CN106797352B - 高信噪特性向量信令码 - Google Patents
高信噪特性向量信令码 Download PDFInfo
- Publication number
- CN106797352B CN106797352B CN201580036886.8A CN201580036886A CN106797352B CN 106797352 B CN106797352 B CN 106797352B CN 201580036886 A CN201580036886 A CN 201580036886A CN 106797352 B CN106797352 B CN 106797352B
- Authority
- CN
- China
- Prior art keywords
- antipodal
- weights
- code
- comparator
- subchannel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013598 vector Substances 0.000 title claims abstract description 89
- 230000011664 signaling Effects 0.000 title abstract description 57
- 239000011159 matrix material Substances 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 35
- 238000010606 normalization Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 abstract description 28
- 238000013461 design Methods 0.000 abstract description 7
- 238000010276 construction Methods 0.000 abstract description 5
- 238000004891 communication Methods 0.000 description 22
- 239000003990 capacitor Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 102100029469 WD repeat and HMG-box DNA-binding protein 1 Human genes 0.000 description 1
- 101710097421 WD repeat and HMG-box DNA-binding protein 1 Proteins 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/0272—Arrangements for coupling to multiple lines, e.g. for differential transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03343—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/14—Channel dividing arrangements, i.e. in which a single bit stream is divided between several baseband channels and reassembled at the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
- H04L25/4917—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
- H04L25/4919—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes using balanced multilevel codes
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dc Digital Transmission (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
向量信令码可与多电平信令协同组合,在给定数量的符号下,多电平信令可以产生更大的符集可实现更大的码字空间,但是以减少多电平信令的检测余量为代价。在本发明的向量信令码构建方法中,代码的构建和多电平信令的选择与其相应的接收比较器网络的设计相配合,其中由发射机编码和发送的改进后的多电平信令值可使得接收比较器的检测余量增大。
Description
相关申请的交叉引用
本申请要求申请日为2014年7月10日,申请号为62/023,163,发明人为AminShokrollahi,名称为“Vector Signaling Codes with Increased Signal to NoiceCharacteristics”(高信噪特性向量信令码)的美国临时专利申请的优先权,并通过引用将其内容整体并入本文,以供所有目的之用。
参考文献
以下参考文献通过引用整体并入本文,以供所有目的之用:
公开号为2011/0268225,申请号为12/784,414,申请日为2010年5月20日,发明人为Harm Cronie和Amin Shokrollahi,名称为“Orthogonal Differential VectorSignaling”(正交差分向量信令)的美国专利申请(下称“《Cronie I》”);
公开号为2011/0302478,申请号为13/154,009,申请日为2011年6月6日,发明人为Harm Cronie和Amin Shokrollahi,名称为“Error Control Coding for OrthogonalDifferential Vector Signaling”(正交差分向量信令的控错编码)的美国专利申请(下称“《CronieII》”)
申请号为13/030,027,申请日为2011年2月17日,发明人为Harm Cronie、AminShokrollahi和Armin Tajalli,名称为“Methods and Systems for Noise Resilient,Pin-Efficient and Low Power Communications with Sparse Signaling Codes”(利用稀疏信令码进行抗噪声干扰、高引脚利用率、低功耗通讯的方法和系统)的美国专利申请,下称“《Cronie III》”;
公开号为2011/0299555,申请号为13/154,009,申请日为2011年6月6日,发明人为Harm Cronie和Amin Shokrollahi,名称为“Error Control Coding for OrthogonalDifferential Vector Signaling”(正交差分向量信令的控错编码)的美国专利申请(下称“《CronieIV》”);
申请号为61/763,403,申请日为2013年2月11日,发明人为John Fox,BrianHolden,Ali Hormati,Peter Hunt,John D Keay,Amin Shokrollahi,Anant Singh,AndrewKevin John Stewart,Giuseppe Surace和Roger Ulrich,名称为“Methods and Systemsfor High Bandwidth Chip-to-Chip Communications Interface”(高带宽芯片间通信接口方法和系统)的美国临时专利申请(下称“《Fox I》”);
申请号为61/773,709,申请日为2013年3月6日,发明人为John Fox,BrianHolden,Peter Hunt,John D Keay,Amin Shokrollahi,Andrew Kevin John Stewart,Giuseppe Surace和Roger Ulrich,名称为“Methods and Systems for High BandwidthChip-to-Chip Communications Interface”(高带宽芯片间通信接口方法和系统)的美国临时专利申请(下称“《Fox II》”);
申请号为61/812,667,申请日为2013年4月16日,发明人为John Fox,BrianHolden,Ali Hormati,Peter Hunt,John D Keay,Amin Shokrollahi,Anant Singh,AndrewKevin John Stewart和Giuseppe Surace,名称为“Methods and Systems for HighBandwidth Communications Interface”(高带宽通信接口方法和系统)的美国临时专利申请(下称“《Fox III》”);
申请号为13/842,740,申请日为2013年3月15日,发明人为Brian Holden、AminShokrollahi和Anant Singh,名称为“Methods and Systems for SkewTolerance andAdvanced Detectors for Vector Signaling Codes for Chip-to-Chip Communication”(用于芯片间通信的向量信令码的偏斜耐受方法以及用于芯片间通信的向量信令码的高级检测器)的美国专利申请(下称“《Holden I》”;
申请号为13/895,206,申请日为2013年5月15日,发明人为Roger Ulrich和PeterHunt,名称为“Circuits for Efficient Detection of Vector Signaling Codes forChip-to-Chip Communications using Sums of Differences”(利用差分和有效检测用于芯片间通信的向量信令码的电路)的美国专利申请(下称“《Ulrich I》”;
申请号为14/315,306,申请日为2014年6月25日,发明人为Roger Ulrich,名称为“Multilevel Driver for High Speed Chip-to-Chip Communications”(用于高速芯片间通信的多电平驱动器)的美国专利申请(下称“《Ulrich II》”;
申请号为61/934,804,申请日为2014年2月2日,发明人为Ali Hormati和AminShokrollahi,名称为“Method for Code Evaluation using ISI Ratio”(利用ISI比进行代码评价的方法)的美国临时专利申请(下称“《Hormati I》”);
申请号为61/992,711,申请日为2014年5月13日,发明人为Amin Shokrollahi,名称为“Vector Signaling Code with Improved Noise Margin”(高噪声容限向量信令码)的美国临时专利申请(下称“《Shokrollahi I》”)。
技术领域
本文所描述的实施方式总体涉及通信领域,尤其涉及对信息传递信号的发送以及在芯片间通信中对此类信号的检测。
背景技术
通信系统中的一个目的在于将信息从一个物理位置传输至另一物理位置。一般而言,此类信息传输的目标在于,可靠、快速且消耗最少的资源。一种常见的信息传输媒介为串行通信链路,此种链路可以以将地面或其他常用基准作为参考对象的单个有线电路或将地面或其他常用基准作为参考对象的多个此类有线电路为基础。常见的一例为使用单端信令(Singled-ended Signaling,SES)。单端信令的工作原理为,在一条线路中发送信号,然后在接收器端以固定基准值为参考对象测定所述信号。串行通信链路也可以以相互间作为参考对象的多个电路为基础。此方面的常见的一例为使用差分信令(DifferentialSignaling,DS)。差分信令的工作原理在于,在一条线路中发送信号,并在配对线路中发送所述信号的相反信号。所述信号的信息由上述两线路之间的差值,而非其相对于地面或其他固定基准值的绝对值表示。
与差分信令相比,有多种信令方法可在增加引脚利用率的同时,保持相同的有益特性。向量信令为一种信令方法。通过向量信令,多条线路中的多个信号在保持每个信号的独立性的同时可视为一个整体。该信号整体中的每个信号均称为向量分量,而所述多条线路的数目称为向量“维数”。在一些实施方式中,与差分信令对的情况相同,一条线路中的信号完全取决于另一线路中的信号。因此,在某些情况下,向量维数可指多条线路内的信号的自由度数,而非该多条线路的数目。
在二元向量信令中,每个向量分量(或称“符号”)的取值为两个可能取值当中的一值。在非二元向量信令中,每个符号的取值为从由两个以上可能取值所组成的集合中选出的一值。由能表示所有符号的所有取值组成的集合称为代码的“符集”。在本文中,向量信令码为由长度均为N的称作码字的向量组成的一集合C。向量信令码的任何合适子集均为该码的“子码”。此类子码可本身为一种向量信令码。
操作中,码字的坐标为有界坐标,我们选用-1和1之间的实数对它们进行表示。集合C大小的二进制对数与长度N之间的比值称为该向量信令码的引脚利用率。
当向量信令码的所有码字的坐标之和恒为零时,该向量信令码称为“平衡”码。平衡向量信令码具有多个重要属性。举例而言,正如本领域技术人员所熟知,与非平衡码字相比,平衡码字所导致的电磁干扰(Electromagnetic Interference,EMI)噪声较小。此外,当需要抗共模通信时,建议使用平衡码字。这是因为,不使用平衡码字时,需要消耗功率以生成在接收器内被消除的共模分量。
向量信令方法的其他示例见《Cronie I》,《Cronie II》,《Cronie III》,《CronieIV》,《Fox I》,《Fox II》,《Fox III》,《Holden I》,《Shokrollahi I》及《Hormati I》。
发明内容
向量信令码可与多电平信令协同组合,在给定数量的符号下,多电平信令更大的符集可实现更大的码字空间,从而进一步允许在向量信令码的构建中引入更多约束,以利用可接受的吞吐量实现稳健的传输效果。然而,在固定的发送振幅包络内引入更多信号电平已知将减小每个接收信号电平的可用信号检测余量,从而可能导致接收质量下降。
在本发明公开的向量信令码构建方法中,代码的构建与相应接收比较器网络的设计相配合,从而实现这一组合的系统性能优化。此类方法可进一步扩展,以纳入改进后的多电平信令值,这些信令值可使得整套接收比较器获得一致的信号检测余量。
附图说明
图1所示为根据多个输入值的加权和生成结果的多输入比较器的一种实施方式。
图2所示为二进制和三进制信号的接收眼开度。
图3为根据一种实施方式的框图。
图4所示为电路的两种实施方式,该电路接收分别以[1/3 1/3 1/3 -1/3 -1/3 -1/3]比例组合的六个输入w0~w5,并生成差分结果outp和outm。
图5所示为图4电路的替代实施方式。
图6所示为电路的两种实施方式,该电路接收分别以[1/2 1/2 -1 0 0 0]比例组合的六个输入中的三个输入w0,...,w2且不使用另外三个输入w3,...,w5,而且产生差分结果outp和outm。
图7所示为图6电路的替代实施方式。
图8所示为两种实施方式,其接收分别以[1 -1 0 0 0 0]比例组合的六个输入中的两个输入w0,w1且不使用另外四个输入w2,...,w5,而且产生差分结果outp和outm。
图9所示为生成第一例示代码±(1,-1/5,-4/5),±(-1/5,1,-4/5)的优化信号电平的一种驱动器实施方式。
图10所示为生成表1中代码的信号电平的一种驱动器实施方式。
图11所示为生成5b6w_7_5_1码的信号电平的一种驱动器实施方式。
图12所示为生成5b6w_10_5码的信号电平的一种驱动器实施方式。
图13所示为生成8b9w_8_8码的信号电平的一种驱动器实施方式。
图14所示为根据至少一种实施方式的流程。
图15所示为根据至少一种实施方式的流程。
具体实施方式
《Cronie1》中对正交向量信令的概念进行了描述。如其中所述,一正交差分向量信令(Orthogonal Differential Vector Signaling,ODVS)码可通过如下乘法表达式获得:
(0,x2,...,xn)*M/a (式1)
其中,M为一个正交的n×n矩阵,其中,各列除第一位之外的和为零,x2,...,xn属于描述这些码符的原始调制的符集S,a为保证所得向量的所有坐标处于-1和1之间的归一化常数。例如,对于二进制调制而言,符集S可选为{-1,+1};对于三进制调制而言,符集S可选为{-1,0,1};对于四进制调制而言,符集S可选为{-3,-1,1,3};对于五进制调制而言,符集S可选为{-2,-1,0,1,2}。然而,通常无需使用相同符集S对所有的xi进行调制。以下常以x表示向量(x2,...,xn),并将其称为消息。
在至少一种实施方式中,式1乘法表达式表示子信道代码向量的加权和,每个子信道代码向量均根据一组对跖权重当中的对应对跖权重进行加权,其中,各子信道代码向量相互正交,而且各子信道代码向量表示缩放正交矩阵M的各个行。
操作中,矩阵M无需正交。其满足,其所有行(本文也称为子信道代码向量)均成对正交(即使各行的欧几里德范数不为1)。在下文中,我们将这种矩阵称为s-正交(缩放正交)矩阵。
通过下述方法,可利用矩阵M实现发送信号的检测。矩阵M每一行缩放至保证该行正元素之和为1。如此,新矩阵D每一行(除第一行)的各元素用作《Holden I》所述多输入比较器的各个系数。例如,如果n=6,则6条线路上的值(可能为均衡后的值)表示为a,b,c,d,e,f,而且所述行为[1,1/2,-1,1/2,-1,0]。多输入比较器将对下值进行计算:
并将结果分割,以重构符集S中的原始值。上述文献称,当比较器输出的集合可明确确定M按上述方式编码的任何消息x时,由矩阵D定义的所述一组多输入比较器即可对矩阵M定义的ODVS码进行检测。
多输入比较器
根据《Holden I》中的定义,系数为a0,a1,...,am-1的多输入比较器为以向量(x0,x1,...,xm-1)为输入且输出
sign(a 0*x0+...+am-1*xm-1), (式3)
的电路,其中,该符号函数定义为:当x>0时,sign(x)=+1;当x<0时,sign(x)=-1;当x=0时,sign(x)未定义。如此,一种简单的比较器可视为系数为1和-1的双输入多输入比较器,并可认为是多输入比较器的一种特殊情况。
多输入比较器的加权系数a0,a1,...,am-1为有理数,图1所示为一种例示实施方式,其中,输入加权数2,4,-1,-2,-3分别与输入值x0~x4相对应,此例中的每个输入加权数均向相应差分输入管脚提供晶体管(在本例中每侧均有6个)总数的一个分数式比例(从而也向输出结果提供类似比例)。在本例中,12个输入晶体管101中的每一个均相同,代表共享电流源102的一个扩展差分输入级,其后为差分比较器级105。由于所有晶体管101均相同,因此输入x0和x1对正数求和节点103的贡献以及输入x2,x3和x4对负数求和节点104的贡献的加权值分别为由每个此类输入所控制的输入晶体管的数量相对于与节点103和节点104对应的晶体管101的总数的比例。电阻器106图示为求和节点103和104处的无源上拉元件。在一些实施方式中,其功能并入差分比较器105中。假定差分比较器105的增益高至足以获得数字结果,则其输出表示即对正数求和节点103和负数求和节点104之间的差值实施sign()运算。
因此,图1电路执行式3,其中,带正系数的输入赋予与正数求和节点103相应的晶体管101,带负系数的输入赋予与负数求和节点104相应的晶体管101,所述系数值表示为用于每个输入的相同输入晶体管101的个数与输入节点103或104的相应相同输入晶体管101的总个数的比值。
由于本实施例主要处理高阶调制,因此本文描述的基本前提在于假设多电平比较器的每一实施例均包括多个正确加权的输入以及多个和差计算值,所述比较器的输出值(本文也称为组合输入值)作为线性信号输入对所需多值信号结果进行检测的二进制或更高阶分割器或数字比较器(本文简称比较器)。
虽然为了解释的目的,可对多输入比较器的缩放、求和、求差及比较元件进行分别描述,但是如《Holden I》和《Ulrich I》中所述,实际实施方式所采用的电路可兼有多个此类元件的不同功能。
眼开度
通常,接收器分割操作的接收器检测窗口描述为如图2所示的“眼开”图,该图所示为比较器或分割器输入端处所有可能接收信号模式(从而也即每种可能符号间干扰(Inter-Symbol Interference),ISI条件)的时间叠加表示形式。对于二进制调制,水平眼开度210表示允许采样获得稳定结果的可用时间区间,而垂直眼开度220表示分割器可在噪声之上检测到的信号。在三进制调制信号的情形中,共有两个眼开度231和232,其对应于用于对三个可能信号电平进行检测的信号余量。这两个三进制调制眼开度231和232小于二进制调制眼开度220,且其信号对通信信道噪声及接收器内部噪声更为敏感。一般而言,式1中n的大小越大,则归一化常数a的值就必然越大,从而使得各输出电平之间的增量差值更小,并进一步使得接收器的比较器或分割器的测量窗口更小(即垂直眼开度更小)。
另一方面,n值较大通常将使得信令方案的引脚利用率较高,其中,引脚利用率定义为一个时钟周期内n线接口所发送的比特数与该线路数目n之间的比。对于采用二进制调制输入值的正交差分向量信令而言,引脚利用率为(n-1)/n,而采用四进制调制输入值的正交差分向量信令的引脚利用率为(2n-2)/n。除了较高的引脚利用率,正交差分向量信令还具有如下特点:所获信令方案的《Hormati I》中所定义ISI比与符集S的未编码信号的ISI比相同。因此,当采用二进制调制输入值时,所得ISI比为最小可能值1,其表示最佳可能检测能力。所以,n优选采用大于2的值,这是因为如此可在通信线上实现更高的吞吐量。如此,实际所需的即为一种可优化所得眼图的垂直眼开度,从而能根据所得低信号电平实现最佳可能热噪声及失配噪声容限。
对于本领域技术人员而言容易理解的是,每个所述组合输入值分割器或数字比较器的输出结果均取决于两个信号电平:用于比较的参考或基线电平,以及可变信号值(即所述组合信号电平)。为了描述的目的,本文中将这两个电平之差的绝对值称为所述比较器的“检测余量”。此检测余量即可按照对接收眼图等信号质量指标的垂直分量进行测量的方式进行测量,也可作为模拟的一部分经计算或运算得出。较大的余量所对应的结果更为可靠,而且当所述可变输入信号伴有噪声时尤其如此。本领域中的类似术语还包括“比较器过驱动”及“比较器输入余量”。
增大ODVS眼开度
使用s-正交矩阵M用于增大正交差分向量信令码的各种比较器对应的眼图的垂直眼开度的优化方法中,首先假设输入向量的元素j包括具有值-aj和aj的对跖权重,其中,aj为正值。我们将“初始代码集”定义为由向量表示的对跖权重的集合:
(0,±a2,±a3,...,±an) (式4)
应该注意的是,虽然为了描述的方便,式4中的值示为二进制调制值,但是此处描述的方法还可同样应用于输入向量为PAM-X调制等的高阶调制的垂直眼开度优化。
从输入集合所得的代码为:
(0,±a2,±a3,...,±an)*M/μ (式5)
其中,
换言之,μ为用于确保码字坐标处于-1和+1之间的码字符号归一化常数。
与所述向量信令码对应的检测矩阵为包含矩阵M的第2,3,…,n行的矩阵,其中,每个子信道代码向量均chi(希腊字母:χ)归一化至行中的正元素之和为1。每个此类子信道代码向量对应于《Holden I》中所述的一个多输入子信道比较器,而且正元素之和等于1表明该子信道比较器(本文也称“比较器”或“多输入比较器”)内未引入额外增益。对于实数a,我们将chi(a)定义为:当a为正时,其等于a,否则等于0。则矩阵M的i行的chi归一化常数等于:
