子加速轰击316L不锈钢表面30分钟,清除基材表面的污染物并活化沉积表面;
(2)过渡层制备:Ar+离子轰击清洗基材后,保持Ar气通入量50 sccm,调节不锈钢基材偏压至-80V,通过直流(DC)磁控电源对金属Cr靶加载功率1200 W,运行10分钟,在316L不锈钢基材上沉积厚度为200 nm的金属Cr过渡层,增加上层CrSiBCN纳米复合薄膜与316L不锈钢基材的结合力;
(3)CrSiBCN纳米复合薄膜制备:保持Ar气通入量50 sccm,打开N2流量阀,通过预设的光发射谱监控(OEM=50 %)自动控制N2通入量;利用射频(RF)磁控电源对CrB2、SiC靶分别加载功率1400W、2000W,利用直流(DC)磁控电源对金属Cr靶加载功率1400W,保持316L不锈钢基材偏压-80V,在室温下制备CrSiBCN纳米复合薄膜,持续时间1小时10分钟。
本发明反应气体和溅射靶材种类选择很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。
Claims (6)
1.一种CrSiBCN纳米复合薄膜的制备方法,其特征在于,包括以下步骤:
(1)基材清洗:去除基材表面残留物并活化基材沉积表面;
(2)过渡层制备:通过直流磁控源溅射金属Cr靶,在所述基材上沉积厚度为100-200 nm的金属Cr过渡层;
(3)CrSiBCN纳米复合薄膜制备:在高纯Ar、三甲基硅烷SiH(CH3)3和N2的混合气氛中,通过直流磁控源溅射金属Cr靶,射频磁控源溅射CrB2靶,所述的金属Cr靶加载功率为0-2000W,所述CrB2靶加载功率为0-2000W,在步骤(2)得到的金属Cr过渡层上制备CrSiBCN纳米复合薄膜。
2.根据权利要求1中所述的CrSiBCN纳米复合薄膜的制备方法,其特征在于,步骤(3)中所述的高纯Ar、三甲基硅烷SiH(CH3)3的通入量分别为0-50sccm、0-50sccm,N2通入量通过预设的光发射谱监控OEM=50 %自动控制。
3.根据权利要求1或2中所述的CrSiBCN纳米复合薄膜的制备方法,其特征在于,步骤(3)中所述的高纯Ar、三甲基硅烷SiH(CH3)3和N2分别在不同的气路。
4.一种CrSiBCN纳米复合薄膜的制备方法,其特征在于,包括以下步骤:
(1)基材清洗:去除基材表面残留物并活化基材沉积表面;
(2)过渡层制备:通过直流磁控源溅射金属Cr靶,在所述基材上沉积厚度为100-200 nm的金属Cr过渡层;
(3)CrSiBCN纳米复合薄膜制备:在高纯Ar和N2的混合气氛中,通过直流磁控源溅射金属Cr靶,射频磁控源溅射CrB2靶和SiC靶,所述的金属Cr靶加载功率为0-2000W,所述CrB2靶加载功率为0-2000W,所述SiC靶施加功率为0-2000W,在步骤(2)得到的金属Cr过渡层上制备CrSiBCN纳米复合薄膜。
5. 根据权利要求4中所述的CrSiBCN纳米复合薄膜的制备方法,其特征在于,步骤(3)中所述的高纯Ar的通入量为0-50sccm,N2通入量通过预设的光发射谱监控OEM=50 %自动控制。
6.根据权利要求4或5中所述的CrSiBCN纳米复合薄膜的制备方法,其特征在于,步骤(3)中所述的高纯Ar和N2分别在不同的气路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710971127.1A CN107988577B (zh) | 2017-10-18 | 2017-10-18 | 一种CrSiBCN纳米复合薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710971127.1A CN107988577B (zh) | 2017-10-18 | 2017-10-18 | 一种CrSiBCN纳米复合薄膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107988577A CN107988577A (zh) | 2018-05-04 |
CN107988577B true CN107988577B (zh) | 2020-02-21 |
Family
ID=62029697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710971127.1A Active CN107988577B (zh) | 2017-10-18 | 2017-10-18 | 一种CrSiBCN纳米复合薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107988577B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109778119B (zh) * | 2019-01-09 | 2020-10-20 | 南京航空航天大学 | 一种Ni-CrSiN耐磨耐蚀涂层及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002337002A (ja) * | 2001-05-11 | 2002-11-26 | Hitachi Tool Engineering Ltd | 硬質皮膜被覆工具 |
JP2004106183A (ja) * | 2003-12-09 | 2004-04-08 | Hitachi Tool Engineering Ltd | 硬質皮膜被覆工具及びその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5036232B2 (ja) * | 2006-07-06 | 2012-09-26 | Tpr株式会社 | 内燃機関用ピストンリング |
