CN106400103A - Manufacturing method for doped monocrystal silicon ingot for solar cell - Google Patents
Manufacturing method for doped monocrystal silicon ingot for solar cell Download PDFInfo
- Publication number
- CN106400103A CN106400103A CN201611115905.9A CN201611115905A CN106400103A CN 106400103 A CN106400103 A CN 106400103A CN 201611115905 A CN201611115905 A CN 201611115905A CN 106400103 A CN106400103 A CN 106400103A
- Authority
- CN
- China
- Prior art keywords
- intrinsic
- solar cells
- silicon ingot
- single crystal
- monocrystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 229910052710 silicon Inorganic materials 0.000 title description 5
- 239000010703 silicon Substances 0.000 title description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title description 4
- 239000013078 crystal Substances 0.000 claims abstract description 84
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 43
- 239000002210 silicon-based material Substances 0.000 claims abstract description 26
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 15
- 239000000956 alloy Substances 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 238000007711 solidification Methods 0.000 claims abstract description 9
- 230000008023 solidification Effects 0.000 claims abstract description 9
- 230000008018 melting Effects 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 7
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 5
- 238000002231 Czochralski process Methods 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 3
- 238000005554 pickling Methods 0.000 claims description 3
- 229920005591 polysilicon Polymers 0.000 claims description 3
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 235000012431 wafers Nutrition 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XGCTUKUCGUNZDN-UHFFFAOYSA-N [B].O=O Chemical compound [B].O=O XGCTUKUCGUNZDN-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/14—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Silicon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本申请公开了一种用于太阳能电池的掺杂类单晶硅锭的制作方法,包括:获取本征籽晶并进行除杂;将所述本征籽晶放置于坩埚底部;在所述本征籽晶的上方放入硅料,并在所述硅料中放入具有掺杂元素的母合金;利用定向凝固方式进行铸锭,获得类单晶硅锭。本申请提供的上述用于太阳能电池的掺杂类单晶硅锭的制作方法,能够提高太阳能电池的少子寿命,降低光致衰减的程度,减少位错,提升太阳能电池的转换效率。
The present application discloses a method for manufacturing a doped monocrystalline silicon ingot for solar cells, comprising: obtaining an intrinsic seed crystal and removing impurities; placing the intrinsic seed crystal on the bottom of a crucible; Silicon material is placed above the seed crystal, and a master alloy with doping elements is placed in the silicon material; an ingot is cast by directional solidification to obtain a quasi-single crystal silicon ingot. The method for making the above-mentioned doped monocrystalline silicon ingot for solar cells provided by the present application can improve the minority carrier lifetime of solar cells, reduce the degree of light-induced attenuation, reduce dislocations, and improve the conversion efficiency of solar cells.
Description
技术领域technical field
本发明属于光伏设备制造技术领域,特别是涉及一种用于太阳能电池的掺杂类单晶硅锭的制作方法。The invention belongs to the technical field of photovoltaic equipment manufacturing, and in particular relates to a method for manufacturing a doped monocrystalline silicon ingot used for solar cells.
背景技术Background technique
目前,太阳能电池用硅片无论是单晶还是多晶一般都选择单一的掺入硼元素,即掺硼单晶硅或多晶硅,这种硅片由于生产工艺简单而盛行一时,但是这种硅片在光照下或在载流子注入时,会出现明显的光致衰减,从而导致转化效率下降,而光致衰减的主要原因是掺杂硼元素产生的硼氧复合体能够降低少数载流子的寿命。另一方面,在当前的技术条件下,多晶电池的转换效率一般比单晶低1-2%,这是因为多晶硅锭中存在大量位错,而位错少的单晶硅锭成本较高,产量较低,通过铸锭而不是提拉的方式来生产位错低的单晶方棒,就能够减少位错的产生又提高产量。At present, no matter whether the silicon wafers for solar cells are monocrystalline or polycrystalline, a single boron element is generally selected, that is, boron-doped monocrystalline silicon or polycrystalline silicon. This kind of silicon wafer is popular for a while because of its simple production process, but this silicon wafer Under light or carrier injection, there will be obvious light-induced attenuation, which will lead to a decrease in conversion efficiency, and the main reason for light-induced attenuation is that the boron-oxygen complex produced by doping boron can reduce the number of minority carriers life. On the other hand, under the current technical conditions, the conversion efficiency of polycrystalline cells is generally 1-2% lower than that of single crystal, because there are a lot of dislocations in polycrystalline silicon ingots, and the cost of single crystal silicon ingots with fewer dislocations is higher , the output is low, and the production of single crystal square rods with low dislocations by casting ingots instead of pulling can reduce the generation of dislocations and increase the output.
发明内容Contents of the invention
为解决上述问题,本发明提供了一种用于太阳能电池的掺杂类单晶硅锭的制作方法,能够提高太阳能电池的少子寿命,降低光致衰减的程度,减少位错,提升太阳能电池的转换效率。In order to solve the above problems, the present invention provides a method for manufacturing a doped monocrystalline silicon ingot for solar cells, which can improve the minority carrier life of solar cells, reduce the degree of light-induced attenuation, reduce dislocations, and improve the performance of solar cells. conversion efficiency.
本发明提供的一种用于太阳能电池的掺杂类单晶硅锭的制作方法,包括:A method for manufacturing a doped monocrystalline silicon ingot for solar cells provided by the present invention, comprising:
获取本征籽晶并进行除杂;Obtain intrinsic seed crystals and perform impurity removal;
将所述本征籽晶放置于坩埚底部;placing the intrinsic seed crystal on the bottom of the crucible;
在所述本征籽晶的上方放入硅料,并在所述硅料中放入具有掺杂元素的母合金;Putting silicon material above the intrinsic seed crystal, and putting a master alloy with doping elements in the silicon material;
利用定向凝固方式进行铸锭,获得类单晶硅锭。Directional solidification is used to cast ingots to obtain quasi-monocrystalline silicon ingots.
优选的,在上述用于太阳能电池的掺杂类单晶硅锭的制作方法中,Preferably, in the above-mentioned method for making a doped monocrystalline silicon ingot for solar cells,
在所述获取本征籽晶之前,还包括:Before the acquisition of the intrinsic seed crystal, it also includes:
获取本征单晶;Obtain intrinsic single crystal;
沿所述本征单晶的棱线,剖为单晶方棒;Along the ridge line of the intrinsic single crystal, it is cut into a single crystal square rod;
将所述单晶方棒截断为单晶方块,作为本征籽晶。The single crystal square rod was truncated into single crystal cubes as intrinsic seeds.
优选的,在上述用于太阳能电池的掺杂类单晶硅锭的制作方法中,Preferably, in the above-mentioned method for making a doped monocrystalline silicon ingot for solar cells,
在所述获取本征单晶之前,还包括:Before obtaining the intrinsic single crystal, it also includes:
利用直拉工艺将原生多晶硅拉制成所述本征单晶。The native polysilicon is pulled into the intrinsic single crystal by Czochralski process.
优选的,在上述用于太阳能电池的掺杂类单晶硅锭的制作方法中,Preferably, in the above-mentioned method for making a doped monocrystalline silicon ingot for solar cells,
所述获取本征籽晶并进行除杂包括:The acquisition of intrinsic seed crystals and impurity removal includes:
获取本征籽晶,对其进行酸洗和超声波清洗。Obtain intrinsic seed crystals, pickling and ultrasonic cleaning.
优选的,在上述用于太阳能电池的掺杂类单晶硅锭的制作方法中,Preferably, in the above-mentioned method for making a doped monocrystalline silicon ingot for solar cells,
所述利用定向凝固方式进行铸锭,获得类单晶硅锭包括:The method of using directional solidification to cast ingots to obtain quasi-monocrystalline silicon ingots includes:
加热熔化所述硅料;heating and melting the silicon material;
通过温度控制,当硅料熔化至所述本征籽晶时停止熔化;Through temperature control, when the silicon material melts to the intrinsic seed crystal, the melting is stopped;
在所述本征籽晶上长晶,获得类单晶硅锭。Crystal growth is performed on the intrinsic seed crystal to obtain a quasi-single crystal silicon ingot.
优选的,在上述用于太阳能电池的掺杂类单晶硅锭的制作方法中,Preferably, in the above-mentioned method for making a doped monocrystalline silicon ingot for solar cells,
所述在所述硅料中放入具有掺杂元素的母合金为:The master alloy with doping elements placed in the silicon material is:
在所述硅料中放入掺杂有镓元素的母合金。A master alloy doped with gallium is placed in the silicon material.
通过上述描述可知,本发明提供的上述用于太阳能电池的掺杂类单晶硅锭的制作方法,由于包括获取本征籽晶并进行除杂;将所述本征籽晶放置于坩埚底部;在所述本征籽晶的上方放入硅料,并在所述硅料中放入具有掺杂元素的母合金;利用定向凝固方式进行铸锭,获得类单晶硅锭,因此能够提高太阳能电池的少子寿命,降低光致衰减的程度,减少位错,提升太阳能电池的转换效率。It can be seen from the above description that the method for manufacturing the above-mentioned doped monocrystalline silicon ingot for solar cells provided by the present invention includes obtaining the intrinsic seed crystal and removing impurities; placing the intrinsic seed crystal on the bottom of the crucible; Put silicon material above the intrinsic seed crystal, and put a master alloy with doping elements in the silicon material; use directional solidification to cast ingots to obtain similar single crystal silicon ingots, so it can improve solar energy The minority carrier life of the battery reduces the degree of light-induced attenuation, reduces dislocations, and improves the conversion efficiency of solar cells.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention, and those skilled in the art can also obtain other drawings according to the provided drawings without creative work.
图1为本申请实施例提供的第一种用于太阳能电池的掺杂类单晶硅锭的制作方法的示意图。FIG. 1 is a schematic diagram of the first method for manufacturing a doped monocrystalline silicon ingot for solar cells provided in an embodiment of the present application.
具体实施方式detailed description
本发明的核心思想在于提供一种用于太阳能电池的掺杂类单晶硅锭的制作方法,能够提高太阳能电池的少子寿命,降低光致衰减的程度,减少位错,提升太阳能电池的转换效率。The core idea of the present invention is to provide a method for manufacturing a doped monocrystalline silicon ingot for solar cells, which can improve the minority carrier lifetime of solar cells, reduce the degree of light-induced attenuation, reduce dislocations, and improve the conversion efficiency of solar cells .
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本申请实施例提供的第一种用于太阳能电池的掺杂类单晶硅锭的制作方法如图1所示,图1为本申请实施例提供的第一种用于太阳能电池的掺杂类单晶硅锭的制作方法的示意图,该方法包括如下步骤:The manufacturing method of the first doped monocrystalline silicon ingot for solar cells provided by the embodiment of the present application is shown in Figure 1, which is the first doped silicon ingot used for solar cells A schematic diagram of a method for manufacturing a monocrystalline silicon ingot, the method comprising the steps of:
S1:获取本征籽晶并进行除杂;S1: Obtain intrinsic seed crystals and remove impurities;
所述本征籽晶就是不含有任何杂质元素的籽晶,可以不加入母合金,使用直拉法拉制单晶,然后再切成本征籽晶,利用这种本征籽晶拉制出来的单晶棒杂质更少并且少子寿命更高。The intrinsic seed crystal is a seed crystal that does not contain any impurity elements. It is not necessary to add a master alloy, use the Czochralski method to pull a single crystal, and then cut the intrinsic seed crystal, and use this intrinsic seed crystal to pull out Single crystal rods have fewer impurities and higher minority carrier lifetimes.
S2:将所述本征籽晶放置于坩埚底部;S2: placing the intrinsic seed crystal on the bottom of the crucible;
具体的,在装料阶段,将本征籽晶平整放置于坩埚底部,保证各个位置的籽晶处于同一个高度,使自始至终的生长过程保持均匀的状态。Specifically, in the charging stage, the intrinsic seed crystals are placed flat on the bottom of the crucible to ensure that the seed crystals at each position are at the same height, so that the growth process remains uniform from beginning to end.
S3:在所述本征籽晶的上方放入硅料,并在所述硅料中放入具有掺杂元素的母合金;S3: Put silicon material above the intrinsic seed crystal, and put a master alloy with doping elements in the silicon material;
需要说明的是,该步骤可以采用现有的方式,依次放入各个尺寸的硅料,并且在上方位置放入母合金,这里的重点在于底部只有本征籽晶,不具有掺杂元素,以提高少子寿命,而只有上部才有掺杂元素,这种掺杂元素是为了调整最终产品的电阻率。It should be noted that this step can adopt the existing method, put silicon materials of various sizes in sequence, and put the master alloy in the upper position. Improve the minority carrier lifetime, and only the upper part has doping elements, which are used to adjust the resistivity of the final product.
S4:利用定向凝固方式进行铸锭,获得类单晶硅锭。S4: Casting an ingot by directional solidification to obtain a quasi-single crystal silicon ingot.
利用这种类单晶生长工艺,既减少了位错的产生又提高了产量。Using this kind of single crystal growth process not only reduces the generation of dislocations but also improves the yield.
通过上述描述可知,本申请实施例提供的上述第一种用于太阳能电池的掺杂类单晶硅锭的制作方法,由于包括获取本征籽晶并进行除杂;将所述本征籽晶放置于坩埚底部;在所述本征籽晶的上方放入硅料,并在所述硅料中放入具有掺杂元素的母合金;利用定向凝固方式进行铸锭,获得类单晶硅锭,因此能够提高太阳能电池的少子寿命,降低光致衰减的程度,减少位错,提升太阳能电池的转换效率。From the above description, it can be seen that the above-mentioned first method for manufacturing a doped monocrystalline silicon ingot for solar cells provided by the embodiment of the present application includes obtaining an intrinsic seed crystal and performing impurity removal; Place it on the bottom of the crucible; put silicon material above the intrinsic seed crystal, and put a master alloy with doping elements in the silicon material; use directional solidification to cast ingots to obtain quasi-single crystal silicon ingots , so the minority carrier lifetime of the solar cell can be improved, the degree of light-induced attenuation can be reduced, dislocations can be reduced, and the conversion efficiency of the solar cell can be improved.
本申请实施例提供的第二种用于太阳能电池的掺杂类单晶硅锭的制作方法,是在上述第一种用于太阳能电池的掺杂类单晶硅锭的制作方法的基础上,还包括如下技术特征:The second method for manufacturing a doped monocrystalline silicon ingot for solar cells provided in the embodiment of the present application is based on the above-mentioned first method for manufacturing a doped monocrystalline silicon ingot for solar cells. Also includes the following technical features:
在所述获取本征籽晶之前,还包括:Before the acquisition of the intrinsic seed crystal, it also includes:
获取本征单晶,具体的,可以选择制作的9寸单晶,籽晶需要是正方形的,并且需要适应的边长156mm,要做出这种边长的正方形就必须使用至少9寸的单晶圆棒,当然也可以加大,不过就会浪费硅料;To obtain an intrinsic single crystal, specifically, you can choose a 9-inch single crystal. The seed crystal needs to be square, and the side length needs to be adapted to 156mm. To make a square with this side length, you must use at least a 9-inch single crystal. Wafer rods can of course be enlarged, but silicon material will be wasted;
沿所述本征单晶的棱线,剖为单晶方棒;Along the ridge line of the intrinsic single crystal, it is cut into a single crystal square rod;
将所述单晶方棒截断为单晶方块,作为本征籽晶,具体的,是将所得方棒按一定尺寸磨面截断为若干长度一块的单晶方块。The single crystal square rod is cut into single crystal squares as intrinsic seed crystals, specifically, the obtained square rod is cut into single crystal squares of several lengths according to a certain size of grinding surface.
本申请实施例提供的第三种用于太阳能电池的掺杂类单晶硅锭的制作方法,是在上述第二种用于太阳能电池的掺杂类单晶硅锭的制作方法的基础上,还包括如下技术特征:The third method for manufacturing a doped monocrystalline silicon ingot for solar cells provided in the embodiment of the present application is based on the above-mentioned second method for manufacturing a doped monocrystalline silicon ingot for solar cells. Also includes the following technical features:
在所述获取本征单晶之前,还包括:Before obtaining the intrinsic single crystal, it also includes:
利用直拉工艺将原生多晶硅拉制成所述本征单晶,需要说明的是,利用直拉工艺能够获得性能较好的本征单晶,纯净度好,后续将其作为本征籽晶生长类单晶,少子寿命高。The native polysilicon is drawn into the intrinsic single crystal by using the Czochralski process. It should be noted that the intrinsic single crystal with better performance and good purity can be obtained by using the Czochralski process, and it will be grown as an intrinsic seed crystal later. Similar to single crystal, the minority carrier lifetime is high.
本申请实施例提供的第四种用于太阳能电池的掺杂类单晶硅锭的制作方法,是在上述第三种用于太阳能电池的掺杂类单晶硅锭的制作方法的基础上,还包括如下技术特征:The fourth method for manufacturing a doped monocrystalline silicon ingot for solar cells provided in the embodiment of the present application is based on the above third method for manufacturing a doped monocrystalline silicon ingot for solar cells. Also includes the following technical features:
所述获取本征籽晶并进行除杂包括:The acquisition of intrinsic seed crystals and impurity removal includes:
获取本征籽晶,对其进行酸洗和超声波清洗,这样就能进一步去除表面可能的沾污,进一步保证本征籽晶不会将污染带入生长的类单晶中,从而保证类单晶的生长质量。Obtain the intrinsic seed crystal, pickling and ultrasonic cleaning it, so that the possible contamination on the surface can be further removed, and further ensure that the intrinsic seed crystal will not bring pollution into the growing single crystal, thereby ensuring the single crystal growth quality.
本申请实施例提供的第五种用于太阳能电池的掺杂类单晶硅锭的制作方法,是在上述第四种用于太阳能电池的掺杂类单晶硅锭的制作方法的基础上,还包括如下技术特征:The fifth method for manufacturing a doped monocrystalline silicon ingot for solar cells provided in the embodiment of the present application is based on the above-mentioned fourth method for manufacturing a doped monocrystalline silicon ingot for solar cells. Also includes the following technical features:
所述利用定向凝固方式进行铸锭,获得类单晶硅锭包括:The method of using directional solidification to cast ingots to obtain quasi-monocrystalline silicon ingots includes:
加热熔化所述硅料;heating and melting the silicon material;
通过温度控制,当硅料熔化至所述本征籽晶时停止熔化;Through temperature control, when the silicon material melts to the intrinsic seed crystal, the melting is stopped;
在所述本征籽晶上长晶,获得类单晶硅锭,具体的,停止熔化后进入长晶阶段,使其在单晶籽晶层上长晶,从而获得类单晶硅锭。Crystal growth is performed on the intrinsic seed crystal to obtain a quasi-single-crystal silicon ingot. Specifically, after stopping melting, enter a crystal-growth stage to grow crystals on the single-crystal seed crystal layer, thereby obtaining a quasi-single-crystal silicon ingot.
通过上述类单晶生长工艺,能够减少位错,提高产能,降低成本。Through the above-mentioned quasi-single crystal growth process, dislocations can be reduced, productivity can be increased, and costs can be reduced.
本申请实施例提供的第六种用于太阳能电池的掺杂类单晶硅锭的制作方法,是在上述第一种至第五种用于太阳能电池的掺杂类单晶硅锭的制作方法中任一种的基础上,还包括如下技术特征:The sixth method for manufacturing a doped monocrystalline silicon ingot for solar cells provided in the embodiment of the present application is the first to the fifth method for manufacturing a doped monocrystalline silicon ingot for solar cells. On the basis of any one of them, the following technical features are also included:
所述在所述硅料中放入具有掺杂元素的母合金为:The master alloy with doping elements placed in the silicon material is:
在所述硅料中放入掺杂有镓元素的母合金,需要说明的是,通过掺镓来降低光致衰减。A master alloy doped with gallium is placed in the silicon material, and it should be noted that light-induced attenuation is reduced by doping gallium.
综上所述,上述方法利用镓掺杂和类单晶工艺相结合,且利用的是不使用母合金的单晶方块籽晶,就能够生产一种低位错和低光衰的类单晶硅片。In summary, the above method uses the combination of gallium doping and single-crystal-like process, and uses a single-crystal square seed crystal without using a master alloy to produce a low-dislocation and low-light-attenuation-like single-crystal silicon piece.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611115905.9A CN106400103A (en) | 2016-12-07 | 2016-12-07 | Manufacturing method for doped monocrystal silicon ingot for solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611115905.9A CN106400103A (en) | 2016-12-07 | 2016-12-07 | Manufacturing method for doped monocrystal silicon ingot for solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106400103A true CN106400103A (en) | 2017-02-15 |
Family
ID=58084206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611115905.9A Pending CN106400103A (en) | 2016-12-07 | 2016-12-07 | Manufacturing method for doped monocrystal silicon ingot for solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106400103A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112813495A (en) * | 2019-11-18 | 2021-05-18 | 苏州阿特斯阳光电力科技有限公司 | Method for recycling seed crystals for monocrystalline silicon-like ingot casting |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101591807A (en) * | 2009-06-24 | 2009-12-02 | 浙江大学 | Nitrogen-doped directionally solidified cast single crystal silicon and its preparation method |
CN103088406A (en) * | 2011-11-01 | 2013-05-08 | 阿特斯(中国)投资有限公司 | Seed crystal preparation method and monocrystalline-silicon-like ingot casting method |
CN104152993A (en) * | 2014-08-06 | 2014-11-19 | 江西赛维Ldk太阳能高科技有限公司 | Method capable of eliminating measurement of melting height of seed crystals for polycrystalline silicon ingot casting and polycrystalline silicon ingot casting furnace |
CN105568364A (en) * | 2015-12-30 | 2016-05-11 | 佛山市业丰赛尔陶瓷科技有限公司 | Method for improving yield and/or conversion efficiency of cast monocrystalline silicon ingot |
CN106087042A (en) * | 2016-06-22 | 2016-11-09 | 晶科能源有限公司 | A kind of manufacture method of polycrystalline cast ingot seed crystal |
-
2016
- 2016-12-07 CN CN201611115905.9A patent/CN106400103A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101591807A (en) * | 2009-06-24 | 2009-12-02 | 浙江大学 | Nitrogen-doped directionally solidified cast single crystal silicon and its preparation method |
CN103088406A (en) * | 2011-11-01 | 2013-05-08 | 阿特斯(中国)投资有限公司 | Seed crystal preparation method and monocrystalline-silicon-like ingot casting method |
CN104152993A (en) * | 2014-08-06 | 2014-11-19 | 江西赛维Ldk太阳能高科技有限公司 | Method capable of eliminating measurement of melting height of seed crystals for polycrystalline silicon ingot casting and polycrystalline silicon ingot casting furnace |
CN105568364A (en) * | 2015-12-30 | 2016-05-11 | 佛山市业丰赛尔陶瓷科技有限公司 | Method for improving yield and/or conversion efficiency of cast monocrystalline silicon ingot |
CN106087042A (en) * | 2016-06-22 | 2016-11-09 | 晶科能源有限公司 | A kind of manufacture method of polycrystalline cast ingot seed crystal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112813495A (en) * | 2019-11-18 | 2021-05-18 | 苏州阿特斯阳光电力科技有限公司 | Method for recycling seed crystals for monocrystalline silicon-like ingot casting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104124292B (en) | Boron-gallium co-doped single crystal silicon wafer and its preparation method and solar cell | |
CN103094379B (en) | Solar cell | |
CN101654805B (en) | Preparation method of casting polysilicon with large crystal grains in single crystal direction | |
KR101815620B1 (en) | Poly-crystalline silicon ingot, silicon wafer therefrom and method of fabricating poly-crystalline silicon ingot | |
CN101591808A (en) | Directional solidification cast single crystal silicon doped with germanium and its preparation method | |
CN111910248B (en) | Ingot casting single crystal seed crystal, cast single crystal silicon ingot and preparation method thereof, cast single crystal silicon slice and preparation method thereof | |
Kivambe et al. | Emerging technologies in crystal growth of photovoltaic silicon: progress and challenges | |
CN109097827A (en) | A kind of twin crystal is to polycrystalline silicon ingot casting and preparation method thereof | |
CN108842179A (en) | A method of setting 3 twin boundary of Σ prepares twin crystal to polycrystalline silicon ingot casting | |
CN104451872A (en) | Production method of solar-grade czochralski silicon | |
CN102776556B (en) | Polycrystalline silicon ingot and preparation method thereof as well as polycrystalline silicon wafer | |
CN105002557A (en) | Gallium, germanium and boron co-doped polycrystalline silicon and preparation method thereof | |
CN203474952U (en) | Quartz crucible for ingot casting | |
CN108950682A (en) | Polycrystalline cast ingot method | |
CN106400103A (en) | Manufacturing method for doped monocrystal silicon ingot for solar cell | |
CN203159742U (en) | Efficient crucible for casting polycrystal ingot | |
CN202187086U (en) | Gradient heater for monocrystal furnace | |
TW201623703A (en) | Method of fabrication of an ingot of n-type single-crystal silicon with a controlled concentration of oxygen-based thermal donors | |
JP4674327B2 (en) | Si polycrystalline ingot, method for producing Si polycrystalline ingot, and Si polycrystalline wafer | |
JP2007137756A (en) | Solar cell silicon single crystal substrate, solar cell element, and method for producing the same | |
CN103160918B (en) | Quasi-monocrystalline silicon prepare stove and preparation method | |
JP5077966B2 (en) | Method for producing silicon ingot | |
US10087080B2 (en) | Methods of fabricating a poly-crystalline silcon ingot from a nucleation promotion layer comprised of chips and chunks of silicon-containing particles | |
CN112813495A (en) | Method for recycling seed crystals for monocrystalline silicon-like ingot casting | |
CN107475770A (en) | One species single crystal seed and class method for monocrystal growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170215 |
|
RJ01 | Rejection of invention patent application after publication |