我们将与矩阵M对应的检测矩阵表示为D。如果L表示包含M的第2,3,…,n行的矩阵,则
其中,diag(...)表示对角元素由所述向量给出的对角矩阵。本领域技术人员可容易地验证得出,所述多输入子信道比较器所得值如下:
其中,Si为M的第i行的欧几里德范数的平方。我们的目标在于将以上各式绝对值的最小值最大化。
为了检验此最大值是否大于或等于给定垂直眼开度δ,需要求解以下基本线性程序(Basic Linear Program,BLP):
根据:
以及
对于所有的2≤i≤n:ai≥00 (式12)
最大化
a2+...+an (式10)
如果此BLP可行,则最大垂直眼开度阈值至少为δ;否则其必然严格小于δ。如此,则可通过对δ实施二分搜索,找出垂直眼开度的最佳值。在二分搜索的每一步中,均需对所述BLP进行求解,以获得该步的相关具体δ值。
实施例
作为第一示例实施方式,我们首先从n=3的情况开始。在此情况中,缩放正交矩阵M的唯一可能选择(从行/列及行缩放的排列组合方式中选择)为:
且相应检测矩阵为:
利用初始代码集进行标准二进制调制时,所获码字等于±(1,0,-1),±(0,1,-1)。当将式14的检测矩阵应用于接收器时,第一接收子信道比较器产生的比较器输出值为±1,而第二接收子信道比较器产生的比较器输出值为±3/2。由于两值中的较小值限制了总的信噪比限,因此与差分信令相比,垂直眼开度减小20*log10(2/1)=~6dB。应用上述方法后,最佳初始代码集(即最佳对跖权重集)为集合(0,±3/5,±2/5),通过该集合获得的码字为(1,-1/5,-4/5),±(-1/5,1,-4/5)。图9所示为生成这些信号电平的驱动器的一种实施方式。
应用式14的检测矩阵后可发现,两个子信道比较器产生的比较器输出值均为±6/5,从而与上述情况相比,将垂直眼开度提高20*log10(1.2/1)=~1.58dB。作为另一项有益效果,采用这些改进信号电平的端接功率(发送所需的总功率)小于上述三进制代码的端接功率。
在第二示例实施方式中,n=5,且矩阵M为:
相应检测矩阵为:
利用其初始代码集进行标准二进制调制时,所得代码的符集大小为6,且包括元素1,3/4,1/4,-1/4,-3/4,-1。应用式16检测矩阵后可发现,前三个比较器所产生的比较器输出值为±1/2,而第四比较器产生的比较器输出值为±5/4。与差分信令相比,垂直眼开度的损失量为20*log10(2/0.5)=~12dB。
应用上述方法后,最佳初始代码集计算为(0,±5/12,±5/12,±5/12,±1/6),相应代码示于表1。图10所示为生成这些信号电平的驱动器的一种实施方式。
±[1,1/6,1/6,-2/3,-2/3] | ±[1/6,-2/3,1,1/6,-2/3] |
±[1/6,1,1/6,-2/3,-2/3] | ±[-2/3,1/6,1,1/6,-2/3] |
±[1,1/6,-2/3,1/6,-2/3] | ±[1/6,-2/3,1/6,1,-2/3] |
±[1/6,1,-2/3,1/6,-2/3] | ±[-2/3,1/6,1/6,1,-2/3] |
表1
可以看出,当使用此代码及式16检测矩阵时,所有四个比较器所产生的比较器输出值均为±5/6。与前述代码相比,垂直眼开度的增加量为20*log10(5/3)=~4.43dB。由于此代码的端接功率为系数10/9,劣于前述代码,因此有人可能希望将该结果归一化至与原始代码具有相同的端接功率,此形况下所生成的新代码的垂直眼开度为1.581dB,依旧优于原始代码的垂直眼开度。
在第三示例实施方式中,n=6,且矩阵M为:
相应检测矩阵为:
利用初始代码集进行标准二进制调制时,所得代码在本文中称为5b6w_4_5_1码。其符集大小为4,且包含元素1,1/3,-1/3,-1。该码的码字示于表2。
±[1,1/3,1/3,-1/3,-1/3,-1] | ±[1/3,-1/3,1,1/3,-1/3,-1] |
±[1/3,1,1/3,-1/3,-1/3,-1] | ±[-1/3,1/3,1,1/3,-1/3,-1] |
±[1,1/3,-1/3,1/3,-1/3,-1] | ±[1/3,-1/3,1/3,1,-1/3,-1] |
±[1/3,1,-1/3,1/3,-1/3,-1] | ±[-1/3,1/3,1/3,1,-1/3,-1] |
±[1,1/3,1/3,-1/3,-1,-1/3] | ±[1/3,-1/3,1,1/3,-1,-1/3] |
±[1/3,1,1/3,-1/3,-1,-1/3] | ±[-1/3,1/3,1,1/3,-1,-1/3] |
±[1,1/3,-1/3,1/3,-1,-1/3] | ±[1/3,-1/3,1/3,1,-1,-1/3] |
±[1/3,1,-1/3,1/3,-1,-1/3] | ±[-1/3,1/3,1/3,1,-1,-1/3] |
表2
当根据式18检测矩阵对此码进行检测时,前四个比较器产生的比较器输出值为±2/3,而第五比较器产生的比较器输出值为±1。与差分信令相比,垂直眼开度的损失量为20*log10(3)=~9.5dB。应用上述方法后,最佳初始代码集计算为(0,±3/8,±3/8,±1/2,±3/8,±1/4),相应代码的符集由1,1/2,1/4,0,-1/4,-1/2,-1给定,大小为7。此新代码在本文中称为5b6w_7_5_1码,其码字示于表3。图11所示为生成这些信号电平的驱动器的一种实施方式。
表3
使用此新代码及式18检测矩阵后,除第三比较器之外的所有比较器产生的比较器输出值均为±3/4,而第三比较器产生的比较器输出值为±1。与前述代码相比,垂直眼开度的增加量为20*log10((3/4)/(2/3))=~1dB。5b6w_7_5_1码的端接功率约为5b6w_4_5_1码端接功率的97%。因此,虽然端接功率较小,但5b6w_7_5_1码所产生的垂直眼开度较大。
在第四示例实施方式中,n=6,且矩阵M为:
相应检测矩阵为:
利用其初始代码集进行标准二进制调制时,所得代码符集大小为4,包含元素1,1/3,-1/3,-1,在本文中称为5b6w_4_5_2码,码字示于表4。
表4
使用此代码及式20检测矩阵后可发现,比较器1,3和5产生的比较器输出值为±2/3,而比较器2和4产生的比较器输出值为±1。与差分信令相比,垂直眼开度的损失因此为20*log10(3)=~9.5dB。应用上述方法后,最佳初始代码集计算为(0,±3/8,±1/4,±3/8,±1/4,±3/8),相应代码的元素为(1,7/8,1/2,1/4,1/8,-1/8,-1/4,-1/2,-7/8,-1),符集大小为10。所得码字示于表5,新代码在本文中称为5b6w_10_5码。图12所示为生成这些信号电平的驱动器的一种实施方式。
表5
对于此代码,所有比较器产生的比较器输出值均为±3/4。与5b6w_4_5_2码相比,垂直眼开度增加20*log10((3/4)/(2/3))=~1dB。5b6w_10_5码的端接功率为5b6w_4_5_2端接功率的约88%。因此,虽然端接功率较小,但5b6w_10_5码所产生的垂直眼开度较大。
在第五示例实施方式中,n=9,且矩阵M为:
相应检测矩阵为:
利用其初始代码集进行标准二进制调制时,所得代码由元素(1,1/2,1/4,0,-1/4,-1/2,-1)组成,且符集大小为7。对于此代码,除最后一个比较器之外的所有比较器产生的比较器输出值为±1/4,而最后一个比较器产生的比较器输出值为±9/8。
应用上述方法后,最佳初始代码集计算为(0,±3/10,±3/10,±3/10,±3/10,±3/10,±3/10,±3/10,±1/10),相应代码由(1,4/5,2/5,1/5,-1/5,-2/5,-4/5,-1)给出,且符集大小为8。此代码在本文中称为8b9w_8_8码,其码字示于表7。图13所示为生成这些信号电平的驱动器的一种实施方式。
使用此代码及式22检测矩阵后,除最后一个比较器之外的所有比较器产生的比较器输出值为±3/5,而最后一个比较器产生的比较器输出值为±9/10。与未优化代码相比,垂直眼开度增加20*log10((3/5)/(1/4))=~7.6dB。8b9w_8_8码的端接功率约为未优化代码的1.9倍。在相同端接功率下,8b9w_8_8码的垂直眼开度比未优化代码的眼开度改进约2dB。
表7
接收器电路
如前所述,《Holden I》及《Ulrich I》中所描述的多输入比较器检测电路(CML)与上述代码共用时较为有利。作为示例,图4~8所示为此两种方法的实施方式。
图4所示为《Holden I》电路的两种实施方式,该电路接收分别以[1/3 1/3 1/3 -1/3 -1/3 -1/3]比例组合的六个输入w0~w5,并生成差分结果outp和outm。第一实施方式采用经可调或可选电阻器/电容器元件实现的高频均衡(EQ)。第二实施方式未采用均衡。
图5的替代实施方式为《Ulrich I》电路的两种实施方式,该电路接收相同的分别以[1/3 1/3 1/3 -1/3 -1/3 -1/3]比例组合的六个输入w0,...,w5,并产生等效的差分结果outp和outm。在图5中,第一实施方式采用经可调或可选电阻器/电容器元件实现的高频均衡。第二实施方式未采用均衡。
图6所示为《Holden I》电路的两种实施方式,该电路接收分别以[1/2 1/2 -1 0 00]比例组合的六个输入中的三个输入w0,...,w2且不使用另外三个输入w3,...,w5,而且产生差分结果outp和outm。第一实施方式采用经可调或可选电阻器/电容器元件实现的高频均衡。第二实施方式未采用均衡。
图7的替代实施方式为《Ulrich I》电路的两种实施方式,该电路接收与图6相同的输入,并产生相同的差分结果outp和outm。在图7中,第一实施方式采用经可调或可选电阻器/电容器元件实现的高频均衡。第二实施方式未采用均衡。
图8所示的两种实施方式接收分别以[1 -1 0 0 0 0]比例组合的六个输入中的两个输入w0,w1且不使用另外四个输入w2,...,w5,而且产生差分结果outp和outm。第一实施方式采用经可调或可选电阻器/电容器元件实现的高频均衡。第二实施方式未采用均衡。正如本领域技术人员将注意到的,在此双输入的情形中,《Holden I》及《Ulrich I》的两种电路拓扑精简至单个差分级。
驱动器实施方式
利用《Ulrich II》的驱动器电路,可生成根据至少一种实施方式描述的所需输出信号电平。作为此方法的具体示例,以下对可生成与上述每种示例相对应的具体输出信号电平的驱动器实施方式进行描述。
图9所示为根据至少一种实施方式的驱动器实施方式,该驱动器实施方式生成上述第一例示实施方式中确定的优化信号电平。编码器901利用式13的矩阵M对待发送的数据进行编码,并将编码后的控制信号结果传递至一组输出线路驱动器910。由于该代码为三线代码,因此所示为910的三个实例,本文中称其为线路驱动分割器,每个分割器实例均从901获取合适的编码元素,并为其输出线路生成正确的信号电平。
作为高速通信系统中的一种常见做法,可使用多个处理阶段来提高编码等处理密集型操作的吞吐量。因此,图示还有数字多路复用器911,其获取各个处理阶段的输出,并在其之间切换,以生成单个全线速编码的数据流。对于本领域技术人员容易理解的是,此设计中可采用无多路复用器的单个处理阶段至由更广或更深多路复用器结构支持的多个数据处理阶段。以下驱动器实施例采用相同的说明性编码器及多路复用器设计,其中的变化仅在于由所使用各输出线路驱动器数决定的输出宽度。
所述全线速编码值提供至数字输出驱动器912,这些驱动器由串联源电阻器913,914,915连接至共同的输出线路,该线路生成数字控制模拟输出。由于每个所述串联源电阻器均具有特定的预设值,因此该数模转换器所产生的各级可不相同。表6所示为与图9所示特定值对应的输出值。
值 | 输出 | 备注 |
000 | -1 | |
001 | -4/5 | |
010 | -2/5 | 未由此码使用 |
011 | -1/5 | |
100 | 1/5 | |
101 | 2/5 | 未由此码使用 |
110 | 4/5 | |
111 | 1 |
表6
根据良好的集成电路设计规范,优选地,电阻器913的值应通过并联六个500欧姆电阻器获得,电阻器914的值应通过并联三个500欧姆电阻器获得,电阻器915的值应通过一个500欧姆电阻器获得,其中,所有电阻器均具有完全相同的设计、尺寸和组成。
如《Ulrich II》所述,在一些替代实施方式中,有利地,910等多个线路驱动分割器实例可并联驱动器件值已得到适当调整的单个线路。在一类似的替代实施方式中,图9的每个线路驱动分割器910均由32个(该数字仅为示例,并不造成任何限制)接受相同编码控制信号结果的相同线路驱动分割器替代。由于所述各线路驱动分割器为并联,因此每个分割器将驱动一更小的电流至共同的线路输出中。如此,数字驱动器912的晶体管可使用较小的晶体管,而且在此例中,串联源电阻器913,914,915的值可为单个线路驱动分割器所需值的32倍,从而大大简化了集成电路器件的实现方式。
类似地,替代实施例可采用任何已知的编码方法对从编码器901经多路复用器(如使用)传输且利用串联源电阻器对数字输出驱动器进行控制的控制信息进行编码,这些编码方法包括但不限于一元或温度计编码方法,以及二元或其他比特加权编码方法。
图10实施方式所示为与前述实施例相同的三线驱动器设计,其分别使用300/4欧姆,300欧姆和300欧姆的串联源电阻器,且产生输出信号电平[-1,2/3,1/6,-1/6,-2/3,1]。
图11实施方式在每个线路驱动分割器中使用第四数字输出驱动器和串联源电阻器,并且共使用六个线路驱动分割器及信号[1,l/2,l/4,0,-1/4,-1/2,1]对六条线路输出进行驱动。所使用的串联源电阻器为400/3欧姆,400/2欧姆,400/2欧姆和400欧姆。
图12实施方式也在每个线路驱动分割器中使用四个数字输出驱动器,并且使用六个线路驱动分割器及信号[1,7/8,1/2,1/4,1/8,-1/8,-1/4,-1/2,-1]对六条线路进行驱动。所使用的串联源电阻器为800/6欧姆,800/5欧姆,800/4欧姆和800欧姆。
图13实施方式在每个分割器中仅使用三个数字输出驱动器,但却使用八个分割器及信号[1,4/5,2/5,1/5,-1/5,-2/5,-4/5,-1]对八条线路输出进行驱动。所使用的串联源电阻器为500/6欧姆,500/3欧姆和500欧姆。
实施方式
在至少一种实施方式中,一种装置包括:一多线总线,该多线总线设置为接收码字的一组符号,该组符号表示子信道代码向量的加权和,每个子信道代码向量根据一组对跖权重中的一个对应的对跖权重进行加权,所述一组对跖权重包含至少两个唯一量值,其中,所述子信道代码向量相互正交,且所述子信道代码向量形成一缩放正交矩阵;以及连接于所述多线总线的一解码器,该解码器包括多个子信道比较器,该多个子信道比较器设置为根据接收到的所述码字的所述一组符号分别生成对应的多个比较器输出值,每个子信道比较器包括一组chi归一化的输入权重,其中,每组chi归一化的输入权重选择是根据相应的子信道代码向量选择的,所述一组对跖权重选择为使得每个子信道比较器所生成的对跖值大于一最小值。在一些实施方式中,所述一组对跖权重选择为使得每个子信道比较器所生成的对跖值具有大致相同的量值。
在至少一种实施方式中,所述一组对跖权重包括至少两个具有不同量值的对跖权重。
在至少一种实施方式中,所述一组对跖权重中的每个对跖权重具有小于1的量值。
在至少一种实施方式中,所述一组对跖权重基于码字符号归一化常数μ。
在至少一种实施方式中,所述码字符号归一化常数μ将所述码字的符号归一化至具有小于或等于1的量值的值。
在至少一种实施方式中,根据与对应最小垂直眼开度阈值对应的对跖值,将所述一组对跖权重中的对跖权重的和最大化。在至少一种实施方式中,还根据所述码字符号归一化常数μ,将所述一组对跖权重中的对跖权重的和最大化。
在至少一种实施方式中,所述对跖值大于预设垂直眼开度阈值δ。
如图14所示,根据至少一种实施方式的方法1400包括:在步骤1402中接收多线总线上的码字的一组符号,该组符号表示子信道代码向量的加权和,每个子信道代码向量根据一组对跖权重中的一个对应对跖权重进行加权,其中,所述子信道代码向量相互正交,所述子信道代码向量形成缩放正交矩阵;以及在步骤1404中,利用多个子信道比较器,根据接收到的所述码字的所述一组符号生成多个比较器输出值,其中,每个子信道比较器包括一组chi归一化的输入权重,根据相应子信道代码向量对每组chi归一化输入权重进行选择,每个比较器输出值均表示为对跖值。
在至少一种实施方式中,所述一组对跖权重包括至少两个具有不同量值的对跖权重。
在至少一种实施方式中,所述一组对跖权重中的每个对跖权重具有小于1的量值。
在至少一种实施方式中,所述一组对跖权重基于码字符号归一化常数μ。
在至少一种实施方式中,所述码字符号归一化常数μ将所述码字的符号归一化至具有小于或等于1的量值的值。
在至少一种实施方式中,所述对跖值大于预设垂直眼开度阈值δ。
如图15所示,根据至少一种实施方式的方法1500包括:在步骤1502中,接收一组对跖权重的对应向量;在步骤1504中,生成码字的一组符号,该码字表示多个子信道向量的加权和,其中,对每个子信道向量的加权由所述一组对跖权重中的对应的对跖权重决定,且所述多个子信道向量形成缩放正交矩阵;以及在步骤1506中,在多线总线上发送所述码字的所述一组符号。
在至少一种实施方式中,所述缩放正交矩阵表示为
且对应于所述一组对跖权重的向量表示为(0,±3/5,±2/5)。
在至少一种实施方式中,所述缩放正交矩阵表示为
且对应于所述一组对跖权重的向量表示为(0,±5/12,±5/12,±5/12,±1/6)。
在至少一种实施方式中,所述缩放正交矩阵表示为
且对应于所述一组对跖权重的向量表示为(0,±3/8,±3/8,±1/2,±3/8,±1/4)。
在至少一种实施方式中,所述缩放正交矩阵表示为
且对应于所述一组对跖权重的向量表示为(0,±3/8,±1/4,±3/8,±1/4,±3/8)。
在至少一种实施方式中,所述缩放正交矩阵表示为
且对应于所述一组对跖权重的向量表示为(0,±3/10,±3/10,±3/10,±3/10,±3/10,±3/10,±3/10,±1/10)。
Claims (10)
1.一种通过多线总线接收信息的装置,包括:
一多线总线,该多线总线设置为接收码字的一组符号,每个所述码字的符号具有小于或等于1的量值的值,该组符号表示子信道代码向量的加权和,每个子信道代码向量根据一组对跖权重中的一个对应的对跖权重进行加权,所述一组对跖权重包含至少两个唯一量值,其中,所述子信道代码向量相互正交,且所述子信道代码向量形成一缩放正交矩阵;以及
连接于所述多线总线的一解码器,该解码器包括多个子信道比较器,该多个子信道比较器设置为根据接收到的所述码字的所述一组符号分别生成对应的多个比较器输出值,每个子信道比较器包括多组χ归一化的输入权重中相应的一组χ归一化的输入权重,其中,每组χ归一化的输入权重是根据相应的子信道代码向量选择的,所述相应的子信道代码向量被χ归一化至正元素之和为1,
其中,结合i)所述缩放正交矩阵的所述子信道代码向量及ii)所述多个子信道比较器的多组χ归一化的输入权重,将所述一组对跖权重选择为使得每个子信道比较器所生成的比较器输出值大于眼开度的预设垂直眼开度阈值δ。
2.如权利要求1所述的装置,其特征在于,每个子信道比较器生成具有大致相同的量值的比较器输出值。
3.如权利要求1所述的装置,其特征在于,所述一组对跖权重中的每个对跖权重具有小于1的一量值。
4.如权利要求1所述的装置,其特征在于,所述一组对跖权重基于码字符号归一化常数μ。
5.如权利要求1所述的装置,其特征在于,根据与最小垂直眼开度阈值对应的对跖值,将所述一组对跖权重中的对跖权重的和最大化。
6.一种通过多线总线接收信息的方法,包括:
接收码字的一组符号,每个所述码字的符号具有小于或等于1的量值的值,该组符号表示子信道代码向量的加权和,每个子信道代码向量根据一组对跖权重中的一个对应的对跖权重进行加权,所述一组对跖权重包含至少两个唯一量值,其中,所述子信道代码向量相互正交,且所述子信道代码向量形成一缩放正交矩阵;
根据接收到的所述码字的所述一组符号,利用多个子信道比较器生成多个比较器输出值,每个子信道比较器基于所述码字的一组符号中的相应符号子组以及相应的一组χ归一化的输入权重生成相应的比较器输出值,其中,每组χ归一化的输入权重是根据相应的子信道代码向量选择的,所述相应的子信道代码向量中的正元素之和等于1,且所述一组对跖权重与i)所述缩放正交矩阵的所述子信道代码向量及ii)所述多个子信道比较器的多组χ归一化的输入权重结合生成大于眼开度的预设垂直眼开度阈值δ的比较器输出值。
7.如权利要求6所述的方法,其特征在于,每个子信道比较器生成具有大致相同的量值的比较器输出值。
8.如权利要求6所述的方法,其特征在于,所述一组对跖权重中的每个对跖权重具有小于1的一量值。
9.如权利要求6所述的方法,其特征在于,所述一组对跖权重基于码字符号归一化常数μ。
10.如权利要求6所述的方法,其特征在于,根据与最小垂直眼开度阈值对应的对跖值,将所述一组对跖权重中的对跖权重的和最大化。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462023163P | 2014-07-10 | 2014-07-10 | |
US62/023,163 | 2014-07-10 | ||
PCT/US2015/039952 WO2016007863A2 (en) | 2014-07-10 | 2015-07-10 | Vector signaling codes with increased signal to noise characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106797352A CN106797352A (zh) | 2017-05-31 |
CN106797352B true CN106797352B (zh) | 2020-04-07 |
Family
ID=55065096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580036886.8A Active CN106797352B (zh) | 2014-07-10 | 2015-07-10 | 高信噪特性向量信令码 |
Country Status (5)
Country | Link |
---|---|
US (2) | US9900186B2 (zh) |
EP (1) | EP3138253A4 (zh) |
KR (1) | KR102288337B1 (zh) |
CN (1) | CN106797352B (zh) |
WO (1) | WO2016007863A2 (zh) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9077386B1 (en) | 2010-05-20 | 2015-07-07 | Kandou Labs, S.A. | Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication |
US9288082B1 (en) | 2010-05-20 | 2016-03-15 | Kandou Labs, S.A. | Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences |
EP3138253A4 (en) * | 2014-07-10 | 2018-01-10 | Kandou Labs S.A. | Vector signaling codes with increased signal to noise characteristics |
US10003315B2 (en) | 2016-01-25 | 2018-06-19 | Kandou Labs S.A. | Voltage sampler driver with enhanced high-frequency gain |
WO2017185070A1 (en) | 2016-04-22 | 2017-10-26 | Kandou Labs, S.A. | Calibration apparatus and method for sampler with adjustable high frequency gain |
US10003454B2 (en) | 2016-04-22 | 2018-06-19 | Kandou Labs, S.A. | Sampler with low input kickback |
US10333741B2 (en) * | 2016-04-28 | 2019-06-25 | Kandou Labs, S.A. | Vector signaling codes for densely-routed wire groups |
US10587255B2 (en) * | 2016-07-22 | 2020-03-10 | Skorpios Technologies, Inc. | Multi-level output driver with adjustable pre-distortion capability |
US10322895B2 (en) * | 2016-09-30 | 2019-06-18 | Ricoh Company, Ltd. | Material conveyor, transfer device incorporating the material conveyor, image forming apparatus incorporating the transfer device, method of position control of rotary bodied, and non-transitory computer readable storage medium |
US10200218B2 (en) | 2016-10-24 | 2019-02-05 | Kandou Labs, S.A. | Multi-stage sampler with increased gain |
US10116468B1 (en) * | 2017-06-28 | 2018-10-30 | Kandou Labs, S.A. | Low power chip-to-chip bidirectional communications |
US10496583B2 (en) * | 2017-09-07 | 2019-12-03 | Kandou Labs, S.A. | Low power multilevel driver for generating wire signals according to summations of a plurality of weighted analog signal components having wire-specific sub-channel weights |
US10243614B1 (en) * | 2018-01-26 | 2019-03-26 | Kandou Labs, S.A. | Method and system for calibrating multi-wire skew |
US10742451B2 (en) * | 2018-06-12 | 2020-08-11 | Kandou Labs, S.A. | Passive multi-input comparator for orthogonal codes on a multi-wire bus |
US10931249B2 (en) | 2018-06-12 | 2021-02-23 | Kandou Labs, S.A. | Amplifier with adjustable high-frequency gain using varactor diodes |
EP3850751A1 (en) | 2018-09-10 | 2021-07-21 | Kandou Labs, S.A. | Programmable continuous time linear equalizer having stabilized high-frequency peaking for controlling operating current of a slicer |
US10608849B1 (en) | 2019-04-08 | 2020-03-31 | Kandou Labs, S.A. | Variable gain amplifier and sampler offset calibration without clock recovery |
US10721106B1 (en) | 2019-04-08 | 2020-07-21 | Kandou Labs, S.A. | Adaptive continuous time linear equalization and channel bandwidth control |
US10680634B1 (en) | 2019-04-08 | 2020-06-09 | Kandou Labs, S.A. | Dynamic integration time adjustment of a clocked data sampler using a static analog calibration circuit |
US10574487B1 (en) | 2019-04-08 | 2020-02-25 | Kandou Labs, S.A. | Sampler offset calibration during operation |
KR20220023570A (ko) | 2020-08-21 | 2022-03-02 | 삼성전자주식회사 | 선택적 레벨 변경을 이용한 멀티 레벨 신호 생성 방법, 이를 이용한 데이터 전송 방법, 이를 수행하는 송신기 및 메모리 시스템 |
US11303484B1 (en) | 2021-04-02 | 2022-04-12 | Kandou Labs SA | Continuous time linear equalization and bandwidth adaptation using asynchronous sampling |
US11374800B1 (en) | 2021-04-14 | 2022-06-28 | Kandou Labs SA | Continuous time linear equalization and bandwidth adaptation using peak detector |
US11456708B1 (en) | 2021-04-30 | 2022-09-27 | Kandou Labs SA | Reference generation circuit for maintaining temperature-tracked linearity in amplifier with adjustable high-frequency gain |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8711919B2 (en) * | 2012-03-29 | 2014-04-29 | Rajendra Kumar | Systems and methods for adaptive blind mode equalization |
Family Cites Families (436)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US668687A (en) | 1900-12-06 | 1901-02-26 | Louis G Mayer | Thill-coupling. |
US780883A (en) | 1903-11-18 | 1905-01-24 | Mortimer Livingston Hinchman | Advertising device. |
US3017924A (en) * | 1958-12-24 | 1962-01-23 | Preway Inc | Pot type burner apparatus |
US3196351A (en) | 1962-06-26 | 1965-07-20 | Bell Telephone Labor Inc | Permutation code signaling |
US3295336A (en) * | 1963-01-02 | 1967-01-03 | Takita Shigematsu | Bearing and coupling for drafting rollers of spinning machines |
FR1483574A (zh) * | 1965-06-24 | 1967-09-06 | ||
US3522699A (en) * | 1967-12-27 | 1970-08-04 | Leslie Popradi | Cable construction |
US3636463A (en) | 1969-12-12 | 1972-01-18 | Shell Oil Co | Method of and means for gainranging amplification |
US3748948A (en) * | 1970-08-05 | 1973-07-31 | Boeing Co | Fatigue resistant fasteners |
US3876317A (en) * | 1973-09-24 | 1975-04-08 | Xerox Corp | Latch mechanism |
US3965418A (en) * | 1973-11-01 | 1976-06-22 | Wiltron Company | Telephone system testing apparatus and techniques utilizing central measuring equipment with a plurality of remote test stations |
US3939468A (en) | 1974-01-08 | 1976-02-17 | Whitehall Corporation | Differential charge amplifier for marine seismic applications |
US3970795A (en) * | 1974-07-16 | 1976-07-20 | The Post Office | Measurement of noise in a communication channel |
JPS5279747A (en) | 1975-12-26 | 1977-07-05 | Sony Corp | Noise removal circuit |
US4206316A (en) | 1976-05-24 | 1980-06-03 | Hughes Aircraft Company | Transmitter-receiver system utilizing pulse position modulation and pulse compression |
US4112264A (en) * | 1976-12-28 | 1978-09-05 | Bowne Time Sharing, Inc. | Testing and switching system including remotely controllable stations for information transmission and communications networks and systems |
US4181967A (en) | 1978-07-18 | 1980-01-01 | Motorola, Inc. | Digital apparatus approximating multiplication of analog signal by sine wave signal and method |
US4276543A (en) | 1979-03-19 | 1981-06-30 | Trw Inc. | Monolithic triple diffusion analog to digital converter |
US4414512A (en) | 1981-05-29 | 1983-11-08 | Motorola Inc. | Broadband peak detector |
US4486739A (en) | 1982-06-30 | 1984-12-04 | International Business Machines Corporation | Byte oriented DC balanced (0,4) 8B/10B partitioned block transmission code |
US4499550A (en) | 1982-09-30 | 1985-02-12 | General Electric Company | Walsh function mixer and tone detector |
US4722084A (en) | 1985-10-02 | 1988-01-26 | Itt Corporation | Array reconfiguration apparatus and methods particularly adapted for use with very large scale integrated circuits |
US4772845A (en) | 1987-01-15 | 1988-09-20 | Raytheon Company | Cable continuity testor including a sequential state machine |
US4864303A (en) | 1987-02-13 | 1989-09-05 | Board Of Trustees Of The University Of Illinois | Encoder/decoder system and methodology utilizing conservative coding with block delimiters, for serial communication |
US4774498A (en) | 1987-03-09 | 1988-09-27 | Tektronix, Inc. | Analog-to-digital converter with error checking and correction circuits |
US5053974A (en) | 1987-03-31 | 1991-10-01 | Texas Instruments Incorporated | Closeness code and method |
US4897657A (en) | 1988-06-13 | 1990-01-30 | Integrated Device Technology, Inc. | Analog-to-digital converter having error detection and correction |
US4974211A (en) | 1989-03-17 | 1990-11-27 | Hewlett-Packard Company | Digital ultrasound system with dynamic focus |
US5168509A (en) | 1989-04-12 | 1992-12-01 | Kabushiki Kaisha Toshiba | Quadrature amplitude modulation communication system with transparent error correction |
FR2646741B1 (fr) | 1989-05-03 | 1994-09-02 | Thomson Hybrides Microondes | Echantillonneur-bloqueur a haute frequence d'echantillonnage |
US5599550A (en) | 1989-11-18 | 1997-02-04 | Kohlruss; Gregor | Disposable, biodegradable, wax-impregnated dust-cloth |
US5166956A (en) | 1990-05-21 | 1992-11-24 | North American Philips Corporation | Data transmission system and apparatus providing multi-level differential signal transmission |
US5150384A (en) * | 1990-09-28 | 1992-09-22 | Motorola, Inc. | Carrier recovery method and apparatus having an adjustable response time determined by carrier signal parameters |
US5266907A (en) | 1991-06-25 | 1993-11-30 | Timeback Fll | Continuously tuneable frequency steerable frequency synthesizer having frequency lock for precision synthesis |
KR950008443B1 (ko) | 1991-06-28 | 1995-07-31 | 샤프 가부시끼가이샤 | 2-가/n-가 변환유니트를 포함하는 기억장치 |
EP0543070A1 (en) | 1991-11-21 | 1993-05-26 | International Business Machines Corporation | Coding system and method using quaternary codes |
US5626651A (en) | 1992-02-18 | 1997-05-06 | Francis A. L. Dullien | Method and apparatus for removing suspended fine particles from gases and liquids |
US5311516A (en) | 1992-05-29 | 1994-05-10 | Motorola, Inc. | Paging system using message fragmentation to redistribute traffic |
US5283761A (en) | 1992-07-22 | 1994-02-01 | Mosaid Technologies Incorporated | Method of multi-level storage in DRAM |
US5412689A (en) | 1992-12-23 | 1995-05-02 | International Business Machines Corporation | Modal propagation of information through a defined transmission medium |
US5511119A (en) | 1993-02-10 | 1996-04-23 | Bell Communications Research, Inc. | Method and system for compensating for coupling between circuits of quaded cable in a telecommunication transmission system |
FR2708134A1 (fr) | 1993-07-22 | 1995-01-27 | Philips Electronics Nv | Circuit échantillonneur différentiel. |
US5459465A (en) | 1993-10-21 | 1995-10-17 | Comlinear Corporation | Sub-ranging analog-to-digital converter |
US5461379A (en) | 1993-12-14 | 1995-10-24 | At&T Ipm Corp. | Digital coding technique which avoids loss of synchronization |
US5449895A (en) | 1993-12-22 | 1995-09-12 | Xerox Corporation | Explicit synchronization for self-clocking glyph codes |
US5553097A (en) | 1994-06-01 | 1996-09-03 | International Business Machines Corporation | System and method for transporting high-bandwidth signals over electrically conducting transmission lines |
JP2710214B2 (ja) | 1994-08-12 | 1998-02-10 | 日本電気株式会社 | フェーズロックドループ回路 |
GB2305036B (en) | 1994-09-10 | 1997-08-13 | Holtek Microelectronics Inc | Reset signal generator |
US5566193A (en) | 1994-12-30 | 1996-10-15 | Lucent Technologies Inc. | Method and apparatus for detecting and preventing the communication of bit errors on a high performance serial data link |
US5659353A (en) | 1995-03-17 | 1997-08-19 | Bell Atlantic Network Services, Inc. | Television distribution system and method |
CA2226296C (en) | 1995-11-03 | 2003-06-03 | Exxon Chemical Patents, Inc. | Automatic transmission fluids with improved transmission performance |
JPH09181605A (ja) * | 1995-12-27 | 1997-07-11 | Sony Corp | アナログ/デジタル変換およびデジタル/アナログ変換装置 |
US5875202A (en) | 1996-03-29 | 1999-02-23 | Adtran, Inc. | Transmission of encoded data over reliable digital communication link using enhanced error recovery mechanism |
US5825808A (en) | 1996-04-04 | 1998-10-20 | General Electric Company | Random parity coding system |
US5856935A (en) | 1996-05-08 | 1999-01-05 | Motorola, Inc. | Fast hadamard transform within a code division, multiple access communication system |
US5727006A (en) | 1996-08-15 | 1998-03-10 | Seeo Technology, Incorporated | Apparatus and method for detecting and correcting reverse polarity, in a packet-based data communications system |
US6404920B1 (en) | 1996-09-09 | 2002-06-11 | Hsu Shin-Yi | System for generalizing objects and features in an image |
DE19641127A1 (de) * | 1996-10-05 | 1998-04-09 | Meissner & Wurst | Reinraumdecke, vorzugsweise Rasterdecke |
US5999016A (en) | 1996-10-10 | 1999-12-07 | Altera Corporation | Architectures for programmable logic devices |
US5982954A (en) | 1996-10-21 | 1999-11-09 | University Technology Corporation | Optical field propagation between tilted or offset planes |
US5949060A (en) | 1996-11-01 | 1999-09-07 | Coincard International, Inc. | High security capacitive card system |
US5802356A (en) | 1996-11-13 | 1998-09-01 | Integrated Device Technology, Inc. | Configurable drive clock |
DE69719296T2 (de) | 1996-11-21 | 2003-09-04 | Matsushita Electric Industrial Co., Ltd. | A/D-Wandler und A/D-Wandlungsverfahren |
US5995016A (en) | 1996-12-17 | 1999-11-30 | Rambus Inc. | Method and apparatus for N choose M device selection |
US6005895A (en) | 1996-12-20 | 1999-12-21 | Rambus Inc. | Apparatus and method for multilevel signaling |
US5798563A (en) * | 1997-01-28 | 1998-08-25 | International Business Machines Corporation | Polytetrafluoroethylene thin film chip carrier |
US6084883A (en) | 1997-07-07 | 2000-07-04 | 3Com Corporation | Efficient data transmission over digital telephone networks using multiple modulus conversion |
EP0876021B1 (en) | 1997-04-30 | 2004-10-06 | Hewlett-Packard Company, A Delaware Corporation | System and method for transmitting data over a plurality of channels |
US6247138B1 (en) * | 1997-06-12 | 2001-06-12 | Fujitsu Limited | Timing signal generating circuit, semiconductor integrated circuit device and semiconductor integrated circuit system to which the timing signal generating circuit is applied, and signal transmission system |
US6904110B2 (en) * | 1997-07-31 | 2005-06-07 | Francois Trans | Channel equalization system and method |
US5881130A (en) * | 1997-09-15 | 1999-03-09 | Teradyne, Inc. | Fast and noise-insensitive load status detection |
JPH11103253A (ja) | 1997-09-29 | 1999-04-13 | Nec Corp | アナログ−デジタル変換器 |
US6317495B1 (en) | 1997-12-19 | 2001-11-13 | Wm. Marsh Rice University | Spectral optimization and joint signaling techniques with multi-line separation for communication in the presence of crosstalk |
KR100382181B1 (ko) | 1997-12-22 | 2003-05-09 | 모토로라 인코포레이티드 | 단일 계좌 휴대용 무선 금융 메시지 유닛 |
US6686879B2 (en) | 1998-02-12 | 2004-02-03 | Genghiscomm, Llc | Method and apparatus for transmitting and receiving signals having a carrier interferometry architecture |
US6172634B1 (en) | 1998-02-25 | 2001-01-09 | Lucent Technologies Inc. | Methods and apparatus for providing analog-fir-based line-driver with pre-equalization |
EP0966133B1 (en) | 1998-06-15 | 2005-03-02 | Sony International (Europe) GmbH | Orthogonal transformations for interference reduction in multicarrier systems |
US6522699B1 (en) | 1998-06-19 | 2003-02-18 | Nortel Networks Limited | Transmission system for reduction of amateur radio interference |
US6084958A (en) * | 1998-06-23 | 2000-07-04 | Starium Ltd | Determining the manner in which the wires connecting to a base set of a telephone system are used for transmission and reception of electrical signals representing a communication |
US6346907B1 (en) | 1998-08-07 | 2002-02-12 | Agere Systems Guardian Corp. | Analog-to-digital converter having voltage to-time converter and time digitizer, and method for using same |
US6433800B1 (en) | 1998-08-31 | 2002-08-13 | Sun Microsystems, Inc. | Graphical action invocation method, and associated method, for a computer system |
US6097732A (en) * | 1998-10-30 | 2000-08-01 | Advanced Micro Devices, Inc. | Apparatus and method for controlling transmission parameters of selected home network stations transmitting on a telephone medium |
US6424630B1 (en) * | 1998-10-30 | 2002-07-23 | Advanced Micro Devices, Inc. | Apparatus and method for calibrating a home networking station receiving network signals on a telephone line medium |
US6278740B1 (en) | 1998-11-19 | 2001-08-21 | Gates Technology | Multi-bit (2i+2)-wire differential coding of digital signals using differential comparators and majority logic |
SG116487A1 (en) | 1998-12-16 | 2005-11-28 | Silverbrook Res Pty Ltd | Duplex inkjet printing system. |
US6175230B1 (en) | 1999-01-14 | 2001-01-16 | Genrad, Inc. | Circuit-board tester with backdrive-based burst timing |
ATE304770T1 (de) | 1999-01-20 | 2005-09-15 | Broadcom Corp | Trellisdekoder mit korrektur von paartauschungen, zur andwendung in sendern/empfängern für gigabit- ethernet |
US6483828B1 (en) | 1999-02-10 | 2002-11-19 | Ericsson, Inc. | System and method for coding in a telecommunications environment using orthogonal and near-orthogonal codes |
US6556628B1 (en) | 1999-04-29 | 2003-04-29 | The University Of North Carolina At Chapel Hill | Methods and systems for transmitting and receiving differential signals over a plurality of conductors |
AU4606700A (en) | 1999-05-07 | 2000-11-21 | Salviac Limited | A tissue engineering scaffold |
US6697420B1 (en) | 1999-05-25 | 2004-02-24 | Intel Corporation | Symbol-based signaling for an electromagnetically-coupled bus system |
US6404820B1 (en) | 1999-07-09 | 2002-06-11 | The United States Of America As Represented By The Director Of The National Security Agency | Method for storage and reconstruction of the extended hamming code for an 8-dimensional lattice quantizer |
US6496889B1 (en) | 1999-09-17 | 2002-12-17 | Rambus Inc. | Chip-to-chip communication system using an ac-coupled bus and devices employed in same |
US7124221B1 (en) | 1999-10-19 | 2006-10-17 | Rambus Inc. | Low latency multi-level communication interface |
US7269212B1 (en) | 2000-09-05 | 2007-09-11 | Rambus Inc. | Low-latency equalization in multi-level, multi-line communication systems |
US7555263B1 (en) | 1999-10-21 | 2009-06-30 | Broadcom Corporation | Adaptive radio transceiver |
US6316987B1 (en) | 1999-10-22 | 2001-11-13 | Velio Communications, Inc. | Low-power low-jitter variable delay timing circuit |
US6473877B1 (en) | 1999-11-10 | 2002-10-29 | Hewlett-Packard Company | ECC code mechanism to detect wire stuck-at faults |
TW483255B (en) | 1999-11-26 | 2002-04-11 | Fujitsu Ltd | Phase-combining circuit and timing signal generator circuit for carrying out a high-speed signal transmission |
US6624099B1 (en) | 1999-12-17 | 2003-09-23 | Basell Poliolefine Italia S.P.A. | Glass-reinforced multi-layer sheets from olefin polymer materials |
US6690739B1 (en) | 2000-01-14 | 2004-02-10 | Shou Yee Mui | Method for intersymbol interference compensation |
US8164362B2 (en) * | 2000-02-02 | 2012-04-24 | Broadcom Corporation | Single-ended sense amplifier with sample-and-hold reference |
US6650638B1 (en) | 2000-03-06 | 2003-11-18 | Agilent Technologies, Inc. | Decoding method and decoder for 64b/66b coded packetized serial data |
DE10016445C2 (de) | 2000-03-29 | 2002-03-28 | Infineon Technologies Ag | Elektronische Ausgangsstufe |
US6954492B1 (en) | 2000-04-19 | 2005-10-11 | 3Com Corporation | Method of differential encoding a precoded multiple modulus encoder |
AU2001257348A1 (en) | 2000-04-28 | 2001-11-12 | Broadcom Corporation | Methods and systems for adaptive receiver equalization |
US6865236B1 (en) * | 2000-06-01 | 2005-03-08 | Nokia Corporation | Apparatus, and associated method, for coding and decoding multi-dimensional biorthogonal codes |
KR100335503B1 (ko) | 2000-06-26 | 2002-05-08 | 윤종용 | 서로 다른 지연 특성을 동일하게 하는 신호 전달 회로,신호 전달 방법 및 이를 구비하는 반도체 장치의 데이터래치 회로 |
US6597942B1 (en) | 2000-08-15 | 2003-07-22 | Cardiac Pacemakers, Inc. | Electrocardiograph leads-off indicator |
US6563382B1 (en) | 2000-10-10 | 2003-05-13 | International Business Machines Corporation | Linear variable gain amplifiers |
US20020044316A1 (en) | 2000-10-16 | 2002-04-18 | Myers Michael H. | Signal power allocation apparatus and method |
EP1202483A1 (en) | 2000-10-27 | 2002-05-02 | Alcatel | Correlated spreading sequences for high rate non-coherent communication systems |
WO2002039453A1 (en) | 2000-11-13 | 2002-05-16 | Spectraplex, Inc. | Distributed storage in semiconductor memory systems |
US7340558B2 (en) | 2000-11-22 | 2008-03-04 | Silicon Image, Inc. | Multisection memory bank system |
US6384758B1 (en) | 2000-11-27 | 2002-05-07 | Analog Devices, Inc. | High-speed sampler structures and methods |
US6661355B2 (en) | 2000-12-27 | 2003-12-09 | Apple Computer, Inc. | Methods and apparatus for constant-weight encoding & decoding |
US20020152044A1 (en) | 2001-02-12 | 2002-10-17 | Matrics, Inc. | Method, system, and apparatus for remote timing calibration of a RFID tag population |
US6766342B2 (en) | 2001-02-15 | 2004-07-20 | Sun Microsystems, Inc. | System and method for computing and unordered Hadamard transform |
JP3795338B2 (ja) * | 2001-02-27 | 2006-07-12 | 旭化成マイクロシステム株式会社 | 全差動型サンプリング回路及びデルタシグマ型変調器 |
US7110349B2 (en) | 2001-03-06 | 2006-09-19 | Brn Phoenix, Inc. | Adaptive communications methods for multiple user packet radio wireless networks |
US8498368B1 (en) | 2001-04-11 | 2013-07-30 | Qualcomm Incorporated | Method and system for optimizing gain changes by identifying modulation type and rate |
US6675272B2 (en) | 2001-04-24 | 2004-01-06 | Rambus Inc. | Method and apparatus for coordinating memory operations among diversely-located memory components |
US6982954B2 (en) | 2001-05-03 | 2006-01-03 | International Business Machines Corporation | Communications bus with redundant signal paths and method for compensating for signal path errors in a communications bus |
TW503618B (en) | 2001-05-11 | 2002-09-21 | Via Tech Inc | Data comparator using positive/negative phase strobe signal as the dynamic reference voltage and the input buffer using the same |
TW569534B (en) | 2001-05-15 | 2004-01-01 | Via Tech Inc | Data transmission system using differential signals as edge alignment triggering signals and input/output buffers thereof |
WO2002095955A1 (en) | 2001-05-22 | 2002-11-28 | Koninklijke Philips Electronics N.V. | Method of decoding a variable-length codeword sequence |
US6452420B1 (en) | 2001-05-24 | 2002-09-17 | National Semiconductor Corporation | Multi-dimensional differential signaling (MDDS) |
DE10134472B4 (de) | 2001-07-16 | 2005-12-15 | Infineon Technologies Ag | Sende- und Empfangsschnittstelle und Verfahren zur Datenübertragung |
JP3939122B2 (ja) | 2001-07-19 | 2007-07-04 | 富士通株式会社 | レシーバ回路 |
US6907552B2 (en) | 2001-08-29 | 2005-06-14 | Tricn Inc. | Relative dynamic skew compensation of parallel data lines |
US6664355B2 (en) | 2001-08-31 | 2003-12-16 | Hanyang Hak Won Co., Ltd. | Process for synthesizing conductive polymers by gas-phase polymerization and product thereof |
US6621427B2 (en) | 2001-10-11 | 2003-09-16 | Sun Microsystems, Inc. | Method and apparatus for implementing a doubly balanced code |
US6999516B1 (en) | 2001-10-24 | 2006-02-14 | Rambus Inc. | Technique for emulating differential signaling |
US6624699B2 (en) | 2001-10-25 | 2003-09-23 | Broadcom Corporation | Current-controlled CMOS wideband data amplifier circuits |
US7142612B2 (en) | 2001-11-16 | 2006-11-28 | Rambus, Inc. | Method and apparatus for multi-level signaling |
US7706524B2 (en) | 2001-11-16 | 2010-04-27 | Rambus Inc. | Signal line routing to reduce crosstalk effects |
US7039136B2 (en) | 2001-11-19 | 2006-05-02 | Tensorcomm, Inc. | Interference cancellation in a signal |
JP2003163612A (ja) | 2001-11-26 | 2003-06-06 | Advanced Telecommunication Research Institute International | ディジタル信号の符号化方法及び復号化方法 |
US6624688B2 (en) | 2002-01-07 | 2003-09-23 | Intel Corporation | Filtering variable offset amplifer |
US7400276B1 (en) | 2002-01-28 | 2008-07-15 | Massachusetts Institute Of Technology | Method and apparatus for reducing delay in a bus provided from parallel, capacitively coupled transmission lines |
US6993311B2 (en) | 2002-02-20 | 2006-01-31 | Freescale Semiconductor, Inc. | Radio receiver having an adaptive equalizer and method therefor |
JP3737058B2 (ja) * | 2002-03-12 | 2006-01-18 | 沖電気工業株式会社 | アナログ加減算回路、主増幅器、レベル識別回路、光受信回路、光送信回路、自動利得制御増幅回路、自動周波数特性補償増幅回路、及び発光制御回路 |
US7231558B2 (en) | 2002-03-18 | 2007-06-12 | Finisar Corporation | System and method for network error rate testing |
SE521575C2 (sv) | 2002-03-25 | 2003-11-11 | Ericsson Telefon Ab L M | Kalibrering av A/D omvandlare |
US7197084B2 (en) | 2002-03-27 | 2007-03-27 | Qualcomm Incorporated | Precoding for a multipath channel in a MIMO system |
US7269130B2 (en) * | 2002-03-29 | 2007-09-11 | Bay Microsystems, Inc. | Redundant add/drop multiplexor |
FR2839339B1 (fr) | 2002-05-03 | 2004-06-04 | Inst Francais Du Petrole | Methode de dimensionnement d'un element de colonne montante avec conduites auxiliaires integrees |
US6573853B1 (en) | 2002-05-24 | 2003-06-03 | Broadcom Corporation | High speed analog to digital converter |
US7142865B2 (en) | 2002-05-31 | 2006-11-28 | Telefonaktie Bolaget Lm Ericsson (Publ) | Transmit power control based on virtual decoding |
US7134056B2 (en) | 2002-06-04 | 2006-11-07 | Lucent Technologies Inc. | High-speed chip-to-chip communication interface with signal trace routing and phase offset detection |
JP3961886B2 (ja) | 2002-06-06 | 2007-08-22 | パイオニア株式会社 | 情報記録装置 |
US6973613B2 (en) | 2002-06-28 | 2005-12-06 | Sun Microsystems, Inc. | Error detection/correction code which detects and corrects component failure and which provides single bit error correction subsequent to component failure |
US6976194B2 (en) | 2002-06-28 | 2005-12-13 | Sun Microsystems, Inc. | Memory/Transmission medium failure handling controller and method |
CA2454574C (en) | 2002-07-03 | 2008-12-09 | Hughes Electronics Corporation | Method and system for memory management in low density parity check (ldpc) decoders |
US7292629B2 (en) | 2002-07-12 | 2007-11-06 | Rambus Inc. | Selectable-tap equalizer |
US6996379B2 (en) | 2002-07-23 | 2006-02-07 | Broadcom Corp. | Linear high powered integrated circuit transmitter |
US20040027185A1 (en) * | 2002-08-09 | 2004-02-12 | Alan Fiedler | High-speed differential sampling flip-flop |
US7782984B2 (en) | 2002-08-30 | 2010-08-24 | Alcatel-Lucent Usa Inc. | Method of sphere decoding with low complexity and good statistical output |
CN100556012C (zh) | 2002-08-30 | 2009-10-28 | 皇家飞利浦电子股份有限公司 | 单载波信号的频域均衡 |
US8064508B1 (en) | 2002-09-19 | 2011-11-22 | Silicon Image, Inc. | Equalizer with controllably weighted parallel high pass and low pass filters and receiver including such an equalizer |
US7787572B2 (en) | 2005-04-07 | 2010-08-31 | Rambus Inc. | Advanced signal processors for interference cancellation in baseband receivers |
US7127003B2 (en) | 2002-09-23 | 2006-10-24 | Rambus Inc. | Method and apparatus for communicating information using different signaling types |
EP1404029B1 (en) * | 2002-09-24 | 2007-12-12 | Agilent Technologies, Inc. | Method and apparatus for predicting a signalling code corresponding to a code spur |
JP3990966B2 (ja) | 2002-10-08 | 2007-10-17 | 松下電器産業株式会社 | 差動増幅器 |
US7586972B2 (en) * | 2002-11-18 | 2009-09-08 | The Aerospace Corporation | Code division multiple access enhanced capacity system |
US7176823B2 (en) | 2002-11-19 | 2007-02-13 | Stmicroelectronics, Inc. | Gigabit ethernet line driver and hybrid architecture |
US7236535B2 (en) * | 2002-11-19 | 2007-06-26 | Qualcomm Incorporated | Reduced complexity channel estimation for wireless communication systems |
FR2849728B1 (fr) | 2003-01-06 | 2005-04-29 | Excem | Procede et dispositif pour la transmission avec une faible diaphonie |
US7362697B2 (en) | 2003-01-09 | 2008-04-22 | International Business Machines Corporation | Self-healing chip-to-chip interface |
US7339990B2 (en) | 2003-02-07 | 2008-03-04 | Fujitsu Limited | Processing a received signal at a detection circuit |
US7620116B2 (en) | 2003-02-28 | 2009-11-17 | Rambus Inc. | Technique for determining an optimal transition-limiting code for use in a multi-level signaling system |
US7348989B2 (en) | 2003-03-07 | 2008-03-25 | Arch Vision, Inc. | Preparing digital images for display utilizing view-dependent texturing |
US7023817B2 (en) | 2003-03-11 | 2006-04-04 | Motorola, Inc. | Method and apparatus for source device synchronization in a communication system |
WO2004088913A1 (ja) | 2003-03-31 | 2004-10-14 | Fujitsu Limited | 位相比較回路及びクロックリカバリ回路 |
US7397848B2 (en) | 2003-04-09 | 2008-07-08 | Rambus Inc. | Partial response receiver |
US7080288B2 (en) | 2003-04-28 | 2006-07-18 | International Business Machines Corporation | Method and apparatus for interface failure survivability using error correction |
US7085153B2 (en) | 2003-05-13 | 2006-08-01 | Innovative Silicon S.A. | Semiconductor memory cell, array, architecture and device, and method of operating same |
US6734811B1 (en) | 2003-05-21 | 2004-05-11 | Apple Computer, Inc. | Single-ended balance-coded interface with embedded-timing |
US6876317B2 (en) | 2003-05-30 | 2005-04-05 | Texas Instruments Incorporated | Method of context based adaptive binary arithmetic decoding with two part symbol decoding |
US7388904B2 (en) | 2003-06-03 | 2008-06-17 | Vativ Technologies, Inc. | Near-end, far-end and echo cancellers in a multi-channel transceiver system |
US7082557B2 (en) | 2003-06-09 | 2006-07-25 | Lsi Logic Corporation | High speed serial interface test |
CA2527685A1 (en) | 2003-06-30 | 2005-01-06 | International Business Machines Corporation | Vector equalizer and vector sequence estimator for block-coded modulation schemes |
US7389333B2 (en) | 2003-07-02 | 2008-06-17 | Fujitsu Limited | Provisioning a network element using custom defaults |
US7358869B1 (en) | 2003-08-20 | 2008-04-15 | University Of Pittsburgh | Power efficient, high bandwidth communication using multi-signal-differential channels |
US7142685B2 (en) | 2003-08-27 | 2006-11-28 | Dei Headquarters, Inc. | Adjustable loudspeaker |
US7428273B2 (en) * | 2003-09-18 | 2008-09-23 | Promptu Systems Corporation | Method and apparatus for efficient preamble detection in digital data receivers |
KR100976489B1 (ko) | 2003-10-01 | 2010-08-18 | 엘지전자 주식회사 | 이동통신의 다중입력 다중출력 시스템에 적용되는데이터의 변조 및 코딩 방식 제어 방법 |
US7289568B2 (en) | 2003-11-19 | 2007-10-30 | Intel Corporation | Spectrum management apparatus, method, and system |
US7639596B2 (en) | 2003-12-07 | 2009-12-29 | Adaptive Spectrum And Signal Alignment, Inc. | High speed multiple loop DSL system |
WO2005062509A1 (ja) | 2003-12-18 | 2005-07-07 | National Institute Of Information And Communications Technology | 送信装置、受信装置、送信方法、受信方法、ならびに、プログラム |
US7370264B2 (en) | 2003-12-19 | 2008-05-06 | Stmicroelectronics, Inc. | H-matrix for error correcting circuitry |
US7012463B2 (en) * | 2003-12-23 | 2006-03-14 | Analog Devices, Inc. | Switched capacitor circuit with reduced common-mode variations |
US8180931B2 (en) | 2004-01-20 | 2012-05-15 | Super Talent Electronics, Inc. | USB-attached-SCSI flash-memory system with additional command, status, and control pipes to a smart-storage switch |
WO2005078732A1 (en) | 2004-02-05 | 2005-08-25 | Iota Technology, Inc. | Electronic memory with tri-level cell pair |
US7049865B2 (en) | 2004-03-05 | 2006-05-23 | Intel Corporation | Power-on detect circuit for use with multiple voltage domains |
US7308048B2 (en) | 2004-03-09 | 2007-12-11 | Rambus Inc. | System and method for selecting optimal data transition types for clock and data recovery |
US20050213686A1 (en) * | 2004-03-26 | 2005-09-29 | Texas Instruments Incorporated | Reduced complexity transmit spatial waterpouring technique for multiple-input, multiple-output communication systems |
GB0407663D0 (en) | 2004-04-03 | 2004-05-05 | Ibm | Variable gain amplifier |
EP1737174B1 (en) | 2004-04-16 | 2015-05-27 | Thine Electronics, Inc. | Transmitter circuit, receiver circuit, data transmitting method and system |
US7602246B2 (en) | 2004-06-02 | 2009-10-13 | Qualcomm, Incorporated | General-purpose wideband amplifier |
US7581157B2 (en) | 2004-06-24 | 2009-08-25 | Lg Electronics Inc. | Method and apparatus of encoding and decoding data using low density parity check code in a wireless communication system |
US7587012B2 (en) | 2004-07-08 | 2009-09-08 | Rambus, Inc. | Dual loop clock recovery circuit |
US7599390B2 (en) | 2004-07-21 | 2009-10-06 | Rambus Inc. | Approximate bit-loading for data transmission over frequency-selective channels |
US7653199B2 (en) | 2004-07-29 | 2010-01-26 | Stc. Unm | Quantum key distribution |
US7460612B2 (en) | 2004-08-12 | 2008-12-02 | Texas Instruments Incorporated | Method and apparatus for a fully digital quadrature modulator |
US7366942B2 (en) * | 2004-08-12 | 2008-04-29 | Micron Technology, Inc. | Method and apparatus for high-speed input sampling |
US7697915B2 (en) | 2004-09-10 | 2010-04-13 | Qualcomm Incorporated | Gain boosting RF gain stage with cross-coupled capacitors |
US8441287B2 (en) | 2004-09-20 | 2013-05-14 | The Trustees Of Columbia University In The City Of New York | Low voltage track and hold circuits |
US7869546B2 (en) | 2004-09-30 | 2011-01-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Multicode transmission using Walsh Hadamard transform |
US7327803B2 (en) | 2004-10-22 | 2008-02-05 | Parkervision, Inc. | Systems and methods for vector power amplification |
US7746764B2 (en) * | 2004-10-22 | 2010-06-29 | Parkervision, Inc. | Orthogonal signal generation using vector spreading and combining |
US7346819B2 (en) | 2004-10-29 | 2008-03-18 | Rambus Inc. | Through-core self-test with multiple loopbacks |
TWI269524B (en) * | 2004-11-08 | 2006-12-21 | Richwave Technology Corp | Low noise and high gain low noise amplifier |
TWI239715B (en) * | 2004-11-16 | 2005-09-11 | Ind Tech Res Inst | Programmable gain current amplifier |
ITVA20040054A1 (it) * | 2004-11-23 | 2005-02-23 | St Microelectronics Srl | Metodo per stimare coefficienti di attenuazione di canali, metodo di ricezione di simboli e relativi ricevitore e trasmettitore a singola antenna o multi-antenna |
US7496162B2 (en) | 2004-11-30 | 2009-02-24 | Stmicroelectronics, Inc. | Communication system with statistical control of gain |
US20060126751A1 (en) | 2004-12-10 | 2006-06-15 | Anthony Bessios | Technique for disparity bounding coding in a multi-level signaling system |
US7349484B2 (en) | 2004-12-22 | 2008-03-25 | Rambus Inc. | Adjustable dual-band link |
US7457393B2 (en) | 2004-12-29 | 2008-11-25 | Intel Corporation | Clock recovery apparatus, method, and system |
US7882413B2 (en) | 2005-01-20 | 2011-02-01 | New Jersey Institute Of Technology | Method and/or system for space-time encoding and/or decoding |
US7199728B2 (en) | 2005-01-21 | 2007-04-03 | Rambus, Inc. | Communication system with low power, DC-balanced serial link |
CN101171818B (zh) | 2005-03-08 | 2013-05-08 | 高通股份有限公司 | 结合脉冲调制和分层调制的发射方法和装置 |
US7209069B2 (en) | 2005-04-13 | 2007-04-24 | Sigmatel, Inc. | Successive approximation analog-to-digital converter with current steered digital-to-analog converter |
US7735037B2 (en) | 2005-04-15 | 2010-06-08 | Rambus, Inc. | Generating interface adjustment signals in a device-to-device interconnection system |
US7335976B2 (en) | 2005-05-25 | 2008-02-26 | International Business Machines Corporation | Crosstalk reduction in electrical interconnects using differential signaling |
US7656321B2 (en) | 2005-06-02 | 2010-02-02 | Rambus Inc. | Signaling system |
US7639746B2 (en) * | 2005-07-01 | 2009-12-29 | Apple Inc. | Hybrid voltage/current-mode transmission line driver |
TWI311865B (en) | 2005-07-01 | 2009-07-01 | Via Tech Inc | Clock and data recovery circuit and method thereof |
EP1909424A1 (en) * | 2005-07-27 | 2008-04-09 | Naoki Suehiro | Data communication system and data transmitting apparatus |
US7808883B2 (en) * | 2005-08-08 | 2010-10-05 | Nokia Corporation | Multicarrier modulation with enhanced frequency coding |
TW200710801A (en) | 2005-09-02 | 2007-03-16 | Richtek Techohnology Corp | Driving circuit and method of electroluminescence display |
US7650525B1 (en) * | 2005-10-04 | 2010-01-19 | Force 10 Networks, Inc. | SPI-4.2 dynamic implementation without additional phase locked loops |
US7870444B2 (en) | 2005-10-13 | 2011-01-11 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | System and method for measuring and correcting data lane skews |
CN101313508B (zh) | 2005-11-22 | 2011-07-20 | 松下电器产业株式会社 | 相位比较器和相位调整电路 |
US7570704B2 (en) * | 2005-11-30 | 2009-08-04 | Intel Corporation | Transmitter architecture for high-speed communications |
US20070201597A1 (en) | 2006-01-03 | 2007-08-30 | Hongkai He | Sub-sampled digital programmable delay locked loop with triangular waveform preshaper |
JP4705858B2 (ja) | 2006-02-10 | 2011-06-22 | Okiセミコンダクタ株式会社 | アナログ・ディジタル変換回路 |
US7987415B2 (en) * | 2006-02-15 | 2011-07-26 | Samsung Electronics Co., Ltd. | Method and system for application of unequal error protection to uncompressed video for transmission over wireless channels |
US7694204B2 (en) | 2006-03-09 | 2010-04-06 | Silicon Image, Inc. | Error detection in physical interfaces for point-to-point communications between integrated circuits |
US7356213B1 (en) | 2006-03-28 | 2008-04-08 | Sun Microsystems, Inc. | Transparent switch using optical and electrical proximity communication |
US8129969B1 (en) | 2006-04-07 | 2012-03-06 | Marvell International Ltd. | Hysteretic inductive switching regulator with power supply compensation |
US20070263711A1 (en) | 2006-04-26 | 2007-11-15 | Theodor Kramer Gerhard G | Operating DSL subscriber lines |
US7539532B2 (en) | 2006-05-12 | 2009-05-26 | Bao Tran | Cuffless blood pressure monitoring appliance |
US8091006B2 (en) * | 2006-06-02 | 2012-01-03 | Nec Laboratories America, Inc. | Spherical lattice codes for lattice and lattice-reduction-aided decoders |
KR100806117B1 (ko) | 2006-06-23 | 2008-02-21 | 삼성전자주식회사 | 전압제어 발진기, 이를 구비한 위상동기루프 회로, 및위상동기루프 회로의 제어방법 |
US7688102B2 (en) | 2006-06-29 | 2010-03-30 | Samsung Electronics Co., Ltd. | Majority voter circuits and semiconductor devices including the same |
US7925030B2 (en) | 2006-07-08 | 2011-04-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Crosstalk cancellation using load impedence measurements |
US7439761B2 (en) * | 2006-07-12 | 2008-10-21 | Infineon Technologies Ag | Apparatus and method for controlling a driver strength |
US8233544B2 (en) | 2006-07-13 | 2012-07-31 | Qualcomm Incorporated | Video coding with fine granularity scalability using cycle-aligned fragments |
US7933770B2 (en) | 2006-07-14 | 2011-04-26 | Siemens Audiologische Technik Gmbh | Method and device for coding audio data based on vector quantisation |
US8295250B2 (en) | 2006-07-24 | 2012-10-23 | Qualcomm Incorporated | Code interleaving for a structured code |
US7336112B1 (en) | 2006-08-21 | 2008-02-26 | Huaya Microelectronics, Ltd. | False lock protection in a delay-locked loop (DLL) |
US20080104374A1 (en) | 2006-10-31 | 2008-05-01 | Motorola, Inc. | Hardware sorter |
US7873980B2 (en) | 2006-11-02 | 2011-01-18 | Redmere Technology Ltd. | High-speed cable with embedded signal format conversion and power control |
US7698088B2 (en) | 2006-11-15 | 2010-04-13 | Silicon Image, Inc. | Interface test circuitry and methods |
US20080159448A1 (en) | 2006-12-29 | 2008-07-03 | Texas Instruments, Incorporated | System and method for crosstalk cancellation |
US7462956B2 (en) | 2007-01-11 | 2008-12-09 | Northrop Grumman Space & Mission Systems Corp. | High efficiency NLTL comb generator using time domain waveform synthesis technique |
US8064535B2 (en) | 2007-03-02 | 2011-11-22 | Qualcomm Incorporated | Three phase and polarity encoded serial interface |
JP4864769B2 (ja) | 2007-03-05 | 2012-02-01 | 株式会社東芝 | Pll回路 |
CN101286775A (zh) | 2007-04-12 | 2008-10-15 | 北京三星通信技术研究有限公司 | 采用增强信号检测的多天线空间复用系统 |
US20100180143A1 (en) | 2007-04-19 | 2010-07-15 | Rambus Inc. | Techniques for improved timing control of memory devices |
KR100871711B1 (ko) | 2007-05-03 | 2008-12-08 | 삼성전자주식회사 | 싱글-엔디드 시그널링과 차동 시그널링을 지원하는 다중위상 송/수신 회로 및 차동 시그널링에서 싱글-엔디드시그널링 전환을 위한 클럭킹 방법 |
WO2008151251A1 (en) | 2007-06-05 | 2008-12-11 | Rambus, Inc. | Techniques for multi-wire encoding with an embedded clock |
WO2008154416A2 (en) | 2007-06-07 | 2008-12-18 | Microchips, Inc. | Electrochemical biosensors and arrays |
CN101072048B (zh) * | 2007-06-13 | 2013-12-04 | 华为技术有限公司 | 信息参数的调整方法及装置 |
US8045670B2 (en) | 2007-06-22 | 2011-10-25 | Texas Instruments Incorporated | Interpolative all-digital phase locked loop |
US20090059782A1 (en) | 2007-08-29 | 2009-03-05 | Rgb Systems, Inc. | Method and apparatus for extending the transmission capability of twisted pair communication systems |
CN101399798B (zh) | 2007-09-27 | 2011-07-06 | 北京信威通信技术股份有限公司 | 一种ofdma无线通信系统的稳健信号传输方法及装置 |
EP2208327A4 (en) * | 2007-10-01 | 2012-01-04 | Rambus Inc | SIMPLIFIED RECEIVER FOR USE IN MULTI-WIRE COMMUNICATION |
US9197470B2 (en) | 2007-10-05 | 2015-11-24 | Innurvation, Inc. | Data transmission via multi-path channels using orthogonal multi-frequency signals with differential phase shift keying modulation |
JP5465376B2 (ja) * | 2007-10-18 | 2014-04-09 | ピーエスフォー ルクスコ エスエイアールエル | 半導体装置、およびドライバ制御方法 |
WO2009055146A1 (en) | 2007-10-24 | 2009-04-30 | Rambus Inc. | Encoding and decoding techniques with improved timing margin |
US7899653B2 (en) | 2007-10-30 | 2011-03-01 | Micron Technology, Inc. | Matrix modeling of parallel data structures to facilitate data encoding and/or jittery signal generation |
JP2009118049A (ja) | 2007-11-05 | 2009-05-28 | Panasonic Corp | 離散時間型増幅回路及びアナログ・ディジタル変換器 |
US8245094B2 (en) | 2007-11-20 | 2012-08-14 | California Institute of Technology Texas A & M | Rank modulation for flash memories |
US8429492B2 (en) | 2007-11-30 | 2013-04-23 | Marvell World Trade Ltd. | Error correcting code predication system and method |
JP2009134573A (ja) | 2007-11-30 | 2009-06-18 | Nec Corp | マルチチップ半導体装置およびデータ転送方法 |
US8159376B2 (en) | 2007-12-07 | 2012-04-17 | Rambus Inc. | Encoding and decoding techniques for bandwidth-efficient communication |
EP2071786B1 (en) * | 2007-12-14 | 2020-12-23 | Vodafone Holding GmbH | Method and transceiver for data communication |
US8588254B2 (en) | 2007-12-17 | 2013-11-19 | Broadcom Corporation | Method and system for energy efficient signaling for 100mbps Ethernet using a subset technique |
KR100934007B1 (ko) | 2007-12-18 | 2009-12-28 | 한국전자통신연구원 | 다중입력 다중출력 수신기에서 다차원 검출 장치 및방법과, 이를 이용한 수신 장치 |
ATE545091T1 (de) * | 2007-12-19 | 2012-02-15 | Rambus Inc | Asymmetrische kommunikation bei gemeinsamen verbindungen |
US8253454B2 (en) | 2007-12-21 | 2012-08-28 | Realtek Semiconductor Corp. | Phase lock loop with phase interpolation by reference clock and method for the same |
WO2009084121A1 (en) | 2007-12-28 | 2009-07-09 | Nec Corporation | Signal processing for multi-sectored wireless communications system and method thereof |
US8055095B2 (en) | 2008-01-23 | 2011-11-08 | Sparsense, Inc. | Parallel and adaptive signal processing |
CN101499048A (zh) | 2008-01-29 | 2009-08-05 | 国际商业机器公司 | 总线编/解码方法和总线编/解码器 |
FR2927205A1 (fr) | 2008-01-31 | 2009-08-07 | Commissariat Energie Atomique | Procede de codage spatio-temporel a faible papr pour systeme de communication multi-antenne de type uwb impulsionnel |
US7841909B2 (en) | 2008-02-12 | 2010-11-30 | Adc Gmbh | Multistage capacitive far end crosstalk compensation arrangement |
KR20090090928A (ko) | 2008-02-22 | 2009-08-26 | 삼성전자주식회사 | 저잡음 증폭기 |
CN101478286A (zh) | 2008-03-03 | 2009-07-08 | 锐迪科微电子(上海)有限公司 | 方波-正弦波信号转换方法及转换电路 |
US8462891B2 (en) | 2008-03-06 | 2013-06-11 | Rambus Inc. | Error detection and offset cancellation during multi-wire communication |
KR100963410B1 (ko) | 2008-03-11 | 2010-06-14 | 한국전자통신연구원 | 릴레이 시스템에서 신호점 재배열 또는 중첩 변조를 기반으로 하는 협력 수신 다이버시티 장치 및 방법 |
US7583209B1 (en) * | 2008-03-19 | 2009-09-01 | Mitsubishi Electric Research Laboratories, Inc. | System and method for signaling on a bus using forbidden pattern free codes |
US7990185B2 (en) | 2008-05-12 | 2011-08-02 | Menara Networks | Analog finite impulse response filter |
CN101610115A (zh) | 2008-06-20 | 2009-12-23 | 华为技术有限公司 | 光信号的产生方法及装置 |
JP5588976B2 (ja) | 2008-06-20 | 2014-09-10 | ラムバス・インコーポレーテッド | 周波数応答バス符号化 |
US8149955B2 (en) | 2008-06-30 | 2012-04-03 | Telefonaktiebolaget L M Ericsson (Publ) | Single ended multiband feedback linearized RF amplifier and mixer with DC-offset and IM2 suppression feedback loop |
FR2933556B1 (fr) | 2008-07-07 | 2010-08-20 | Excem | Circuit de reception pseudo-differentiel |
US8443223B2 (en) | 2008-07-27 | 2013-05-14 | Rambus Inc. | Method and system for balancing receive-side supply load |
US8341492B2 (en) | 2008-07-28 | 2012-12-25 | Broadcom Corporation | Quasi-cyclic LDPC (low density parity check) code construction |
WO2010021280A1 (ja) | 2008-08-18 | 2010-02-25 | 日本電信電話株式会社 | ベクトル合成型移相器、光トランシーバおよび制御回路 |
US20100046644A1 (en) | 2008-08-19 | 2010-02-25 | Motorola, Inc. | Superposition coding |
FR2936384A1 (fr) | 2008-09-22 | 2010-03-26 | St Microelectronics Grenoble | Dispositif d'echange de donnees entre composants d'un circuit integre |
US8442099B1 (en) | 2008-09-25 | 2013-05-14 | Aquantia Corporation | Crosstalk cancellation for a common-mode channel |
US8103287B2 (en) * | 2008-09-30 | 2012-01-24 | Apple Inc. | Methods and apparatus for resolving wireless signal components |
US8601338B2 (en) | 2008-11-26 | 2013-12-03 | Broadcom Corporation | Modified error distance decoding of a plurality of signals |
KR101173942B1 (ko) | 2008-11-28 | 2012-08-14 | 한국전자통신연구원 | 데이터 송신 장치, 데이터 수신 장치, 데이터 전송 시스템 및 데이터 전송 방법 |
WO2010065789A2 (en) | 2008-12-03 | 2010-06-10 | Rambus Inc. | Resonance mitigation for high-speed signaling |
AU2008264232B2 (en) | 2008-12-30 | 2012-05-17 | Canon Kabushiki Kaisha | Multi-modal object signature |
US8472513B2 (en) | 2009-01-14 | 2013-06-25 | Lsi Corporation | TX back channel adaptation algorithm |
JP4748227B2 (ja) | 2009-02-10 | 2011-08-17 | ソニー株式会社 | データ変調装置とその方法 |
TWI430622B (zh) * | 2009-02-23 | 2014-03-11 | Inst Information Industry | 訊號傳輸裝置、傳輸方法及其電腦程式產品 |
US8428177B2 (en) | 2009-02-25 | 2013-04-23 | Samsung Electronics Co., Ltd. | Method and apparatus for multiple input multiple output (MIMO) transmit beamforming |
CN106073268B (zh) * | 2009-03-10 | 2020-11-27 | 伊利诺斯工具制品有限公司 | 模制承载表面及其制造方法 |
CN101854223A (zh) | 2009-03-31 | 2010-10-06 | 上海交通大学 | 矢量量化码书生成方法 |
JP5316194B2 (ja) | 2009-04-20 | 2013-10-16 | ソニー株式会社 | Ad変換器 |
US8437440B1 (en) * | 2009-05-28 | 2013-05-07 | Marvell International Ltd. | PHY frame formats in a system with more than four space-time streams |
JP5187277B2 (ja) | 2009-06-16 | 2013-04-24 | ソニー株式会社 | 情報処理装置、及びモード切り替え方法 |
US8243782B2 (en) | 2009-06-29 | 2012-08-14 | Lsi Corporation | Statistically-adapted receiver and transmitter equalization |
EP2456515A4 (en) | 2009-07-20 | 2013-01-23 | Nat Ict Australia Ltd | NERVE STIMULATION |
PL2457333T3 (pl) | 2009-07-20 | 2016-05-31 | Lantiq Beteiligungs Gmbh & Co Kg | Sposób i urządzenie do komunikacji danych wektorowych |
JP5272948B2 (ja) | 2009-07-28 | 2013-08-28 | ソニー株式会社 | 増幅回路、半導体集積回路、無線伝送システム、通信装置 |
TW201106663A (en) | 2009-08-05 | 2011-02-16 | Novatek Microelectronics Corp | Dual-port input equalizer |
WO2011051448A2 (en) | 2009-10-30 | 2011-05-05 | Bangor University | Synchronisation process in optical frequency division multiplexing transmission systems |
US8681894B2 (en) | 2009-11-03 | 2014-03-25 | Telefonaktiebolaget L M (Publ) | Digital affine transformation modulated power amplifier for wireless communications |
US8279745B2 (en) | 2009-11-23 | 2012-10-02 | Telefonaktiebolaget L M Ericsson (Publ) | Orthogonal vector DSL |
TW201145918A (en) * | 2009-12-27 | 2011-12-16 | Maxlinear Inc | Methods and apparatus for synchronization in multiple-channel communication systems |
TWI562554B (en) | 2009-12-30 | 2016-12-11 | Sony Corp | Communications system and device using beamforming |
CN102014475B (zh) | 2010-01-08 | 2012-01-04 | 华为技术有限公司 | 资源映射、码分复用方法及装置 |
US8295336B2 (en) | 2010-03-16 | 2012-10-23 | Micrel Inc. | High bandwidth programmable transmission line pre-emphasis method and circuit |
WO2011119359A2 (en) | 2010-03-24 | 2011-09-29 | Rambus Inc. | Coded differential intersymbol interference reduction |
CN101820288B (zh) | 2010-04-21 | 2013-01-09 | 上海交通大学 | 低密度校验码的信息处理方法 |
US9288089B2 (en) * | 2010-04-30 | 2016-03-15 | Ecole Polytechnique Federale De Lausanne (Epfl) | Orthogonal differential vector signaling |
US9479369B1 (en) | 2010-05-20 | 2016-10-25 | Kandou Labs, S.A. | Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage |
US9083576B1 (en) | 2010-05-20 | 2015-07-14 | Kandou Labs, S.A. | Methods and systems for error detection and correction using vector signal prediction |
US8593305B1 (en) | 2011-07-05 | 2013-11-26 | Kandou Labs, S.A. | Efficient processing and detection of balanced codes |
US9450744B2 (en) * | 2010-05-20 | 2016-09-20 | Kandou Lab, S.A. | Control loop management and vector signaling code communications links |
US9300503B1 (en) * | 2010-05-20 | 2016-03-29 | Kandou Labs, S.A. | Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication |
US9059816B1 (en) | 2010-05-20 | 2015-06-16 | Kandou Labs, S.A. | Control loop management and differential delay correction for vector signaling code communications links |
US8539318B2 (en) | 2010-06-04 | 2013-09-17 | École Polytechnique Fédérale De Lausanne (Epfl) | Power and pin efficient chip-to-chip communications with common-mode rejection and SSO resilience |
US8718184B1 (en) * | 2012-05-03 | 2014-05-06 | Kandou Labs S.A. | Finite state encoders and decoders for vector signaling codes |
US8989317B1 (en) | 2010-05-20 | 2015-03-24 | Kandou Labs, S.A. | Crossbar switch decoder for vector signaling codes |
US9071476B2 (en) * | 2010-05-20 | 2015-06-30 | Kandou Labs, S.A. | Methods and systems for high bandwidth chip-to-chip communications interface |
US9077386B1 (en) * | 2010-05-20 | 2015-07-07 | Kandou Labs, S.A. | Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication |
US9251873B1 (en) * | 2010-05-20 | 2016-02-02 | Kandou Labs, S.A. | Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications |
US8385387B2 (en) * | 2010-05-20 | 2013-02-26 | Harris Corporation | Time dependent equalization of frequency domain spread orthogonal frequency division multiplexing using decision feedback equalization |
US9564994B2 (en) * | 2010-05-20 | 2017-02-07 | Kandou Labs, S.A. | Fault tolerant chip-to-chip communication with advanced voltage |
US8755426B1 (en) * | 2012-03-15 | 2014-06-17 | Kandou Labs, S.A. | Rank-order equalization |
US9362962B2 (en) * | 2010-05-20 | 2016-06-07 | Kandou Labs, S.A. | Methods and systems for energy-efficient communications interface |
US9401828B2 (en) * | 2010-05-20 | 2016-07-26 | Kandou Labs, S.A. | Methods and systems for low-power and pin-efficient communications with superposition signaling codes |
US8649445B2 (en) * | 2011-02-17 | 2014-02-11 | École Polytechnique Fédérale De Lausanne (Epfl) | Methods and systems for noise resilient, pin-efficient and low power communications with sparse signaling codes |
US9288082B1 (en) * | 2010-05-20 | 2016-03-15 | Kandou Labs, S.A. | Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences |
US8880783B2 (en) * | 2011-07-05 | 2014-11-04 | Kandou Labs SA | Differential vector storage for non-volatile memory |
US9178503B2 (en) | 2010-05-28 | 2015-11-03 | Xilinx, Inc. | Differential comparator circuit having a wide common mode input range |
US8578246B2 (en) | 2010-05-31 | 2013-11-05 | International Business Machines Corporation | Data encoding in solid-state storage devices |
WO2011151469A1 (en) * | 2010-06-04 | 2011-12-08 | Ecole Polytechnique Federale De Lausanne | Error control coding for orthogonal differential vector signaling |
US8897134B2 (en) | 2010-06-25 | 2014-11-25 | Telefonaktiebolaget L M Ericsson (Publ) | Notifying a controller of a change to a packet forwarding configuration of a network element over a communication channel |
US9331962B2 (en) | 2010-06-27 | 2016-05-03 | Valens Semiconductor Ltd. | Methods and systems for time sensitive networks |
US8602643B2 (en) | 2010-07-06 | 2013-12-10 | David Phillip Gardiner | Method and apparatus for measurement of temperature and rate of change of temperature |
US8547272B2 (en) | 2010-08-18 | 2013-10-01 | Analog Devices, Inc. | Charge sharing analog computation circuitry and applications |
US8773964B2 (en) | 2010-09-09 | 2014-07-08 | The Regents Of The University Of California | CDMA-based crosstalk cancellation for on-chip global high-speed links |
US8429495B2 (en) | 2010-10-19 | 2013-04-23 | Mosaid Technologies Incorporated | Error detection and correction codes for channels and memories with incomplete error characteristics |
US20120106539A1 (en) * | 2010-10-27 | 2012-05-03 | International Business Machines Corporation | Coordinating Communications Interface Activities in Data Communicating Devices Using Redundant Lines |
JP5623883B2 (ja) | 2010-11-29 | 2014-11-12 | ルネサスエレクトロニクス株式会社 | 差動増幅器及びデータドライバ |
WO2012082854A2 (en) | 2010-12-17 | 2012-06-21 | Mattson Technology, Inc. | Inductively coupled plasma source for plasma processing |
US8750176B2 (en) | 2010-12-22 | 2014-06-10 | Apple Inc. | Methods and apparatus for the intelligent association of control symbols |
US8620166B2 (en) | 2011-01-07 | 2013-12-31 | Raytheon Bbn Technologies Corp. | Holevo capacity achieving joint detection receiver |
US8949693B2 (en) * | 2011-03-04 | 2015-02-03 | Hewlett-Packard Development Company, L.P. | Antipodal-mapping-based encoders and decoders |