DE102013201103A1 (de) * | 2013-01-24 | 2014-07-24 | H.C. Starck Gmbh | Thermisches Spritzpulver für stark beanspruchte Gleitsysteme |
CN105274485A (zh) * | 2015-11-16 | 2016-01-27 | 南京航空航天大学 | 一种Cr-Si-C-N纳米复合薄膜的制备方法 |
CN105316634A (zh) * | 2015-11-16 | 2016-02-10 | 南京航空航天大学 | 一种Cr-B-C-N纳米复合薄膜的制备方法 |
CN105568230B (zh) * | 2015-12-25 | 2018-02-16 | 珠海罗西尼表业有限公司 | 钢工件表面上功能梯度纳米多层涂层的制备方法和包含所述功能梯度纳米多层涂层的制品 |
-
2017
- 2017-10-18 CN CN201710971127.1A patent/CN107988577B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002337002A (ja) * | 2001-05-11 | 2002-11-26 | Hitachi Tool Engineering Ltd | 硬質皮膜被覆工具 |
JP2004106183A (ja) * | 2003-12-09 | 2004-04-08 | Hitachi Tool Engineering Ltd | 硬質皮膜被覆工具及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107988577A (zh) | 2018-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101298656B (zh) | 一种高硬度类金刚石多层薄膜的制备方法 | |
Baptista et al. | On the physical vapour deposition (PVD): evolution of magnetron sputtering processes for industrial applications | |
US6869676B2 (en) | Method and device for vacuum-coating a substrate | |
CN108611613B (zh) | 一种纳米多层结构碳基薄膜的制备方法 | |
JPH0254429B2 (zh) | ||
US5723188A (en) | Process for producing layers of cubic boron nitride | |
US20120052276A1 (en) | Coating, article coated with coating, and method for manufacturing article | |
CN101113516A (zh) | 一种纳米复合类金刚石涂层制备方法 | |
KR20180123508A (ko) | 지르코늄 접착층을 갖는 무수소 탄소 코팅 | |
CN108085657B (zh) | 基于螺旋波等离子体技术制备氮掺杂类金刚石薄膜的方法 | |
Pessoa et al. | Plasma-assisted techniques for growing hard nanostructured coatings: An overview | |
US20090236217A1 (en) | Capillaritron ion beam sputtering system and thin film production method | |
CN101550541A (zh) | 线性离子束源装置及利用该装置沉积类金刚石碳薄膜的方法 | |
JP4122387B2 (ja) | 複合硬質皮膜、その製造方法及び成膜装置 | |
Li et al. | Mechanical and tribological properties of diamond-like carbon films prepared on steel by ECR-CVD process | |
CN107988577B (zh) | 一种CrSiBCN纳米复合薄膜的制备方法 | |
CN114703452B (zh) | 一种CoCrFeNi高熵合金掺杂非晶碳薄膜及其制备方法 | |
CN113621926A (zh) | 一种低应力类金刚石耐磨涂层及其制备方法 | |
Cheng et al. | Deposition of carbon nitride films by filtered cathodic vacuum arc combined with radio frequency ion beam source | |
KR100765630B1 (ko) | 자동차용 와이퍼 블레이드 및 이의 제조방법 | |
CN110735107A (zh) | 一种类金刚石涂层制备前的离子表面刻蚀方法 | |
Martin et al. | Control of film properties during filtered arc deposition | |
CN118234886A (zh) | 通过溅射形成坚硬且超光滑a-C的方法 | |
Tian et al. | Deposition of cubic boron nitride films by anode layer linear ion source assisted radio frequency magnetron sputtering | |
KR100928970B1 (ko) | 제3의 원소가 첨가된 다이아몬드상 탄소박막의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |