[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN107728109A - A kind of noncooperative target radiated noise measurement and positioning technology - Google Patents

A kind of noncooperative target radiated noise measurement and positioning technology Download PDF

Info

Publication number
CN107728109A
CN107728109A CN201710837758.4A CN201710837758A CN107728109A CN 107728109 A CN107728109 A CN 107728109A CN 201710837758 A CN201710837758 A CN 201710837758A CN 107728109 A CN107728109 A CN 107728109A
Authority
CN
China
Prior art keywords
mrow
msub
mover
munder
omega
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710837758.4A
Other languages
Chinese (zh)
Inventor
莫世奇
韩宇
何腾蛟
杨德森
方尔正
时胜国
洪连进
李思纯
张揽月
胡博
时洁
朱中锐
李松
张昊阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201710837758.4A priority Critical patent/CN107728109A/en
Publication of CN107728109A publication Critical patent/CN107728109A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/22Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种非合作目标辐射噪声测量定位技术,基于矢量水听器测量技术,构造了矢量水听器的声压、振速接收模型,利用矢量水听器的声压振速联合处理技术,采用互谱声强法,得到基线的测量方位角;通过三角形交汇法解算每组基线所测得的目标位置坐标信息。对于多只矢量水听器的定位,可视为矢量水听器的两两组合,而后再通过数据融合处理技术,综合所有基线的测量结果,确定运动目标的每一个测量点的位置。最后利用卡尔曼滤波算法进行后置处理,对运动目标的轨迹做进一步的优化。数据融合技术结合卡尔曼滤波算法可以提高定位精度,在小范围内快速、精确的定位出目标的运动轨迹,解决两只水听器定位精度较差、跟踪速度较慢的问题。

The invention discloses a non-cooperative target radiation noise measurement and positioning technology. Based on the vector hydrophone measurement technology, the sound pressure and vibration velocity reception model of the vector hydrophone is constructed, and the joint processing of the sound pressure and vibration velocity of the vector hydrophone is used. Technology, using the cross-spectrum sound intensity method to obtain the measurement azimuth of the baseline; through the triangle intersection method to solve the target position coordinate information measured by each set of baselines. For the positioning of multiple vector hydrophones, it can be regarded as a pairwise combination of vector hydrophones, and then through data fusion processing technology, the measurement results of all baselines are integrated to determine the position of each measurement point of the moving target. Finally, the Kalman filter algorithm is used for post-processing to further optimize the trajectory of the moving target. The data fusion technology combined with the Kalman filter algorithm can improve the positioning accuracy, quickly and accurately locate the trajectory of the target in a small range, and solve the problems of poor positioning accuracy and slow tracking speed of the two hydrophones.

Description

一种非合作目标辐射噪声测量定位技术A Non-cooperative Target Radiation Noise Measurement and Positioning Technology

技术领域technical field

本发明涉及噪声测试技术领域,具体涉及一种非合作目标辐射噪声测量定位技术。The invention relates to the technical field of noise testing, in particular to a non-cooperative target radiation noise measurement and positioning technology.

背景技术Background technique

噪声测量技术(noise measuring technique)噪声测量包括各种噪声源和噪声场基本特性参量的测量;噪声控制中使用的吸声和隔声材料、减振阻尼材料的声学性能测定;吸声、隔声、消声、减振、隔振等控制措施的技术效能评定测量等。此外,研究噪声对人体的影响和危害、对噪声进行的主观评价,制定各种环境噪声标准等工作也需要噪声测量提供科学的依据。准确地完成这些测量工作需要采用各种技术手段。Noise measurement technology (noise measuring technique) noise measurement includes the measurement of various noise sources and basic characteristic parameters of the noise field; the acoustic performance measurement of sound absorption and sound insulation materials and vibration damping materials used in noise control; sound absorption, sound insulation , noise reduction, vibration reduction, vibration isolation and other control measures for technical performance evaluation measurement. In addition, the study of the impact and harm of noise on the human body, the subjective evaluation of noise, and the formulation of various environmental noise standards also require scientific basis for noise measurement. Accurately completing these measurements requires the use of various technical means.

噪声测试技术可接收目标的辐射噪声,获取其声学信息,可以为减振降噪提供指导建议。而水下目标与测量点之间距离的准确测量,是目标声源级计算的关键。被动声纳的目标舰船辐射噪声是宽带的,不同频率上的噪声强度各不相同。反映声源辐射噪声强度对频率依赖关系的量,称为声源谱级,是距声源1米处辐射噪声在某单一频率附近1HZ带宽内的声强相对于参考声强的分贝数,用SLs表示。由于舰船辐射噪声的机理很复杂,SLs难以通过理论计算得到,需要进行实际测量。传统噪声测量系统中,是利用合作信标,获取同步测距信息。但是,对于非合作目标,该方法无法实现。由于矢量水听器可兼获目标的标量和矢量信息,能够提升测量能力,现已利用到噪声测量系统中。故本文基于矢量水听器测量技术,利用矢量水听器方位估计结果,采用数据融合方法,使多只矢量水听器获得的数据信息得到充分的利用,在小范围内快速、精确地定位出目标的运动轨迹,解决目前国内噪声测量系统中无法对非合作目标精确定位的问题。Noise test technology can receive the radiated noise of the target, obtain its acoustic information, and provide guidance and suggestions for vibration and noise reduction. The accurate measurement of the distance between the underwater target and the measurement point is the key to the calculation of the target sound source level. The target ship radiation noise of passive sonar is broadband, and the noise intensity on different frequencies is different. The quantity that reflects the dependence of the radiated noise intensity of the sound source on the frequency is called the sound source spectral level, which is the decibel number of the sound intensity of the radiated noise within a 1HZ bandwidth near a single frequency relative to the reference sound intensity at a distance of 1 meter from the sound source. SLs said. Due to the complexity of the mechanism of ship radiation noise, SLs are difficult to obtain through theoretical calculations, and actual measurements are required. In traditional noise measurement systems, cooperative beacons are used to obtain synchronous ranging information. However, for non-cooperative targets, this method cannot be achieved. Because the vector hydrophone can obtain both the scalar and vector information of the target, it can improve the measurement capability, and has now been used in the noise measurement system. Therefore, based on the vector hydrophone measurement technology, this paper uses the vector hydrophone azimuth estimation results and adopts the data fusion method to make full use of the data information obtained by multiple vector hydrophones, and quickly and accurately locate the The trajectory of the target can solve the problem that the current domestic noise measurement system cannot accurately locate non-cooperative targets.

邓秀华等人研究了同步距离精确测量的方法(邓秀华.自导深弹脱靶距离测量方法研究.舰船电子工程,2012,Vol.32No.10),其在目标上安装有同步声信标,无法实现对非合作运动目标的测量;吴艳群等人研究了矢量水听器纯方位目标运动分析的方法(吴艳群,胡永明.基于单矢量水听器的水面目标运动分析.声学技术,2010,1000-3630(2010)-04-0361-04),其利用单只矢量水听器即可对目标进行方位估计,在大范围内对运动目标进行跟踪测量,但是该方法跟踪速度较慢,定位精度无法满足测量要求。Deng Xiuhua and others have studied the method of precise measurement of synchronous distance (Deng Xiuhua. Research on the measurement method of self-guided deep missile miss distance. Ship Electronic Engineering, 2012, Vol.32No.10), which has a synchronous acoustic beacon installed on the target, which cannot Realize the measurement of non-cooperative moving targets; Wu Yanqun and others studied the method of vector hydrophone azimuth-only target motion analysis (Wu Yanqun, Hu Yongming. Water surface target motion analysis based on single vector hydrophone. Acoustic Technology, 2010, 1000- 3630(2010)-04-0361-04), which uses a single vector hydrophone to estimate the orientation of the target and track and measure the moving target in a large range, but the tracking speed of this method is slow and the positioning accuracy cannot be achieved. Meet the measurement requirements.

基于此,本发明将矢量水听器测量技术与数据融合方法结合起来,更大程度地获得被测试目标和环境的信息量,综合多套测量系统获取的目标信息,有效地提升了系统的性能,提高了定位精度。另一方面又结合了卡尔曼滤波算法对目标运动情况进行滤波处理,使目标的运动轨迹得到了优化,使其满足噪声测量使用的需求。本发明提出的方法利用了数据融合技术处理了多只矢量水听器测得的数据信息,使测量到的数据发挥了最大的作用,适合在小范围内快速、高精度的定位出目标的运动轨迹,提高了实验的效率,工程上也较容易实现。Based on this, the present invention combines the vector hydrophone measurement technology with the data fusion method, obtains the information amount of the tested target and the environment to a greater extent, integrates the target information obtained by multiple sets of measurement systems, and effectively improves the performance of the system , which improves the positioning accuracy. On the other hand, the Kalman filter algorithm is combined to filter the target motion, so that the target's motion trajectory is optimized to meet the needs of noise measurement. The method proposed by the present invention utilizes the data fusion technology to process the data information measured by multiple vector hydrophones, so that the measured data can play a maximum role, and is suitable for quickly and accurately locating the movement of the target in a small range The trajectory improves the efficiency of the experiment and is easier to implement in engineering.

发明内容Contents of the invention

本发明提出了一种非合作目标辐射噪声测量定位技术,结合了矢量数据融合与卡尔曼滤波算法,可有效的对非合作运动目标进行跟踪测量,获取运动参数,较好的提高矢量水听器的定位精度以及测量系统的稳定性。The invention proposes a non-cooperative target radiation noise measurement and positioning technology, which combines vector data fusion and Kalman filter algorithm, can effectively track and measure non-cooperative moving targets, obtain motion parameters, and better improve vector hydrophone The positioning accuracy and the stability of the measurement system.

本发明解决其技术问题所采用的技术方案包括以下步骤:The technical solution adopted by the present invention to solve its technical problems comprises the following steps:

(1)分别建立由四阵元组成的直线测量阵模型、正方形测量阵模型,四阵元组成六条基线,它们分别与目标构成六个三角形,形成12个方位角;(1) Respectively establish a linear measurement array model and a square measurement array model composed of four array elements. The four array elements form six baselines, which respectively form six triangles with the target and form 12 azimuth angles;

(2)建立矢量水听器的接收信号模型,获得矢量水听器接收的声压数据P(t),X方向振速Vx(t),Y方向振速Vy(t),通过矢量水听器的声压振速联合处理技术,采用互谱声强法进行方位估计;(2) Establish the receiving signal model of the vector hydrophone, obtain the sound pressure data P(t) received by the vector hydrophone, the vibration velocity V x (t) in the X direction, and the vibration velocity V y (t) in the Y direction. The joint processing technology of sound pressure and vibration velocity of hydrophones uses the cross-spectrum sound intensity method to estimate the orientation;

(3)对接收信号进行频谱分析,提取包络得到有效频带,在窄带范围内进行频域融合处理;(3) Spectrum analysis is performed on the received signal, the envelope is extracted to obtain an effective frequency band, and frequency domain fusion processing is performed within a narrow band range;

(4)组合6条基线与得到的12个方位角,通过三角形交汇方法,解算每条基线所测得的目标位置;对多组矢量水听器解算出的目标位置进行数据再融合;(4) Combine the 6 baselines and the obtained 12 azimuth angles, and solve the target position measured by each baseline through the triangle intersection method; perform data re-fusion on the target positions calculated by multiple sets of vector hydrophones;

(5)对(4)中生成的运动目标测量轨迹,采用卡尔曼滤波算法对其进行优化。(5) The Kalman filter algorithm is used to optimize the moving target measurement trajectory generated in (4).

所述的步骤(2)的矢量水听器的声压振速联合处理技术具体包括:The sound pressure vibration velocity joint processing technology of the vector hydrophone of described step (2) specifically includes:

将目标分别与六条基线进行组合,得到第i个阵元处的接收信号为:Combining the target with the six baselines respectively, the received signal at the i-th array element is obtained as:

其中下标s表示信号量,下标n表示噪声量;pi(t)表示第i个阵元接收到的声压信号,vxi(t)表示第i个阵元接收到的水平方向上的振速信号,vyi(t)表示第i个阵元接收到的垂直方向上的振速信号,θ为入射声波的水平方位角。Among them, the subscript s indicates the amount of signal, and the subscript n indicates the amount of noise; p i (t) indicates the sound pressure signal received by the i-th array element, v xi (t) indicates the horizontal direction received by the i-th array element The vibration velocity signal of , v yi (t) represents the vibration velocity signal in the vertical direction received by the i-th array element, and θ is the horizontal azimuth angle of the incident sound wave.

所述的步骤(2)的互谱声强法具体包括:The cross-spectrum sound intensity method of described step (2) specifically comprises:

将得到的声压量pi(r,t)、振速量vxi(r,t)、vyi(r,t)作傅里叶变换,在频域内进行信号处理可以得到频域声强信息:The obtained sound pressure p i (r, t), vibration velocity v xi (r, t), and v yi (r, t) are Fourier transformed, and signal processing in the frequency domain can obtain the frequency domain sound intensity information:

利用互谱声强法估计各个频率的水平方位角为:The horizontal azimuth angle of each frequency is estimated by using the cross-spectrum sound intensity method as:

其中ω为角频率,为x方向的平均声强,为y方向的平均声强,为水平方位角的估计值。where ω is the angular frequency, is the average sound intensity in the x direction, is the average sound intensity in the y direction, is the estimated value of the horizontal azimuth.

所述的步骤(3)具体包括:Described step (3) specifically comprises:

首先用FFT对整个频率域进行功率谱估计,经过分析找到信号的线谱,对线谱提取包络,对包络所在的一个窄带范围(f1,f2,f3,…,fn)做频率细化分析;对于同一目标信号,利用互谱声强法得到一系列目标的方位估计值;而后对多组矢量水听器解算出的目标位置进行数据再融合,对目标位置的精确定位结果应为所有基线定位结果的加权综合First use FFT to estimate the power spectrum in the entire frequency domain, find the line spectrum of the signal after analysis, extract the envelope from the line spectrum, and find a narrow band range (f 1 , f 2 , f 3 ,…,f n ) where the envelope is located Do frequency refinement analysis; for the same target signal, use the cross-spectrum sound intensity method to obtain a series of target azimuth estimates; The result should be a weighted composite of all baseline positioning results

权值选择为方差倒数法,其中Di表示第i组测量数据的方差:The weight selection is the reciprocal variance method, where D i represents the variance of the i-th group of measurement data:

所述的步骤(4)具体包括:Described step (4) specifically comprises:

阵元i和阵元j之间的距离:The distance between array element i and array element j:

双水听器交叉定位示意图如图1所示,解得测量阵坐标系中R和为:The schematic diagram of double hydrophone cross positioning is shown in Fig. 1, and R and for:

所述的步骤(5)具体包括:Described step (5) specifically comprises:

卡尔曼滤波算法的递推公式如下:The recursive formula of the Kalman filter algorithm is as follows:

P(k+1|k)=Φ·P(k|k)·Φ′+Γ·Q(k)·Γ′;P(k+1|k)=Φ·P(k|k)·Φ'+Γ·Q(k)·Γ';

K(k+1)=P(k+1|k)·H′(k+1|k)·S-1(k+1);K(k+1)=P(k+1|k)·H'(k+1|k)·S -1 (k+1);

S(k+1)=H(k+1)·P(k+1|k)·H′(k+1)+R(k+1);S(k+1)=H(k+1)·P(k+1|k)·H'(k+1)+R(k+1);

P(k+1|k+1)=[I-K(k+1)·H(k+1)]·P(k+1|k);P(k+1|k+1)=[I-K(k+1) H(k+1)] P(k+1|k);

其中,Q(k).δkl=E[g(k).g'(l)],R(k).δkl=E[w(k).w'(l)]。Wherein, Q(k).δ kl =E[g(k).g'(l)], R(k).δ kl =E[w(k).w'(l)].

本发明的有益效果在于:该方法充分的利用了矢量水听器得到的数据信息,将矢量水听器声压振速联合处理技术与数据融合技术有效的结合在了一起。并采用了卡尔曼滤波算法,对运动目标的轨迹进行了优化,使得对运动目标的定位精度得到了明显的提高,可以满足对非合作目标的测量要求,具有较强的工程实用性。The beneficial effect of the present invention is that: the method fully utilizes the data information obtained by the vector hydrophone, and effectively combines the joint processing technology of the sound pressure and vibration velocity of the vector hydrophone with the data fusion technology. And the Kalman filter algorithm is used to optimize the trajectory of the moving target, so that the positioning accuracy of the moving target has been significantly improved, which can meet the measurement requirements of non-cooperative targets and has strong engineering practicability.

附图说明Description of drawings

图1为本发明流程图;Fig. 1 is a flowchart of the present invention;

图2为双矢量水听器交叉定位示意图;Fig. 2 is a schematic diagram of double-vector hydrophone cross positioning;

图3为正方形布站示意图;Figure 3 is a schematic diagram of a square layout;

图4为目标运动轨迹仿真分析结果;Fig. 4 is the simulation analysis result of target motion trajectory;

图5为X方向速度检测仿真分析结果;Fig. 5 is the simulation analysis result of speed detection in X direction;

图6为Y方向速度检测仿真分析结果;Fig. 6 is the simulation analysis result of speed detection in Y direction;

图7为X轴位置检测误差仿真分析结果;Fig. 7 is the simulation analysis result of X-axis position detection error;

图8为Y轴位置检测误差仿真分析结果。Figure 8 is the simulation analysis result of the Y-axis position detection error.

具体实施方式detailed description

下面结合附图和实例对本发明进一步说明。The present invention will be further described below in conjunction with accompanying drawings and examples.

(1)建立四元矢量水听器的测量模型,四阵元两两组合构成六条测量基线,它们分别与目标构成六个三角形,从而得到12个测量方位角。(1) The measurement model of the four-element vector hydrophone is established, and the four array elements are combined in pairs to form six measurement baselines, which respectively form six triangles with the target, thus obtaining 12 measurement azimuths.

以正方形测量阵为例,正方形阵与运动目标均位于xoy平面内,四元矢量水听器[1,2,3,4]分布在边长为a的正方形的四个顶点上,按逆时针方向排列,坐标分别为(xi,yi),i=1,2,3,4。阵元1和阵元2位于x轴上,等间距分布在原点O的两侧。阵元3和阵元4分别位于阵元2、阵元3的正上方。目标的初始位置位于阵元1和阵元4交线的中点处,如图3所示。Taking the square measurement array as an example, both the square array and the moving target are located in the xoy plane, and the four-element vector hydrophones [1, 2, 3, 4] are distributed on the four vertices of the square whose side length is a, according to the counterclockwise The directions are arranged, and the coordinates are (x i , y i ), i=1, 2, 3, 4. Array element 1 and array element 2 are located on the x-axis, equally spaced on both sides of the origin O. Array element 3 and array element 4 are located directly above array element 2 and array element 3 respectively. The initial position of the target is at the midpoint of the intersection of array element 1 and array element 4, as shown in Figure 3.

(2)建立矢量水听器的接收信号模型,获得矢量水听器接收的声压数据P(t),X方向振速Vx(t),Y方向振速Vy(t)。令目标分别与六条基线进行组合,则可得到第i个阵元处的接收信号为:(2) Establish the receiving signal model of the vector hydrophone, and obtain the sound pressure data P(t) received by the vector hydrophone, the vibration velocity V x (t) in the X direction, and the vibration velocity V y (t) in the Y direction. Combining the target with the six baselines respectively, the received signal at the i-th array element can be obtained as:

下标s表示信号量,下标n表示噪声量。其中pi(t)表示第i个阵元接收到的声压信号,vxi(t)表示第i个阵元接收到的水平方向上的振速信号,vyi(t)表示第i个阵元接收到的垂直方向上的振速信号。θ为入射声波的水平方位角。The subscript s indicates the amount of signal, and the subscript n indicates the amount of noise. Where p i (t) represents the sound pressure signal received by the i-th array element, v xi (t) represents the vibration velocity signal in the horizontal direction received by the i-th array element, and v yi (t) represents the i-th The vibration velocity signal in the vertical direction received by the array element. θ is the horizontal azimuth angle of the incident sound wave.

将得到的声压量pi(r,t)、振速量vxi(r,t)、vyi(r,t)作傅里叶变换,在频域内进行信号处理可以得到频域声强信息:The obtained sound pressure p i (r, t), vibration velocity v xi (r, t), and v yi (r, t) are Fourier transformed, and signal processing in the frequency domain can obtain the frequency domain sound intensity information:

利用互谱声强法估计各个频率的水平方位角为:The horizontal azimuth angle of each frequency is estimated by using the cross-spectrum sound intensity method as:

式中ω为角频率,为x方向的平均声强,为y方向的平均声强,为水平方位角的估计值。where ω is the angular frequency, is the average sound intensity in the x direction, is the average sound intensity in the y direction, is the estimated value of the horizontal azimuth.

(3)为提高定位精度,需对接收信号进行频谱分析,得到有效频带,在窄带范围内进行频域融合处理,来综合测量阵所有基线对目标的定位结果。(3) In order to improve the positioning accuracy, it is necessary to analyze the spectrum of the received signal to obtain the effective frequency band, and perform frequency domain fusion processing in the narrow band range to synthesize the positioning results of all baselines of the measurement array to the target.

首先用FFT对整个频率域进行功率谱估计,经过分析找到信号的线谱,对线谱提取包络,对包络所在的一个窄带范围(f1,f2,f3,…,fn)做频率细化分析。First use FFT to estimate the power spectrum in the entire frequency domain, find the line spectrum of the signal after analysis, extract the envelope from the line spectrum, and find a narrow band range (f 1 , f 2 , f 3 ,…,f n ) where the envelope is located Do frequency analysis.

矢量水听器利用互谱声强法进行测向,对应于接收信号的每一个频率f1,f2,f3,…,fn,根据公式(2.4)都能够估计出一个方位信息因此,对于同一目标信号,利用互谱声强法能够得到一系列目标的方位估计值对于每一组矢量水听器,对应于接收信号的每一个频率,根据公式(8)都能解算出一组目标位置坐标数据S1(x,y),S2(x,y),S3(x,y),…,Sn(x,y),利用各个频率声强的大小来综合每个频率的目标位置结果。The vector hydrophone uses the cross-spectrum sound intensity method for direction finding, corresponding to each frequency f 1 , f 2 , f 3 ,…,f n of the received signal, a direction information can be estimated according to the formula (2.4) Therefore, for the same target signal, the azimuth estimation value of a series of targets can be obtained by using the cross-spectrum sound intensity method For each group of vector hydrophones, corresponding to each frequency of the received signal, a set of target position coordinate data S 1 (x, y), S 2 (x, y), S 3 (x,y),…,S n (x,y), using the sound intensity of each frequency to combine the target position results for each frequency.

而后对多组矢量水听器解算出的目标位置进行数据再融合,对目标位置的精确定位结果应为所有基线定位结果的加权综合,即:Then, data re-fusion is performed on the target position calculated by multiple sets of vector hydrophones, and the precise positioning result of the target position should be the weighted synthesis of all baseline positioning results, namely:

权值选择为方差倒数法,其中Di表示第i组测量数据的方差:The weight selection is the reciprocal variance method, where D i represents the variance of the i-th group of measurement data:

(4)由四阵元组合成六条基线,分别与目标构成六个三角形,形成12个方位角。利用得到的水平方位值θ与基线之间的距离,通过三角形交汇法来确定目标所在的位置坐标。具体为:(4) Six baselines are composed of four array elements, which respectively form six triangles with the target, forming 12 azimuth angles. Using the distance between the obtained horizontal orientation value θ and the baseline, the position coordinates of the target are determined by the triangle intersection method. Specifically:

阵元i和阵元j之间的距离:The distance between array element i and array element j:

双水听器交叉定位示意图如图1所示,解得测量阵坐标系中R和为:The schematic diagram of double hydrophone cross positioning is shown in Fig. 1, and R and for:

(5)利用卡尔曼滤波对目标运动情况进行滤波处理。卡尔曼滤波算法(递推公式)如下:(5) Use Kalman filter to filter the target motion. The Kalman filter algorithm (recursive formula) is as follows:

P(k+1|k)=Φ·P(k|k)·Φ'+Γ·Q(k)·Γ'P(k+1|k)=Φ·P(k|k)·Φ'+Γ·Q(k)·Γ'

K(k+1)=P(k+1|k)·H'(k+1|k)·S-1(k+1)K(k+1)=P(k+1|k)·H'(k+1|k)·S -1 (k+1)

S(k+1)=H(k+1)·P(k+1|k)·H'(k+1)+R(k+1)S(k+1)=H(k+1)·P(k+1|k)·H'(k+1)+R(k+1)

P(k+1|k+1)=[I-K(k+1)·H(k+1)]·P(k+1|k)P(k+1|k+1)=[I-K(k+1)·H(k+1)]·P(k+1|k)

其中:Q(k).δkl=E[g(k).g'(l)],R(k).δkl=E[w(k).w'(l)]。Wherein: Q(k).δ kl =E[g(k).g'(l)], R(k).δ kl =E[w(k).w'(l)].

上面对发明内容各部分的具体实施方式进行了说明,综合了数据融合技术和卡尔曼滤波算法的多矢量水听器联合跟踪定位技术,可有效的提高系统的定位精度。下面以正方形布站为例,对仿真结果进行分析。The specific implementation of each part of the content of the invention has been described above. The multi-vector hydrophone joint tracking and positioning technology that integrates the data fusion technology and the Kalman filter algorithm can effectively improve the positioning accuracy of the system. The following takes the square station layout as an example to analyze the simulation results.

实例参数设置如下:四元正方形阵布放如图2所示。一号矢量水听器布放的水平位置为(-100,0);二号矢量水听器布放的水平位置为(100,0),三号矢量水听器布放的水平位置为(100,200);四号矢量水听器布放的水平位置为(-100,200)。假设目标为单频信号,信号频率为150Hz,采样率4096,初始时刻信噪比为20dB,目标在水平面上的初始位置为(-100,100),X方向的初始速度为Vx=1m/s,Y方向初始速度为Vy=0。The example parameters are set as follows: The layout of the four-element square array is shown in Figure 2. The horizontal position of the No. 1 vector hydrophone is (-100, 0); the horizontal position of the No. 2 vector hydrophone is (100, 0), and the horizontal position of the No. 3 vector hydrophone is ( 100, 200); the horizontal position of the No. 4 vector hydrophone is (-100, 200). Suppose the target is a single-frequency signal, the signal frequency is 150Hz, the sampling rate is 4096, the signal-to-noise ratio at the initial moment is 20dB, the initial position of the target on the horizontal plane is (-100,100), and the initial velocity in the X direction is V x = 1m/s, The initial velocity in the Y direction is V y =0.

图3为目标运动轨迹仿真分析结果,图4为速度检测仿真分析结果,图5为位置检测误差仿真分析结果。Fig. 3 is the simulation analysis result of target motion trajectory, Fig. 4 is the simulation analysis result of speed detection, and Fig. 5 is the simulation analysis result of position detection error.

综合图3、图4和图5的仿真结果可知:Based on the simulation results of Figure 3, Figure 4 and Figure 5, it can be seen that:

(1)多元矢量水听器被动定位解算算法,能够比较准确地描绘出目标的运动轨迹,证明了该算法的可靠性和定位方法的有效性。多矢量水听器结合卡尔曼滤波算法,可进一步提高定位精度。(1) The multivariate vector hydrophone passive positioning solution algorithm can accurately describe the target's trajectory, which proves the reliability of the algorithm and the effectiveness of the positioning method. The multi-vector hydrophone combined with the Kalman filter algorithm can further improve the positioning accuracy.

(2)利用方位信息可准确获得目标与水听器之间的距离,进行声传播损失的计算,从而准确得到目标的辐射噪声级。(2) The distance between the target and the hydrophone can be accurately obtained by using the azimuth information, and the sound propagation loss can be calculated, so as to accurately obtain the radiated noise level of the target.

Claims (6)

1.一种非合作目标辐射噪声测量定位技术,其特征在于具体包括如下步骤:1. A non-cooperative target radiation noise measurement and positioning technology is characterized in that it specifically comprises the steps: (1)分别建立由四阵元组成的直线测量阵模型、正方形测量阵模型,四阵元组成六条基线,它们分别与目标构成六个三角形,形成12个方位角;(1) Respectively establish a linear measurement array model and a square measurement array model composed of four array elements. The four array elements form six baselines, which respectively form six triangles with the target and form 12 azimuth angles; (2)建立矢量水听器的接收信号模型,获得矢量水听器接收的声压数据P(t),X方向振速Vx(t),Y方向振速Vy(t),通过矢量水听器的声压振速联合处理技术,采用互谱声强法进行方位估计;(2) Establish the receiving signal model of the vector hydrophone, obtain the sound pressure data P(t) received by the vector hydrophone, the vibration velocity V x (t) in the X direction, and the vibration velocity V y (t) in the Y direction. The joint processing technology of sound pressure and vibration velocity of hydrophones uses the cross-spectrum sound intensity method to estimate the orientation; (3)对接收信号进行频谱分析,提取包络得到有效频带,在窄带范围内进行频域融合处理;(3) Spectrum analysis is performed on the received signal, the envelope is extracted to obtain an effective frequency band, and frequency domain fusion processing is performed within a narrow band range; (4)组合6条基线与得到的12个方位角,通过三角形交汇方法,解算每条基线所测得的目标位置;对多组矢量水听器解算出的目标位置进行数据再融合;(4) Combine the 6 baselines and the obtained 12 azimuth angles, and solve the target position measured by each baseline through the triangle intersection method; perform data re-fusion on the target positions calculated by multiple sets of vector hydrophones; (5)对(4)中生成的运动目标测量轨迹,采用卡尔曼滤波算法对其进行优化。(5) The Kalman filter algorithm is used to optimize the moving target measurement trajectory generated in (4). 2.根据权利要求1所述的一种非合作目标辐射噪声测量定位技术,其特征在于,所述的步骤(2)的矢量水听器的声压振速联合处理技术具体包括:2. a kind of non-cooperative target radiation noise measurement positioning technology according to claim 1, is characterized in that, the sound pressure vibration velocity joint processing technology of the vector hydrophone of described step (2) specifically comprises: 将目标分别与六条基线进行组合,得到第i个阵元处的接收信号为:Combining the target with the six baselines respectively, the received signal at the i-th array element is obtained as: <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>p</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>p</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>v</mi> <mrow> <mi>x</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>v</mi> <mrow> <mi>y</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>p</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>p</mi><mrow><mi>s</mi><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>p</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>v</mi><mrow><mi>x</mi><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>v</mi><mrow><mi>s</mi><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><mi>c</mi><mi>o</mi><mi>s</mi><mrow><mo>(</mo><mi>&amp;theta;</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>v</mi><mrow><mi>x</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>v</mi><mrow><mi>y</mi><mi>i</mi></mrow></msub><mrow><mo>(< / mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>v</mi><mrow><mi>s</mi><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>&amp;CenterDot;</mo><mi>sin</mi><mrow><mo>(</mo><mi>&amp;theta;</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>v</mi><mrow><mi>y</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mtd></mtr></mtable></mfenced><mo>;</mo></mrow> 其中下标s表示信号量,下标n表示噪声量;pi(t)表示第i个阵元接收到的声压信号,vxi(t)表示第i个阵元接收到的水平方向上的振速信号,vyi(t)表示第i个阵元接收到的垂直方向上的振速信号,θ为入射声波的水平方位角。Among them, the subscript s indicates the amount of signal, and the subscript n indicates the amount of noise; p i (t) indicates the sound pressure signal received by the i-th array element, v xi (t) indicates the horizontal direction received by the i-th array element The vibration velocity signal of , v yi (t) represents the vibration velocity signal in the vertical direction received by the i-th array element, and θ is the horizontal azimuth angle of the incident sound wave. 3.根据权利要求1所述的一种非合作目标辐射噪声测量定位技术,其特征在于,所述的步骤(2)的互谱声强法具体包括:3. a kind of non-cooperative target radiation noise measurement positioning technique according to claim 1, is characterized in that, the cross-spectrum sound intensity method of described step (2) specifically comprises: 将得到的声压量pi(r,t)、振速量vxi(r,t)、vyi(r,t)作傅里叶变换,在频域内进行信号处理可以得到频域声强信息:The obtained sound pressure p i (r, t), vibration velocity v xi (r, t), and v yi (r, t) are Fourier transformed, and signal processing in the frequency domain can obtain the frequency domain sound intensity information: <mrow> <mover> <msub> <mi>I</mi> <mi>x</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mover> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>.</mo> <msub> <mi>v</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mover> <mi>I</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>.</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> <mrow><mover><msub><mi>I</mi><mi>x</mi></msub><mo>&amp;OverBar;</mo></mover><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>&amp;omega;</mi><mo>)</mo></mrow><mo>=</mo><mover><mrow><msub><mi>p</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>&amp;omega;</mi><mo>)</mo></mrow><mo>.</mo><msub><mi>v</mi><mrow><mi>x</mi><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>&amp;omega;</mi><mo>)</mo></mrow></mrow><mo>&amp;OverBar;</mo></mover><mo>=</mo><mover><mi>I</mi><mo>&amp;OverBar;</mo></mover><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>&amp;omega;</mi><mo>)</mo></mrow><mo>.</mo><mi>c</mi><mi>o</mi><mi>s</mi><mrow><mo>(</mo><mi>&amp;theta;</mi><mo>)</mo></mrow><mo>;</mo></mrow> <mrow> <mover> <msub> <mi>I</mi> <mi>y</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mover> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>.</mo> <msub> <mi>v</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mover> <mi>I</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>.</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> <mrow><mover><msub><mi>I</mi><mi>y</mi></msub><mo>&amp;OverBar;</mo></mover><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>&amp;omega;</mi><mo>)</mo></mrow><mo>=</mo><mover><mrow><msub><mi>p</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>&amp;omega;</mi><mo>)</mo></mrow><mo>.</mo><msub><mi>v</mi><mrow><mi>y</mi><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>&amp;omega;</mi><mo>)</mo></mrow></mrow><mo>&amp;OverBar;</mo></mover><mo>=</mo><mover><mi>I</mi><mo>&amp;OverBar;</mo></mover><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>&amp;omega;</mi><mo>)</mo></mrow><mo>.</mo><mi>s</mi><mi>i</mi><mi>n</mi><mrow><mo>(</mo><mi>&amp;theta;</mi><mo>)</mo></mrow><mo>;</mo></mrow> 利用互谱声强法估计各个频率的水平方位角为:The horizontal azimuth angle of each frequency is estimated by using the cross-spectrum sound intensity method as: <mrow> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>tan</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mfrac> <mrow> <mover> <msub> <mi>I</mi> <mi>y</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>&amp;omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mover> <msub> <mi>I</mi> <mi>x</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>,</mo> <mi>&amp;omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>)</mo> <mo>;</mo> </mrow> <mrow><mover><mi>&amp;theta;</mi><mo>^</mo></mover><mrow><mo>(</mo><mi>&amp;omega;</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>tan</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mfrac><mrow><mover><msub><mi>I</mi><mi>y</mi></msub><mo>&amp;OverBar;</mo></mover><mrow><mo>(</mo><mrow><mi>r</mi><mo>,</mo><mi>&amp;omega;</mi></mrow><mo>)</mo></mrow></mrow><mrow><mover><msub><mi>I</mi><mi>x</mi></msub><mo>&amp;OverBar;</mo></mover><mrow><mo>(</mo><mrow><mi>r</mi><mo>,</mo><mi>&amp;omega;</mi></mrow><mo>)</mo></mrow></mrow></mfrac><mo>)</mo><mo>;</mo></mrow> 其中ω为角频率,为x方向的平均声强,为y方向的平均声强,为水平方位角的估计值。where ω is the angular frequency, is the average sound intensity in the x direction, is the average sound intensity in the y direction, is the estimated value of the horizontal azimuth. 4.根据权利要求1所述的一种非合作目标辐射噪声测量定位技术,其特征在于,所述的步骤(3)具体包括:4. a kind of non-cooperative target radiation noise measurement positioning technology according to claim 1, is characterized in that, described step (3) specifically comprises: 首先用FFT对整个频率域进行功率谱估计,经过分析找到信号的线谱,对线谱提取包络,对包络所在的一个窄带范围(f1,f2,f3,…,fn)做频率细化分析;对于同一目标信号,利用互谱声强法得到一系列目标的方位估计值;而后对多组矢量水听器解算出的目标位置进行数据再融合,对目标位置的精确定位结果应为所有基线定位结果的加权综合First use FFT to estimate the power spectrum in the entire frequency domain, find the line spectrum of the signal after analysis, extract the envelope from the line spectrum, and find a narrow band range (f 1 , f 2 , f 3 ,…,f n ) where the envelope is located Do frequency refinement analysis; for the same target signal, use the cross-spectrum sound intensity method to obtain a series of target azimuth estimates; The result should be a weighted composite of all baseline positioning results <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;NotEqual;</mo> <mi>j</mi> </mrow> </munder> <munder> <mi>&amp;Sigma;</mi> <mi>j</mi> </munder> <msub> <mi>&amp;omega;</mi> <mrow> <mi>x</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;NotEqual;</mo> <mi>j</mi> </mrow> </munder> <munder> <mi>&amp;Sigma;</mi> <mi>j</mi> </munder> <msub> <mi>&amp;omega;</mi> <mrow> <mi>x</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;NotEqual;</mo> <mi>j</mi> </mrow> </munder> <munder> <mi>&amp;Sigma;</mi> <mi>j</mi> </munder> <msub> <mi>&amp;omega;</mi> <mrow> <mi>y</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;NotEqual;</mo> <mi>j</mi> </mrow> </munder> <munder> <mi>&amp;Sigma;</mi> <mi>j</mi> </munder> <msub> <mi>&amp;omega;</mi> <mrow> <mi>y</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><mi>x</mi><mo>=</mo><mfrac><mrow><munder><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>&amp;NotEqual;</mo><mi>j</mi></mrow></munder><munder><mi>&amp;Sigma;</mi><mi>j</mi></munder><msub><mi>&amp;omega;</mi><mrow><mi>x</mi>mi><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>x</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><mrow><munder><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>&amp;NotEqual;</mo><mi>j</mi></mrow></munder><munder><mi>&amp;Sigma;</mi><mi>j</mi></munder><msub><mi>&amp;omega;</mi><mrow><mi>x</mi><mi>i</mi><mi>j</mi></mrow></msub></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mi>y</mi><mo>=</mo><mfrac><mrow><munder><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>&amp;NotEqual;</mo><mi>j</mi></mrow></munder><munder><mi>&amp;Sigma;</mi><mi>j</mi></munder><msub><mi>&amp;omega;</mi><mrow><mi>y</mi><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>y</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><mrow><munder><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>&amp;NotEqual;</mo><mi>j</mi></mrow></munder><munder><mi>&amp;Sigma;</mi><mi>j</mi></munder><msub><mi>&amp;omega;</mi><mrow><mi>y</mi><mi>i</mi><mi>j</mi></mrow></msub></mrow></mfrac></mrow></mtd></mtr></mtable></mfenced><mo>;</mo></mrow> 权值选择为方差倒数法,其中Di表示第i组测量数据的方差:The weight selection is the reciprocal variance method, where D i represents the variance of the i-th group of measurement data: <mrow> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mo>=</mo> <msup> <msub> <mi>D</mi> <mi>i</mi> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>/</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <msub> <mi>D</mi> <mi>i</mi> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mrow> <mrow><msub><mi>&amp;omega;</mi><mi>i</mi></msub><mo>=</mo><msup><msub><mi>D</mi><mi>i</mi></msub><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>/</mo><munderover><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msup><msub><mi>D</mi><mi>i</mi></msub><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>.</mo></mrow> 5.根据权利要求1所述的一种非合作目标辐射噪声测量定位技术,其特征在于,所述的步骤(4)具体包括:5. a kind of non-cooperative target radiation noise measurement positioning technique according to claim 1, is characterized in that, described step (4) specifically comprises: 阵元i和阵元j之间的距离:The distance between array element i and array element j: <mrow> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>&amp;NotEqual;</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> <mrow><msub><mi>d</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msqrt><mrow><msup><mrow><mo>(</mo><msub><mi>x</mi><mi>i</mi></msub><mo>-</mo><msub><mi>x</mi><mi>j</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow><mo>(</mo><msub><mi>y</mi><mi>i</mi></msub><mo>-</mo><msub><mi>y</mi><mi>j</mi></msub><mo>)</mo></mrow><mn>2</mn></msup></mrow></msqrt><mo>,</mo><mrow><mo>(</mo><mi>i</mi><mo>&amp;NotEqual;</mo><mi>j</mi><mo>)</mo></mrow><mo>;</mo></mrow> 双水听器交叉定位示意图如图1所示,解得测量阵坐标系中R和为:The schematic diagram of double hydrophone cross positioning is shown in Fig. 1, and R and for: 6.根据权利要求1所述的一种非合作目标辐射噪声测量定位技术,其特征在于,所述的步骤(5)具体包括:6. a kind of non-cooperative target radiation noise measurement positioning technique according to claim 1, is characterized in that, described step (5) specifically comprises: 卡尔曼滤波算法的递推公式如下:The recursive formula of the Kalman filter algorithm is as follows: P(k+1|k)=Φ·P(kk)·Φ'+Γ·Q(k)·Γ';P(k+1|k)=Φ·P(kk)·Φ'+Γ·Q(k)·Γ'; K(k+1)=P(k+1|k)·H'(k+1k)·S-1(k+1);K(k+1)=P(k+1|k)·H'(k+1k)·S -1 (k+1); S(k+1)=H(k+1)·P(k+1|k)·H'(k+1)+R(k+1);S(k+1)=H(k+1)·P(k+1|k)·H'(k+1)+R(k+1); P(k+1|k+1)=[I-K(k+1)·H(k+1)]·P(k+1|k);X(k+1|k+1)=X(k+1|k)+K(k+1|k)+K(k+1)·V(k+1);P(k+1|k+1)=[I-K(k+1)·H(k+1)]·P(k+1|k); X(k+1|k+1)=X(k +1|k)+K(k+1|k)+K(k+1) V(k+1); 其中,Q(k).δkl=E[g(k).g'(l)],R(k).δkl=E[w(k).w'(l)]。Wherein, Q(k).δ kl =E[g(k).g'(l)], R(k).δ kl =E[w(k).w'(l)].
CN201710837758.4A 2017-09-18 2017-09-18 A kind of noncooperative target radiated noise measurement and positioning technology Pending CN107728109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710837758.4A CN107728109A (en) 2017-09-18 2017-09-18 A kind of noncooperative target radiated noise measurement and positioning technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710837758.4A CN107728109A (en) 2017-09-18 2017-09-18 A kind of noncooperative target radiated noise measurement and positioning technology

Publications (1)

Publication Number Publication Date
CN107728109A true CN107728109A (en) 2018-02-23

Family

ID=61206597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710837758.4A Pending CN107728109A (en) 2017-09-18 2017-09-18 A kind of noncooperative target radiated noise measurement and positioning technology

Country Status (1)

Country Link
CN (1) CN107728109A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614268A (en) * 2018-04-26 2018-10-02 中国人民解放军91550部队 The acoustics tracking of low altitude high speed airbound target
CN109283491A (en) * 2018-08-02 2019-01-29 哈尔滨工程大学 A UAV Positioning System Based on Vector Detection Unit
CN110196407A (en) * 2019-05-06 2019-09-03 东南大学 A kind of single vector hydrophone signal arrival bearing's estimation method based on frequency estimation
CN110244260A (en) * 2019-06-17 2019-09-17 杭州电子科技大学 High-precision DOA Estimation Method for Underwater Targets Based on Acoustic Energy Flow Vector Compensation
CN110703199A (en) * 2019-10-22 2020-01-17 哈尔滨工程大学 Quaternary cross array high-precision azimuth estimation method based on compass compensation
CN111427010A (en) * 2020-04-20 2020-07-17 中国电子科技集团公司电子科学研究院 ROV underwater positioning system and positioning method
CN111427011A (en) * 2020-04-20 2020-07-17 中国电子科技集团公司电子科学研究院 Submarine asset position calibration method and system
CN111708006A (en) * 2020-05-28 2020-09-25 哈尔滨工程大学 A target line spectrum detection method suitable for unmanned platform detection sonar
CN112415467A (en) * 2020-11-06 2021-02-26 中国海洋大学 Single-vector subsurface buoy target positioning implementation method based on neural network
CN112816940A (en) * 2020-12-23 2021-05-18 中国船舶重工集团有限公司第七一0研究所 Target distance estimation method and device based on sound pressure and particle vibration velocity
CN113204009A (en) * 2021-05-12 2021-08-03 深圳康佳电子科技有限公司 Running step length reminding method and device, terminal and computer readable storage medium
CN113671442A (en) * 2021-07-30 2021-11-19 青岛海纳水下信息技术有限公司 Underwater unmanned cluster navigation positioning method based on vector hydrophone technology
CN113702960A (en) * 2021-06-29 2021-11-26 哈尔滨工程大学 High-precision speed measurement method for underwater mobile platform based on time delay and Doppler frequency shift
CN113777594A (en) * 2021-08-11 2021-12-10 上海船舶电子设备研究所(中国船舶重工集团公司第七二六研究所) Method and system for testing minimum detectable signal-to-noise ratio of nonlinear sonar
CN114814722A (en) * 2022-04-29 2022-07-29 杭州电子科技大学 Target direction finding method based on vector hydrophone single-channel instantaneous phase difference weighting
CN115079088A (en) * 2022-06-10 2022-09-20 杭州电子科技大学 Target DOA estimation method based on frequency domain acoustic energy flow instantaneous phase difference weighting
CN115792806A (en) * 2022-10-24 2023-03-14 哈尔滨工程大学 Non-cooperative line spectrum distributed underwater sound positioning method
CN117807356A (en) * 2024-02-29 2024-04-02 齐鲁工业大学(山东省科学院) Double-vector hydrophone positioning method based on improved sparrow algorithm optimized particle filtering
CN114814722B (en) * 2022-04-29 2025-02-25 杭州电子科技大学 Target direction finding method based on single channel instantaneous phase difference weighting of vector hydrophone

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145968A1 (en) * 2003-01-29 2004-07-29 John Brittan Method for processing dual sensor seismic data to attenuate noise
CN101650220A (en) * 2009-09-04 2010-02-17 合肥工业大学 Method for correcting finite difference error of cross-spectrum sound intensity
CN102226837A (en) * 2011-04-08 2011-10-26 哈尔滨工程大学 Applicable to the vector circular array sound-pressure-vibration-velocity joint direction finding method under the condition of cylindrical baffle
CN202329798U (en) * 2011-11-16 2012-07-11 中国船舶重工集团公司第七一五研究所 Two-dimensional vector hydrophone based on piezoelectric ceramic
CN103454616A (en) * 2013-08-27 2013-12-18 西北工业大学 Method for estimating orientation of cross type velocity gradient hydrophone
CN103605108A (en) * 2013-07-29 2014-02-26 哈尔滨工程大学 High-precision remote direction estimation method of acoustic vector array
CN105589066A (en) * 2015-12-14 2016-05-18 西北工业大学 Method for estimating parameters of underwater constant-speed vehicle based on vertical vector array
CN106680762A (en) * 2016-12-15 2017-05-17 哈尔滨工程大学 Sound vector array orientation estimation method based on cross covariance sparse reconstruction

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145968A1 (en) * 2003-01-29 2004-07-29 John Brittan Method for processing dual sensor seismic data to attenuate noise
CN101650220A (en) * 2009-09-04 2010-02-17 合肥工业大学 Method for correcting finite difference error of cross-spectrum sound intensity
CN102226837A (en) * 2011-04-08 2011-10-26 哈尔滨工程大学 Applicable to the vector circular array sound-pressure-vibration-velocity joint direction finding method under the condition of cylindrical baffle
CN202329798U (en) * 2011-11-16 2012-07-11 中国船舶重工集团公司第七一五研究所 Two-dimensional vector hydrophone based on piezoelectric ceramic
CN103605108A (en) * 2013-07-29 2014-02-26 哈尔滨工程大学 High-precision remote direction estimation method of acoustic vector array
CN103454616A (en) * 2013-08-27 2013-12-18 西北工业大学 Method for estimating orientation of cross type velocity gradient hydrophone
CN105589066A (en) * 2015-12-14 2016-05-18 西北工业大学 Method for estimating parameters of underwater constant-speed vehicle based on vertical vector array
CN106680762A (en) * 2016-12-15 2017-05-17 哈尔滨工程大学 Sound vector array orientation estimation method based on cross covariance sparse reconstruction

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HU BO ET AL.: "Underwater patch near-field acoustical holography based on particle velocity and vector hydrophone array", 《SCIENCE CHINA PRESS AND SPRINGER-VERLAG BERLIN HEIDELBERG》 *
孙勇 等: "多基地声纳系统定位精度分析与最优布站", 《计算机仿真》 *
莫世奇: "矢量水听器的数据融合研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108614268B (en) * 2018-04-26 2021-12-07 中国人民解放军91550部队 Acoustic tracking method for low-altitude high-speed flying target
CN108614268A (en) * 2018-04-26 2018-10-02 中国人民解放军91550部队 The acoustics tracking of low altitude high speed airbound target
CN109283491A (en) * 2018-08-02 2019-01-29 哈尔滨工程大学 A UAV Positioning System Based on Vector Detection Unit
CN110196407A (en) * 2019-05-06 2019-09-03 东南大学 A kind of single vector hydrophone signal arrival bearing's estimation method based on frequency estimation
CN110196407B (en) * 2019-05-06 2022-06-24 东南大学 A method for estimating the direction of arrival of a single-vector hydrophone signal based on frequency estimation
CN110244260B (en) * 2019-06-17 2021-06-29 杭州电子科技大学 High-precision DOA estimation method for underwater targets based on acoustic energy flow vector compensation
CN110244260A (en) * 2019-06-17 2019-09-17 杭州电子科技大学 High-precision DOA Estimation Method for Underwater Targets Based on Acoustic Energy Flow Vector Compensation
CN110703199B (en) * 2019-10-22 2021-09-24 哈尔滨工程大学 High-precision orientation estimation method of quaternary cross array based on compass compensation
CN110703199A (en) * 2019-10-22 2020-01-17 哈尔滨工程大学 Quaternary cross array high-precision azimuth estimation method based on compass compensation
CN111427011A (en) * 2020-04-20 2020-07-17 中国电子科技集团公司电子科学研究院 Submarine asset position calibration method and system
CN111427010A (en) * 2020-04-20 2020-07-17 中国电子科技集团公司电子科学研究院 ROV underwater positioning system and positioning method
CN111708006A (en) * 2020-05-28 2020-09-25 哈尔滨工程大学 A target line spectrum detection method suitable for unmanned platform detection sonar
CN112415467A (en) * 2020-11-06 2021-02-26 中国海洋大学 Single-vector subsurface buoy target positioning implementation method based on neural network
CN112816940A (en) * 2020-12-23 2021-05-18 中国船舶重工集团有限公司第七一0研究所 Target distance estimation method and device based on sound pressure and particle vibration velocity
CN112816940B (en) * 2020-12-23 2023-06-06 中国船舶重工集团有限公司第七一0研究所 Target distance estimation method and device based on sound pressure and particle vibration velocity
CN113204009A (en) * 2021-05-12 2021-08-03 深圳康佳电子科技有限公司 Running step length reminding method and device, terminal and computer readable storage medium
CN113204009B (en) * 2021-05-12 2023-12-22 深圳康佳电子科技有限公司 Running step length reminding method, running step length reminding device, terminal and computer readable storage medium
CN113702960A (en) * 2021-06-29 2021-11-26 哈尔滨工程大学 High-precision speed measurement method for underwater mobile platform based on time delay and Doppler frequency shift
CN113702960B (en) * 2021-06-29 2022-10-21 哈尔滨工程大学 High-precision speed measurement method for underwater maneuvering platform based on time delay and Doppler frequency shift
CN113671442A (en) * 2021-07-30 2021-11-19 青岛海纳水下信息技术有限公司 Underwater unmanned cluster navigation positioning method based on vector hydrophone technology
CN113777594A (en) * 2021-08-11 2021-12-10 上海船舶电子设备研究所(中国船舶重工集团公司第七二六研究所) Method and system for testing minimum detectable signal-to-noise ratio of nonlinear sonar
CN114814722A (en) * 2022-04-29 2022-07-29 杭州电子科技大学 Target direction finding method based on vector hydrophone single-channel instantaneous phase difference weighting
CN114814722B (en) * 2022-04-29 2025-02-25 杭州电子科技大学 Target direction finding method based on single channel instantaneous phase difference weighting of vector hydrophone
CN115079088A (en) * 2022-06-10 2022-09-20 杭州电子科技大学 Target DOA estimation method based on frequency domain acoustic energy flow instantaneous phase difference weighting
CN115792806A (en) * 2022-10-24 2023-03-14 哈尔滨工程大学 Non-cooperative line spectrum distributed underwater sound positioning method
CN115792806B (en) * 2022-10-24 2024-02-20 哈尔滨工程大学 Non-cooperative line spectrum distributed underwater acoustic positioning method
CN117807356A (en) * 2024-02-29 2024-04-02 齐鲁工业大学(山东省科学院) Double-vector hydrophone positioning method based on improved sparrow algorithm optimized particle filtering
CN117807356B (en) * 2024-02-29 2024-05-10 齐鲁工业大学(山东省科学院) Double-vector hydrophone positioning method based on improved sparrow algorithm optimized particle filtering

Similar Documents

Publication Publication Date Title
CN107728109A (en) A kind of noncooperative target radiated noise measurement and positioning technology
CN108828522B (en) Underwater target radiation noise measurement method formed by utilizing vertical array LCMV wave beams
CN103308909B (en) Multi-parameter alternating search-based metrewave radar low elevation height measurement method
CN104569625B (en) A large-scale antenna pattern measurement method based on a rotatable auxiliary antenna
CN102955158B (en) Multiple baseline design method for improving indication performance of ground moving target
CN103217211B (en) Substation noise source distribution measuring method based on synthetic aperture principle
CN108845307B (en) Underwater target radiation noise measurement method based on Fourier integration method
CN113376577B (en) Ultra-short baseline positioning underwater sound source method based on two-dimensional arbitrary array subspace
CN103604944A (en) Surface flow measurement method based on monostation shipborne high-frequency ground wave radar
CN103293526B (en) Synthetic steering vector based beam forming meter-wave radar height measurement method
CN111580079B (en) A Method for Estimating the Closest Approach Distance of Underwater Moving Target Based on Single Vector Hydrophone
CN104515909A (en) Large antenna directional pattern measuring method based on correlation method
CN109188019A (en) Tri-dimensional wind speed wind direction measurement method based on multiple signal classification algorithm
CN105158734B (en) A kind of single vector hydrophone Passive Location based on battle array invariant
CN105182322A (en) Passive positioning method based on reflected signal phase difference
CN104897925A (en) Ultrasonic wind speed and direction measurement device and measurement method
CN101907708B (en) Method for measuring target echo bright spots
CN104166134A (en) Real beam foresight scanning radar target two-dimension locating method
Bahador et al. Three-stage Lamb-wave-based damage localization algorithm in plate-like structures for structural health monitoring applications
CN103487796B (en) A kind of method utilizing underwater acoustic channel Statistically invariant feature to realize passive ranging
Sun et al. Array geometry calibration for underwater compact arrays
CN105467369A (en) Target echo simulation method and apparatus
CN111107626A (en) DOA positioning method based on time reversal
CN106526563A (en) Quintuple volume array multi-target orientation estimation method based on cross-correlation virtual array
CN103760540B (en) Based on moving target detect and the method for parameter estimation of reconstruction signal and 1-norm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180223