US9432298B1 (en) | 2011-12-09 | 2016-08-30 | P4tents1, LLC | System, method, and computer program product for improving memory systems |
IL290229B2 (en) | 2011-06-16 | 2023-04-01 | Ge Video Compression Llc | Entropy coding of motion vector differences |
EP2557687B1 (en) | 2011-08-11 | 2018-06-13 | Telefonaktiebolaget LM Ericsson (publ) | Low-noise amplifier, receiver, method and computer program |
US8598930B2 (en) | 2011-08-23 | 2013-12-03 | Intel Corporation | Digital delay-locked loop with drift sensor |
TW201310897A (zh) | 2011-08-29 | 2013-03-01 | Novatek Microelectronics Corp | 具動態轉導補償之多輸入差動放大器 |
WO2013036319A1 (en) | 2011-09-07 | 2013-03-14 | Commscope, Inc. Of North Carolina | Communications connectors having frequency dependent communications paths and related methods |
CN103036537B (zh) | 2011-10-09 | 2016-02-17 | 瑞昱半导体股份有限公司 | 相位内插器、多相位内插装置及内插时钟的产生方法 |
EP2774267A1 (en) | 2011-11-02 | 2014-09-10 | Marvell World Trade Ltd. | Differential amplifier |
US9444656B2 (en) | 2011-11-04 | 2016-09-13 | Altera Corporation | Flexible receiver architecture |
US8854945B2 (en) * | 2011-11-09 | 2014-10-07 | Qualcomm Incorporated | Enhanced adaptive gain control in heterogeneous networks |
WO2013085811A1 (en) | 2011-12-06 | 2013-06-13 | Rambus Inc. | Receiver with enhanced isi mitigation |
JP5799786B2 (ja) * | 2011-12-09 | 2015-10-28 | 富士電機株式会社 | オートゼロアンプ及び該アンプを使用した帰還増幅回路 |
US8898504B2 (en) | 2011-12-14 | 2014-11-25 | International Business Machines Corporation | Parallel data communications mechanism having reduced power continuously calibrated lines |
US8994362B2 (en) | 2011-12-15 | 2015-03-31 | Marvell World Trade Ltd. | RF power detection circuit with insensitivity to process, temperature and load impedance variation |
US8909840B2 (en) * | 2011-12-19 | 2014-12-09 | Advanced Micro Devices, Inc. | Data bus inversion coding |
FR2985125A1 (fr) | 2011-12-21 | 2013-06-28 | France Telecom | Procede de transmission d'un signal numerique pour un systeme ms-marc semi-orthogonal, produit programme et dispositif relais correspondants |
US8520348B2 (en) | 2011-12-22 | 2013-08-27 | Lsi Corporation | High-swing differential driver using low-voltage transistors |
US8750406B2 (en) | 2012-01-31 | 2014-06-10 | Altera Corporation | Multi-level amplitude signaling receiver |
US8615062B2 (en) | 2012-02-07 | 2013-12-24 | Lsi Corporation | Adaptation using error signature analysis in a communication system |
US8744012B1 (en) | 2012-02-08 | 2014-06-03 | Altera Corporation | On-chip eye viewer architecture for highspeed transceivers |
US8964825B2 (en) | 2012-02-17 | 2015-02-24 | International Business Machines Corporation | Analog signal current integrators with tunable peaking function |
JP5597660B2 (ja) | 2012-03-05 | 2014-10-01 | 株式会社東芝 | Ad変換器 |
US8604879B2 (en) | 2012-03-30 | 2013-12-10 | Integrated Device Technology Inc. | Matched feedback amplifier with improved linearity |
US8614634B2 (en) | 2012-04-09 | 2013-12-24 | Nvidia Corporation | 8b/9b encoding for reducing crosstalk on a high speed parallel bus |
US8717215B2 (en) | 2012-05-18 | 2014-05-06 | Tensorcom, Inc. | Method and apparatus for improving the performance of a DAC switch array |
US9183085B1 (en) | 2012-05-22 | 2015-11-10 | Pmc-Sierra, Inc. | Systems and methods for adaptively selecting from among a plurality of error correction coding schemes in a flash drive for robustness and low latency |
US9188433B2 (en) * | 2012-05-24 | 2015-11-17 | Qualcomm Incorporated | Code in affine-invariant spatial mask |
JP5792690B2 (ja) | 2012-07-26 | 2015-10-14 | 株式会社東芝 | 差動出力回路および半導体集積回路 |
US8961239B2 (en) | 2012-09-07 | 2015-02-24 | Commscope, Inc. Of North Carolina | Communication jack having a plurality of contacts mounted on a flexible printed circuit board |
US9093791B2 (en) | 2012-11-05 | 2015-07-28 | Commscope, Inc. Of North Carolina | Communications connectors having crosstalk stages that are implemented using a plurality of discrete, time-delayed capacitive and/or inductive components that may provide enhanced insertion loss and/or return loss performance |
US8873606B2 (en) | 2012-11-07 | 2014-10-28 | Broadcom Corporation | Transceiver including a high latency communication channel and a low latency communication channel |
US8975948B2 (en) | 2012-11-15 | 2015-03-10 | Texas Instruments Incorporated | Wide common mode range transmission gate |
US9036764B1 (en) | 2012-12-07 | 2015-05-19 | Rambus Inc. | Clock recovery circuit |
US9048824B2 (en) | 2012-12-12 | 2015-06-02 | Intel Corporation | Programmable equalization with compensated impedance |
KR102003926B1 (ko) | 2012-12-26 | 2019-10-01 | 에스케이하이닉스 주식회사 | 디엠퍼시스 버퍼 회로 |
CN104995612B (zh) | 2013-01-17 | 2020-01-03 | 康杜实验室公司 | 低同步开关噪声芯片间通信方法和系统 |
CN105122758B (zh) * | 2013-02-11 | 2018-07-10 | 康杜实验室公司 | 高带宽芯片间通信接口方法和系统 |
US9069995B1 (en) * | 2013-02-21 | 2015-06-30 | Kandou Labs, S.A. | Multiply accumulate operations in the analog domain |
US9172412B2 (en) | 2013-03-11 | 2015-10-27 | Andrew Joo Kim | Reducing electromagnetic radiation emitted from high-speed interconnects |
US9355693B2 (en) | 2013-03-14 | 2016-05-31 | Intel Corporation | Memory receiver circuit for use with memory of different characteristics |
US9203351B2 (en) | 2013-03-15 | 2015-12-01 | Megachips Corporation | Offset cancellation with minimum noise impact and gain-bandwidth degradation |
JP6032081B2 (ja) | 2013-03-22 | 2016-11-24 | 富士通株式会社 | 受信回路、及び半導体集積回路 |
JP6079388B2 (ja) | 2013-04-03 | 2017-02-15 | 富士通株式会社 | 受信回路及びその制御方法 |
CN110166217B (zh) * | 2013-04-16 | 2022-05-17 | 康杜实验室公司 | 高带宽通信接口方法和系统 |
US9152495B2 (en) | 2013-07-03 | 2015-10-06 | SanDisk Technologies, Inc. | Managing non-volatile media using multiple error correcting codes |
CN103516650B (zh) * | 2013-09-10 | 2016-06-01 | 华中科技大学 | 一种mimo无线通信非相干酉空时调制的对跖解调方法及对跖解调器 |
US8976050B1 (en) | 2013-09-12 | 2015-03-10 | Fujitsu Semiconductor Limited | Circuitry and methods for use in mixed-signal circuitry |
JP6171843B2 (ja) | 2013-10-25 | 2017-08-02 | 富士通株式会社 | 受信回路 |
US9106465B2 (en) * | 2013-11-22 | 2015-08-11 | Kandou Labs, S.A. | Multiwire linear equalizer for vector signaling code receiver |
CN110266615B (zh) * | 2014-02-02 | 2022-04-29 | 康杜实验室公司 | 低isi比低功率芯片间通信方法和装置 |
WO2015131203A1 (en) * | 2014-02-28 | 2015-09-03 | Kandou Lab, S.A. | Clock-embedded vector signaling codes |
US9509437B2 (en) * | 2014-05-13 | 2016-11-29 | Kandou Labs, S.A. | Vector signaling code with improved noise margin |
US9710412B2 (en) | 2014-05-15 | 2017-07-18 | Qualcomm Incorporated | N-factorial voltage mode driver |
US9148087B1 (en) | 2014-05-16 | 2015-09-29 | Kandou Labs, S.A. | Symmetric is linear equalization circuit with increased gain |
US9112550B1 (en) | 2014-06-25 | 2015-08-18 | Kandou Labs, SA | Multilevel driver for high speed chip-to-chip communications |
GB2527604A (en) * | 2014-06-27 | 2015-12-30 | Ibm | Data encoding in solid-state storage devices |
EP3138253A4 (en) * | 2014-07-10 | 2018-01-10 | Kandou Labs S.A. | Vector signaling codes with increased signal to noise characteristics |
US9432082B2 (en) * | 2014-07-17 | 2016-08-30 | Kandou Labs, S.A. | Bus reversable orthogonal differential vector signaling codes |
KR101943048B1 (ko) * | 2014-07-21 | 2019-01-28 | 칸도우 랩스 에스에이 | 다분기 데이터 전송 |
KR101949964B1 (ko) * | 2014-08-01 | 2019-02-20 | 칸도우 랩스 에스에이 | 임베딩된 클록을 갖는 직교 차동 벡터 시그널링 코드 |
JP6361433B2 (ja) | 2014-10-02 | 2018-07-25 | 富士通株式会社 | 周波数検出回路及び受信回路 |
US9674014B2 (en) * | 2014-10-22 | 2017-06-06 | Kandou Labs, S.A. | Method and apparatus for high speed chip-to-chip communications |
US9374250B1 (en) | 2014-12-17 | 2016-06-21 | Intel Corporation | Wireline receiver circuitry having collaborative timing recovery |
US10341145B2 (en) | 2015-03-03 | 2019-07-02 | Intel Corporation | Low power high speed receiver with reduced decision feedback equalizer samplers |
US9832046B2 (en) * | 2015-06-26 | 2017-11-28 | Kandou Labs, S.A. | High speed communications system |
EP3446403B1 (en) | 2016-04-22 | 2021-01-06 | Kandou Labs S.A. | High performance phase locked loop |
US10153591B2 (en) | 2016-04-28 | 2018-12-11 | Kandou Labs, S.A. | Skew-resistant multi-wire channel |
US10333741B2 (en) * | 2016-04-28 | 2019-06-25 | Kandou Labs, S.A. | Vector signaling codes for densely-routed wire groups |
-
2015
- 2015-07-10 EP EP15818524.9A patent/EP3138253A4/en not_active Withdrawn
- 2015-07-10 WO PCT/US2015/039952 patent/WO2016007863A2/en active Application Filing
- 2015-07-10 KR KR1020177003431A patent/KR102288337B1/ko active IP Right Grant
- 2015-07-10 CN CN201580036886.8A patent/CN106797352B/zh active Active
- 2015-07-10 US US14/796,443 patent/US9900186B2/en active Active
-
2018
- 2018-02-15 US US15/898,209 patent/US10320588B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8711919B2 (en) * | 2012-03-29 | 2014-04-29 | Rajendra Kumar | Systems and methods for adaptive blind mode equalization |
Also Published As
Publication number | Publication date |
---|---|
WO2016007863A3 (en) | 2016-04-14 |
KR102288337B1 (ko) | 2021-08-11 |
US10320588B2 (en) | 2019-06-11 |
EP3138253A4 (en) | 2018-01-10 |
CN106797352A (zh) | 2017-05-31 |
KR20170031168A (ko) | 2017-03-20 |
US20180176045A1 (en) | 2018-06-21 |
US9900186B2 (en) | 2018-02-20 |
EP3138253A2 (en) | 2017-03-08 |
US20160013954A1 (en) | 2016-01-14 |
WO2016007863A2 (en) | 2016-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106797352B (zh) | 高信噪特性向量信令码 | |
CN105993151B (zh) | 低isi比低功率芯片间通信方法和装置 | |
US10333749B2 (en) | Vector signaling code with improved noise margin | |
US10020966B2 (en) | Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage | |
US10560293B2 (en) | Circuits for efficient detection of vector signaling codes for chip-to-chip communication | |
EP3449379B1 (en) | Vector signaling codes for densely-routed wire groups | |
US20230068176A1 (en) | High speed communications system | |
US9479369B1 (en) | Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage | |
US9083576B1 (en) | Methods and systems for error detection and correction using vector signal prediction | |
US6556628B1 (en) | Methods and systems for transmitting and receiving differential signals over a plurality of conductors | |
US20240106686A1 (en) | Pre-scaler for orthogonal differential vector signalling | |
US12057976B2 (en) | Vector signaling code with improved noise margin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |