[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN106323259B - Discrete upper and lower two-electrode distributed micro-gyroscope and preparation method thereof - Google Patents

Discrete upper and lower two-electrode distributed micro-gyroscope and preparation method thereof Download PDF

Info

Publication number
CN106323259B
CN106323259B CN201610635051.0A CN201610635051A CN106323259B CN 106323259 B CN106323259 B CN 106323259B CN 201610635051 A CN201610635051 A CN 201610635051A CN 106323259 B CN106323259 B CN 106323259B
Authority
CN
China
Prior art keywords
micro
electrode
gyroscope
uniformly distributed
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610635051.0A
Other languages
Chinese (zh)
Other versions
CN106323259A (en
Inventor
张卫平
欧彬
刘朝阳
唐健
孙殿竣
邢亚亮
魏志方
崔峰
成宇翔
赵万良
刘瑞鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aerospace Control Technology Institute
Shanghai Jiao Tong University
Original Assignee
Shanghai Aerospace Control Technology Institute
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aerospace Control Technology Institute, Shanghai Jiao Tong University filed Critical Shanghai Aerospace Control Technology Institute
Priority to CN201610635051.0A priority Critical patent/CN106323259B/en
Publication of CN106323259A publication Critical patent/CN106323259A/en
Application granted granted Critical
Publication of CN106323259B publication Critical patent/CN106323259B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5677Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
    • G01C19/5684Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5691Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially three-dimensional vibrators, e.g. wine glass-type vibrators

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

The invention provides a double-electrode distributed micro gyroscope with discrete upper and lower parts and a preparation method thereof, wherein the preparation method comprises the following steps: the device comprises a monocrystalline silicon substrate, a center fixing support column, a miniature harmonic oscillator, an upper electrode, a lower electrode and a glass substrate. The number of the upper electrodes is multiple, and the multiple upper electrodes are uniformly distributed on the upper side of the miniature harmonic oscillator to form uniformly distributed upper electrodes; the number of the lower electrodes is multiple, and the multiple lower electrodes are uniformly distributed on the lower side of the miniature harmonic oscillator to form uniformly distributed lower electrodes; the invention combines MEMS bulk silicon processing technology and surface silicon processing technology to manufacture; the invention can provide different driving and detecting modes and different working modes, and can work in a system needing complex control; the invention can respectively drive and detect by utilizing the lower electrode and the upper electrode, thereby reducing the parasitic capacitance between the drive electrode and the detection electrode and improving the detection precision.

Description

上下分立的双电极分布式微陀螺仪及其制备方法Discrete upper and lower two-electrode distributed micro-gyroscope and preparation method thereof

技术领域technical field

本发明涉及微机电技术领域的微型陀螺仪,具体地,涉及一种上下分立的双电极分布式微陀螺仪及其制备方法。The invention relates to a micro-gyroscope in the field of micro-electromechanical technology, in particular, to a two-electrode distributed micro-gyroscope with upper and lower separation and a preparation method thereof.

背景技术Background technique

陀螺仪是一种能够检测载体角度或角速度的惯性器件,在姿态控制和导航定位等领域有着非常重要的作用。随着国防科技和航空、航天工业的发展,惯性导航系统对于陀螺仪的要求也向低成本、小体积、高精度、多轴检测、高可靠性、能适应各种恶劣环境的方向发展。因此,MEMS微陀螺的重要性不言而喻。特别地,微型圆盘谐振陀螺仪作为MEMS微陀螺的一个重要研究方向,已经成为该领域的一个研究热点。The gyroscope is an inertial device that can detect the angle or angular velocity of the carrier, and plays a very important role in the fields of attitude control and navigation and positioning. With the development of national defense technology and aviation and aerospace industries, the requirements of inertial navigation systems for gyroscopes are also developing in the direction of low cost, small size, high precision, multi-axis detection, high reliability, and adaptability to various harsh environments. Therefore, the importance of MEMS micro gyroscope is self-evident. In particular, the micro-disc resonant gyroscope, as an important research direction of MEMS micro-gyroscope, has become a research hotspot in this field.

对于微型陀螺仪而言,采用全角度控制技术,具有稳定性高、抗冲击能力强、精度高、误差小等优越特性,在航空航天、惯性导航以及民用消费电子等领域具有广泛的应用前景。目前设计的陀螺仪的电极数量较少,限制了其在复杂控制系统中的应用;并且一般的陀螺仪只有一个面上的一套电极,驱动、检测及控制电极之间存在一定的寄生电容及信号干扰,限制了其检测精度。For miniature gyroscopes, the use of full-angle control technology has the advantages of high stability, strong shock resistance, high precision, and small errors. It has a wide range of application prospects in aerospace, inertial navigation, and civil consumer electronics. The number of electrodes of the currently designed gyroscope is small, which limits its application in complex control systems; and the general gyroscope has only one set of electrodes on one surface, and there is a certain parasitic capacitance between the driving, detection and control electrodes. Signal interference, which limits its detection accuracy.

基于此,迫切需要提出一种新的陀螺仪结构,使其避免或减小上述影响因素,同时扩展其应用范围。Based on this, there is an urgent need to propose a new gyroscope structure, which can avoid or reduce the above-mentioned influencing factors, and at the same time expand its application range.

经检索,公开号为CN104165623A、申请号为201410389616.2的中国发明专利申请,该发明提供了一种内外双电极式微型半球谐振陀螺仪及其制备方法,包括:单晶硅基底、中心固定支撑柱、微型半球谐振子、外电极、外电极金属焊接板、玻璃基底、金属引线、圆形焊线盘、外电极金属连接柱内电极和种子层。该发明可利用内电极和外电极分别进行驱动和检测,减小驱动电极和检测电极之间的寄生电容,提高检测精度;为内电极和外电极提供了金属引线及圆形焊线盘,便于信号施加和信号提取。After searching, the Chinese invention patent application with the publication number of CN104165623A and the application number of 201410389616.2, the invention provides an inner and outer double-electrode miniature hemispherical resonant gyroscope and a preparation method thereof, including: a single crystal silicon substrate, a central fixed support column, Micro hemispherical resonator, external electrode, external electrode metal bonding plate, glass substrate, metal lead wire, circular bonding wire pad, external electrode metal connecting column, inner electrode and seed layer. The invention can use the inner electrode and the outer electrode to drive and detect respectively, reduce the parasitic capacitance between the driving electrode and the detection electrode, and improve the detection accuracy; metal leads and circular bonding pads are provided for the inner electrode and the outer electrode, which is convenient for Signal application and signal extraction.

但是上述专利仅提供了内部分立电极和外部分立电极的微型半球陀螺仪的结构方案,无法为多种微型陀螺仪提供不同的电极分布方案。However, the above-mentioned patent only provides a structural scheme of a micro-hemispherical gyroscope with an inner divided electrode and an outer divided electrode, and cannot provide different electrode distribution schemes for a variety of miniature gyroscopes.

发明内容SUMMARY OF THE INVENTION

针对现有技术中的缺陷,本发明的目的是提供一种上下分立的双电极分布式微陀螺仪及其制备方法,所述微陀螺仪结合MEMS体硅加工工艺和表面硅加工工艺进行制作,是一种新颖的加工工艺;可提供不同的驱动、检测方式及不同的工作模式,可工作在需要复杂控制的系统中。In view of the defects in the prior art, the purpose of the present invention is to provide a dual-electrode distributed micro-gyroscope with upper and lower separation and a preparation method thereof. A novel processing technology; it can provide different drive, detection methods and different working modes, and can work in systems that require complex control.

根据本发明的一个方面,提供一种上下分立的双电极分布式微陀螺仪,包括:单晶硅基底、中心固定支撑柱、微型谐振子、上电极、下电极、玻璃基底;其中:According to one aspect of the present invention, a dual-electrode distributed micro-gyroscope with upper and lower separation is provided, comprising: a single crystal silicon substrate, a central fixed support column, a micro-resonator, an upper electrode, a lower electrode, and a glass substrate; wherein:

所述上电极为多个,多个上电极分布均匀在微型谐振子的上侧,构成均匀分布式上电极,同时所述上电极设置于所述单晶硅基底的表面或者玻璃基底的表面;There are a plurality of the upper electrodes, and the plurality of upper electrodes are evenly distributed on the upper side of the micro-resonator to form a uniformly distributed upper electrode, and at the same time, the upper electrodes are arranged on the surface of the single crystal silicon substrate or the surface of the glass substrate;

所述下电极为多个,多个下电极均匀分布在微型谐振子的下侧,构成均匀分布式下电极,同时所述下电极设置于所述单晶硅基底的表面或者玻璃基底的表面;There are a plurality of the lower electrodes, and the plurality of lower electrodes are evenly distributed on the lower side of the micro-resonator to form a uniformly distributed lower electrode, and at the same time, the lower electrodes are arranged on the surface of the single crystal silicon substrate or the surface of the glass substrate;

所述中心固定支撑柱的一端与所述单晶硅基底连接,所述中心固定支撑柱的另一端与所述微型谐振子连接;所述单晶硅基底与所述玻璃基底键合;One end of the central fixed support column is connected to the single crystal silicon substrate, and the other end of the central fixed support column is connected to the micro resonator; the single crystal silicon substrate is bonded to the glass substrate;

所述微型谐振子作为所述微陀螺仪的振动体,所述上电极和下电极用于微陀螺仪的驱动、检测及控制。The micro-resonator is used as the vibrating body of the micro-gyroscope, and the upper electrode and the lower electrode are used for the driving, detection and control of the micro-gyroscope.

本发明所述微陀螺仪工作在角速率模式下时,施加交流驱动信号,在所述微型谐振子上施加直流偏置信号,均匀分布式上电极通过静电力使所述微型谐振子工作在所需的驱动模态下,驱动模态的振动幅值和频率保持不变;当垂直于单晶硅基底方向存在外加角速度时,检测模态的振动幅值会发生变化,该振动幅值的大小与外加角速度的大小成正比,同时引起所述均匀分布式上电极与所述微型谐振子之间的电容发生变化;通过采集所述均匀分布式上电极上的信号变化计算检测模态振动幅值的大小,进而计算外加角速度的大小。When the micro-gyroscope of the present invention works in the angular rate mode, an AC drive signal is applied, a DC bias signal is applied to the micro-resonator, and the uniformly distributed upper electrodes make the micro-resonator work at all locations through electrostatic force. In the required driving mode, the vibration amplitude and frequency of the driving mode remain unchanged; when there is an applied angular velocity perpendicular to the direction of the monocrystalline silicon substrate, the vibration amplitude of the detection mode will change, and the magnitude of the vibration amplitude will change. It is proportional to the magnitude of the applied angular velocity, and at the same time causes the capacitance between the uniformly distributed upper electrode and the micro-resonator to change; the modal vibration amplitude is calculated and detected by collecting the signal changes on the uniformly distributed upper electrode , and then calculate the magnitude of the applied angular velocity.

进一步的,本发明述微陀螺仪采集所述均匀分布式下电极上的信号变化计算检测模态振动幅值的大小,进而计算外加角速度的大小,从而减小所述均匀分布式上电极之间的寄生电容,提高检测精度。Further, the micro-gyroscope of the present invention collects the signal changes on the uniformly distributed lower electrodes to calculate and detect the magnitude of the modal vibration amplitude, and then calculates the magnitude of the applied angular velocity, thereby reducing the distance between the uniformly distributed upper electrodes. The parasitic capacitance improves the detection accuracy.

进一步的,本发明所述微陀螺仪在所述均匀分布式下电极上施加交流驱动信号,并在所述均匀分布式上电极或所述均匀分布式下电极上采集检测信号,提供不同的驱动、检测及控制方式。Further, the micro-gyroscope of the present invention applies an AC drive signal on the uniformly distributed lower electrode, and collects detection signals on the uniformly distributed upper electrode or the uniformly distributed lower electrode to provide different driving signals. , detection and control methods.

进一步的,本发明所述微陀螺仪通过所述均匀分布式下电极上的信号变化判断所述微陀螺仪的工作状态,在非正常工作状态下,通过控制算法在所述均匀分布式下电极上施加控制信号,可调节所述微陀螺仪的工作状态,从而使所述微陀螺仪正常工作。Further, the micro-gyroscope of the present invention judges the working state of the micro-gyroscope through the signal change on the uniformly distributed lower electrode, and in an abnormal working state, the uniformly distributed lower electrode is controlled by a control algorithm. By applying a control signal on the micro-gyroscope, the working state of the micro-gyroscope can be adjusted, so that the micro-gyroscope can work normally.

进一步的,本发明所述微陀螺仪能工作在力平衡模式和全角度模式下,力平衡模式直接检测外加角速度的大小,全角度模式直接检测外加旋转角度的大小。Further, the micro gyroscope of the present invention can work in a force balance mode and an all-angle mode, the force balance mode directly detects the magnitude of the applied angular velocity, and the all-angle mode directly detects the magnitude of the applied rotation angle.

优选地,所述上电极和所述下电极的材料为硼离子或磷离子掺杂硅或者为金属镍;当上电极或者下电极位于单晶硅基底上时,材料为硼离子或磷离子掺杂硅;当上电极或者下电极位于玻璃基底上时,材料为金属镍。Preferably, the material of the upper electrode and the lower electrode is boron ion or phosphorus ion doped silicon or metal nickel; when the upper electrode or the lower electrode is located on a single crystal silicon substrate, the material is boron ion or phosphorus ion doped Miscellaneous silicon; when the upper electrode or the lower electrode is on a glass substrate, the material is metallic nickel.

优选地,所述微陀螺仪为环形谐振陀螺仪、圆盘谐振陀螺仪、多环谐振陀螺仪、杯形谐振陀螺仪。Preferably, the micro-gyroscope is a ring resonant gyroscope, a disk resonant gyroscope, a multi-ring resonant gyroscope, or a cup-shaped resonant gyroscope.

更优选地,所述微型谐振子的材料为掺杂金刚石或掺杂多晶硅,是微陀螺仪的主要振动体。More preferably, the material of the micro resonator is doped diamond or doped polysilicon, which is the main vibrating body of the micro gyroscope.

优选地,所述单晶硅基底和玻璃基底的材料分别为高阻硅或者二氧化硅的高阻材料,高阻硅材料用于减小上电极与下电极之间的信号干扰。Preferably, the materials of the single crystal silicon substrate and the glass substrate are high-resistance silicon or silicon dioxide high-resistance materials, respectively, and the high-resistance silicon material is used to reduce signal interference between the upper electrode and the lower electrode.

优选地,所述中心固定支撑柱的材料为二氧化硅或者高阻硅。Preferably, the material of the central fixed support column is silicon dioxide or high-resistance silicon.

本发明中,所述上电极和下电极分布可用于复杂的控制系统中,实现全角度控制。In the present invention, the distribution of the upper electrode and the lower electrode can be used in a complex control system to realize full-angle control.

本发明强调均匀分布式上电极和均匀分布式下电极的多种微型陀螺仪结构,能适用于特殊的电路驱动和检测方案(如实施例所述),微型谐振子不仅仅局限于微型半球谐振陀螺仪,也能为多种微型陀螺仪提供了不同的电极分布方案。The present invention emphasizes a variety of micro-gyroscope structures with uniformly distributed upper electrodes and uniformly distributed lower electrodes, which can be applied to special circuit driving and detection schemes (as described in the embodiment), and the micro-resonator is not limited to micro-hemispherical resonance. The gyroscope can also provide different electrode distribution schemes for a variety of micro gyroscopes.

本发明所述的上下分立的双电极分布,结构上它的电极是上下分布的,而不是相邻分布或者内外分布,并且为上下双分立电极,与只有一个面为分立电极相比,可以实现更为复杂的电路控制。The upper and lower discrete double electrode distribution according to the present invention, its electrodes are distributed up and down in structure, rather than adjacent distribution or inner and outer distribution, and it is upper and lower double discrete electrodes. Compared with only one surface as discrete electrodes, it can realize More complex circuit control.

根据本发明的另一个方面,提供一种上下分立的双电极分布式微陀螺仪的制备方法,包括如下步骤:According to another aspect of the present invention, there is provided a preparation method of a two-electrode distributed micro-gyroscope with upper and lower separation, comprising the following steps:

第一步、对单晶硅基底和玻璃基底进行清洗、涂胶、光刻、显影、硼离子注入、溅射、去胶工艺,在单晶硅基底上得到硼离子或磷离子掺杂硅材料的上电极或下电极;The first step is to perform cleaning, coating, photolithography, development, boron ion implantation, sputtering, and debonding processes on the single crystal silicon substrate and the glass substrate to obtain boron ion or phosphorus ion doped silicon material on the single crystal silicon substrate the upper electrode or lower electrode;

第二步、在单晶硅基底上进行涂胶、光刻、显影、硅的各向同性刻蚀、去胶,以在单晶硅基底上得到微型谐振子形状对应的凹槽;The second step is to apply glue, photolithography, development, silicon isotropic etching, and debonding on the monocrystalline silicon substrate to obtain grooves corresponding to the shape of the micro-resonator on the monocrystalline silicon substrate;

第三步、在单晶硅基底上沉积二氧化硅,为制作微型谐振子及上电极或下电极间隙提供牺牲层;The third step is to deposit silicon dioxide on the single crystal silicon substrate to provide a sacrificial layer for making micro-resonators and the gap between the upper or lower electrodes;

第四步、在单晶硅基底上沉积掺杂金刚石或掺杂多晶硅,并进行化学机械抛光,以制作微型谐振子;The fourth step, depositing doped diamond or doped polysilicon on the single crystal silicon substrate, and carrying out chemical mechanical polishing to make micro-resonators;

第五步、在第四步的基础上利用BOE溶液刻蚀二氧化硅牺牲层并控制刻蚀时间,以释放微型谐振子,并将残余部分作为中心固定支撑柱;The fifth step is to use the BOE solution to etch the silicon dioxide sacrificial layer on the basis of the fourth step and control the etching time to release the micro-resonator, and use the residual part as the center to fix the support column;

第六步、在玻璃基底上进行涂胶、光刻、显影、电镀镍、去胶,以制作金属镍材料的上电极或下电极;The sixth step is to apply glue, photolithography, development, nickel electroplating, and glue removal on the glass substrate to make the upper electrode or the lower electrode of the metal nickel material;

第七步、倒置玻璃基底,并与单晶硅基底进行键合,使玻璃基底的中心部分与单晶硅基底的中心固定支撑柱的中心对准,实现两个基底固定,从而得到上下分立的双电极分布式微陀螺仪。The seventh step is to invert the glass substrate and bond it with the single crystal silicon substrate, so that the center part of the glass substrate is aligned with the center of the center fixed support column of the single crystal silicon substrate, so that the two substrates are fixed, so as to obtain the upper and lower discrete Two-electrode distributed microgyroscope.

与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:

(1)所述微陀螺仪是结合MEMS体硅加工工艺和表面硅加工工艺进行制作的,是一种新颖的加工工艺;(1) The micro-gyroscope is made by combining MEMS bulk silicon processing technology and surface silicon processing technology, and is a novel processing technology;

(2)所述微陀螺仪可提供不同的驱动、检测方式及不同的工作模式,在不减小电极面积的情况下,增加了电极数量,可使所述微陀螺仪工作在需要复杂控制的系统中;(2) The micro gyroscope can provide different driving, detection methods and different working modes. The number of electrodes is increased without reducing the electrode area, so that the micro gyroscope can work in complex control conditions. in the system;

(3)所述微陀螺仪可利用下电极和上电极分别进行驱动和检测,减小驱动电极和检测电极之间的寄生电容,提高检测精度;可用于复杂的控制系统中,实现全角度控制。(3) The micro gyroscope can be driven and detected by the lower electrode and the upper electrode respectively, so as to reduce the parasitic capacitance between the driving electrode and the detection electrode and improve the detection accuracy; it can be used in a complex control system to realize full-angle control .

附图说明Description of drawings

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:

图1(a)-图1(c)为本发明一实施例的上下分立的双电极分布式微型圆盘谐振陀螺仪的结构示意图;1(a)-FIG. 1(c) are schematic structural diagrams of a two-electrode distributed micro-disc resonant gyroscope with upper and lower separation according to an embodiment of the present invention;

图2(a)-图2(c)为本发明一实施例的上下分立的双电极分布式微型环形谐振陀螺仪的结构示意图;2( a )- FIG. 2( c ) are schematic structural diagrams of a two-electrode distributed miniature ring resonant gyroscope that are separated up and down according to an embodiment of the present invention;

图3(a)-图3(c)为本发明一实施例的上下分立的双电极分布式微型多环谐振陀螺仪的结构示意图;3(a)-FIG. 3(c) are schematic structural diagrams of a two-electrode distributed miniature multi-ring resonant gyroscope that are separated up and down according to an embodiment of the present invention;

图4(a)-图4(c)为本发明一实施例的上下分立的双电极分布式微型杯形谐振陀螺仪的结构示意图;4(a)-FIG. 4(c) are schematic structural diagrams of a two-electrode distributed miniature cup-shaped resonant gyroscope that is separated up and down according to an embodiment of the present invention;

图5(a)-图5(g)为本发明一实施例的上下分立的双电极分布式微型圆盘谐振陀螺仪的制备方法流程图;5(a)-FIG. 5(g) are flowcharts of a method for preparing a two-electrode distributed micro-disc resonant gyroscope that is separated up and down according to an embodiment of the present invention;

图中:1为微型谐振子,2为均匀分布式上电极,3为均匀分布式下电极,4为单晶硅基底,5为玻璃基底,6为中心固定支撑柱。In the figure: 1 is a micro resonator, 2 is a uniformly distributed upper electrode, 3 is a uniformly distributed lower electrode, 4 is a monocrystalline silicon substrate, 5 is a glass substrate, and 6 is a central fixed support column.

具体实施方式Detailed ways

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below with reference to specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that, for those skilled in the art, several modifications and improvements can be made without departing from the concept of the present invention. These all belong to the protection scope of the present invention.

实施例1Example 1

如图1(a)-图1(c)所示,本实施例提供一种上下分立的双电极分布式微型圆盘谐振陀螺仪,包括:As shown in FIG. 1(a)-FIG. 1(c), the present embodiment provides a two-electrode distributed micro-disc resonant gyroscope with upper and lower separation, including:

一个圆盘形的微型谐振子1;A disc-shaped micro-resonator 1;

十六个均匀分布式上电极2;Sixteen evenly distributed upper electrodes 2;

十六个均匀分布式下电极3;Sixteen evenly distributed lower electrodes 3;

一个单晶硅基底4;a single crystal silicon substrate 4;

一个玻璃基底5;a glass substrate 5;

一个中心固定支撑柱6;其中:A central fixed support column 6; of which:

所述中心固定支撑柱6的一端与所述单晶硅基底4连接,所述中心固定支撑柱6的另一端与所述微型谐振子1连接(如图1(a)所示);One end of the central fixed support column 6 is connected to the single crystal silicon substrate 4, and the other end of the central fixed support column 6 is connected to the micro-resonator 1 (as shown in FIG. 1(a) );

十六个所述均匀分布式上电极2设置于所述玻璃基底5的表面(如图1(b)所示),并均匀地分布在所述微型谐振子1的上侧(如图1(c)所示);十六个所述均匀分布式下电极3设置于所述单晶硅基底4的表面,并均匀地分布在所述微型谐振子1的下侧(如图1(a)、图1(c)所示);所述单晶硅基底4与玻璃基底5键合。Sixteen uniformly distributed upper electrodes 2 are arranged on the surface of the glass substrate 5 (as shown in FIG. 1(b) ), and are uniformly distributed on the upper side of the micro-resonator 1 (as shown in FIG. 1 ( c)); sixteen said uniformly distributed lower electrodes 3 are arranged on the surface of said single crystal silicon substrate 4 and evenly distributed on the lower side of said micro-resonator 1 (as shown in FIG. 1(a) ) , shown in FIG. 1( c )); the single crystal silicon substrate 4 is bonded to the glass substrate 5 .

本实施例中,所述微型谐振子1的材料为掺杂金刚石或掺杂多晶硅,是所述微型圆盘谐振陀螺仪的主要振动体。In this embodiment, the material of the micro resonator 1 is doped diamond or doped polysilicon, which is the main vibrating body of the micro disc resonant gyroscope.

本实施例中,所述均匀分布式上电极2的材料为硼离子掺杂硅,也可以是磷离子掺杂硅,用于所述微型圆盘谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed upper electrode 2 is boron ion doped silicon, or phosphorus ion doped silicon, which is used for driving, detecting and controlling the miniature disc resonant gyroscope.

本实施例中,所述均匀分布式下电极3的材料为硼离子或磷离子掺杂硅,用于所述微型圆盘谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed lower electrode 3 is boron ion or phosphorus ion doped silicon, which is used for the driving, detection and control of the miniature disc resonant gyroscope.

本实施例中,所述单晶硅基底4和玻璃基底5的材料分别为高阻硅和二氧化硅这样的高阻材料,高阻材料可以减小十六个均分分布式上电极2和十六个均匀分布式下电极3之间的信号干扰。In this embodiment, the materials of the single crystal silicon substrate 4 and the glass substrate 5 are high-resistance materials such as high-resistance silicon and silicon dioxide, respectively. Signal interference between sixteen uniformly distributed lower electrodes 3 .

本实施例中,所述中心固定支撑柱6的材料为二氧化硅,也可以是高阻硅。In this embodiment, the material of the central fixed support column 6 is silicon dioxide, and may also be high-resistance silicon.

本实施例中,所述微型圆盘谐振陀螺仪可工作在角速率模式下,施加交流驱动信号,在所述微型谐振子1上施加直流偏置信号,所述均匀分布式上电极2通过静电力使所述微型谐振子1工作在所需的驱动模态下,驱动模态的振动幅值和频率保持不变;当垂直于单晶硅基底4方向存在外加角速度时,检测模态的振动幅值会发生变化,该振动幅值的大小与外加角速度的大小成正比,同时引起所述均匀分布式上电极2与所述微型谐振子1之间的电容发生变化;通过采集所述均匀分布式上电极2上的信号变化可以计算检测模态振动幅值的大小,进而计算外加角速度的大小。In this embodiment, the micro-disc resonant gyroscope can work in the angular rate mode, applying an AC drive signal, applying a DC bias signal to the micro-resonator 1, and the uniformly distributed upper electrode 2 through static The electric power makes the micro-resonator 1 work in the required driving mode, and the vibration amplitude and frequency of the driving mode remain unchanged; when there is an applied angular velocity in the direction perpendicular to the single crystal silicon substrate 4, the vibration of the detection mode is detected. The amplitude will change, the magnitude of the vibration amplitude is proportional to the magnitude of the applied angular velocity, and at the same time, the capacitance between the uniformly distributed upper electrode 2 and the micro resonator 1 will change; by collecting the uniform distribution The signal change on the electrode 2 can calculate the magnitude of the detected modal vibration amplitude, and then calculate the magnitude of the applied angular velocity.

本实施例中,所述微型圆盘谐振陀螺仪也可以采集所述均匀分布式下电极3上的信号变化计算检测模态振动幅值的大小,进而计算外加角速度的大小,从而减小所述均匀分布式上电极2之间的寄生电容,提高检测精度。In this embodiment, the micro-disc resonant gyroscope can also collect the signal changes on the uniformly distributed lower electrode 3 to calculate and detect the magnitude of the modal vibration amplitude, and then calculate the magnitude of the applied angular velocity, thereby reducing the The parasitic capacitance between the upper electrodes 2 is evenly distributed to improve the detection accuracy.

本实施例中,所述微型圆盘谐振陀螺仪可以在所述均匀分布式下电极3上施加交流驱动信号,并在所述均匀分布式上电极2或所述均匀分布式下电极3上采集检测信号,提供不同的驱动、检测及控制方式。In this embodiment, the micro-disc resonant gyroscope can apply an AC drive signal on the uniformly distributed lower electrode 3 and collect the signal on the uniformly distributed upper electrode 2 or the uniformly distributed lower electrode 3 Detection signal, providing different driving, detection and control methods.

本实施例中,所述微型圆盘谐振陀螺仪可以通过所述均匀分布式下电极3上的信号变化判断所述微陀螺仪的工作状态,在非正常工作状态下,通过控制算法在所述均匀分布式下电极3上施加控制信号,可调节所述微型圆盘谐振陀螺仪的工作状态,从而使所述微型圆盘谐振陀螺仪正常工作。In this embodiment, the micro-disc resonant gyroscope can judge the working state of the micro-disc resonant gyroscope through the signal change on the uniformly distributed lower electrode 3. Applying a control signal to the uniformly distributed lower electrode 3 can adjust the working state of the micro-disc resonant gyroscope, so that the micro-disc resonant gyroscope can work normally.

本实施例中,所述微型圆盘谐振陀螺仪也可工作在力平衡模式和全角度模式下,力平衡模式可直接检测外加角速度的大小,全角度模式可直接检测外加旋转角度的大小。In this embodiment, the miniature disc resonant gyroscope can also work in the force balance mode and the full angle mode. The force balance mode can directly detect the magnitude of the applied angular velocity, and the full angle mode can directly detect the magnitude of the applied rotation angle.

实施例2Example 2

如图2(a)-图2(c)所示,本实施例提供一种上下分立的双电极分布式微型环形谐振陀螺仪,包括:As shown in Fig. 2(a)-Fig. 2(c), the present embodiment provides a two-electrode distributed micro-ring resonant gyroscope with upper and lower separation, including:

一个环形的微型谐振子1;A ring-shaped micro-resonator 1;

十六个均匀分布式上电极2;Sixteen evenly distributed upper electrodes 2;

十六个均匀分布式下电极3;Sixteen evenly distributed lower electrodes 3;

一个单晶硅基底4;a single crystal silicon substrate 4;

一个玻璃基底5;a glass substrate 5;

一个中心固定支撑柱6;其中:A central fixed support column 6; of which:

所述中心固定支撑柱6的一端与所述单晶硅基底4连接,所述中心固定支撑柱6的另一端与所述微型谐振子1连接(如图2(a)所示);十六个所述均匀分布式上电极2设置于所述玻璃基底5的表面(如图2(b)所示),并均匀地分布在所述微型谐振子1的上侧(如图2(c)所示);十六个所述均匀分布式下电极3设置于所述单晶硅基底4的表面,并均匀地分布在所述微型谐振子1的下侧(如图2(a)、图2(c)所示);所述单晶硅基底4与玻璃基底5键合。One end of the central fixed support column 6 is connected to the single crystal silicon substrate 4, and the other end of the central fixed support column 6 is connected to the micro-resonator 1 (as shown in FIG. 2(a)); 16 The uniformly distributed upper electrodes 2 are arranged on the surface of the glass substrate 5 (as shown in FIG. 2(b) ), and are uniformly distributed on the upper side of the micro-resonator 1 (as shown in FIG. 2(c) ) The sixteen uniformly distributed lower electrodes 3 are arranged on the surface of the single crystal silicon substrate 4, and are uniformly distributed on the lower side of the micro-resonator 1 (as shown in FIG. 2(a), FIG. 2(c)); the single crystal silicon substrate 4 is bonded to the glass substrate 5 .

本实施例中,所述微型谐振子1的材料为掺杂金刚石或掺杂多晶硅,是所述微型环形谐振陀螺仪的主要振动体。In this embodiment, the material of the micro resonator 1 is doped diamond or doped polysilicon, which is the main vibrating body of the micro ring resonant gyroscope.

本实施例中,所述均匀分布式上电极2的材料为硼离子掺杂硅,也可以是磷离子掺杂硅,用于所述微型圆盘谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed upper electrode 2 is boron ion doped silicon, or phosphorus ion doped silicon, which is used for driving, detecting and controlling the miniature disc resonant gyroscope.

本实施例中,所述均匀分布式下电极3的材料为硼离子或磷离子掺杂硅,用于所述微型圆盘谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed lower electrode 3 is boron ion or phosphorus ion doped silicon, which is used for the driving, detection and control of the miniature disc resonant gyroscope.

本实施例中,所述单晶硅基底4和玻璃基底5的材料分别为高阻硅和二氧化硅这样的高阻材料,高阻材料可以减小十六个均分分布式上电极2和十六个均匀分布式下电极3之间的信号干扰。In this embodiment, the materials of the single crystal silicon substrate 4 and the glass substrate 5 are high-resistance materials such as high-resistance silicon and silicon dioxide, respectively. Signal interference between sixteen uniformly distributed lower electrodes 3 .

本实施例中,所述中心固定支撑柱6的材料为二氧化硅,也可以是高阻硅。In this embodiment, the material of the central fixed support column 6 is silicon dioxide, and may also be high-resistance silicon.

本实施例中,所述微型环形谐振陀螺仪也可工作在力平衡模式和全角度模式下,力平衡模式可直接检测外加角速度的大小,全角度模式可直接检测外加旋转角度的大小。In this embodiment, the micro ring resonant gyroscope can also work in the force balance mode and the full angle mode. The force balance mode can directly detect the magnitude of the applied angular velocity, and the full angle mode can directly detect the magnitude of the applied rotation angle.

实施例3Example 3

如图3(a)-图3(c)所示,本实施例提供一种上下分立的双电极分布式微型多环谐振陀螺仪,包括:As shown in Fig. 3(a)-Fig. 3(c), this embodiment provides a two-electrode distributed micro-multi-ring resonant gyroscope with upper and lower separation, including:

一个多环形的微型谐振子1;A multi-ring miniature resonator 1;

十六个均匀分布式上电极2;Sixteen evenly distributed upper electrodes 2;

十六个均匀分布式下电极3;Sixteen evenly distributed lower electrodes 3;

一个单晶硅基底4;a single crystal silicon substrate 4;

一个玻璃基底5;a glass substrate 5;

一个中心固定支撑柱6;其中:A central fixed support column 6; of which:

所述中心固定支撑柱6的一端与所述单晶硅基底4连接,所述中心固定支撑柱6的另一端与所述微型谐振子1连接(如图3(a)所示);十六个所述均匀分布式上电极2设置于所述玻璃基底5的表面(如图3(b)所示),并均匀地分布在所述微型谐振子1的上侧(如图3(c)所示);十六个所述均匀分布式下电极3设置于所述单晶硅基底4的上表面,并均匀地分布在所述微型谐振子1的下侧(如图3(a)、图3(c)所示);所述单晶硅基底4与玻璃基底5键合。One end of the central fixed support column 6 is connected to the single crystal silicon substrate 4, and the other end of the central fixed support column 6 is connected to the micro resonator 1 (as shown in FIG. 3(a)); 16 The uniformly distributed upper electrodes 2 are arranged on the surface of the glass substrate 5 (as shown in FIG. 3(b) ), and are uniformly distributed on the upper side of the micro-resonator 1 (as shown in FIG. 3(c) ) shown); sixteen said uniformly distributed lower electrodes 3 are arranged on the upper surface of said single crystal silicon substrate 4 and evenly distributed on the lower side of said micro-resonator 1 (as shown in Figure 3(a), 3 (c)); the single crystal silicon substrate 4 and the glass substrate 5 are bonded.

本实施例中,所述微型谐振子1的材料为掺杂金刚石或掺杂多晶硅,是所述微型多环谐振陀螺仪的主要振动体。In this embodiment, the material of the micro resonator 1 is doped diamond or doped polysilicon, which is the main vibrating body of the micro multi-ring resonant gyroscope.

本实施例中,所述均匀分布式上电极2的材料为硼离子掺杂硅,也可以是磷离子掺杂硅,用于所述微型圆盘谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed upper electrode 2 is boron ion doped silicon, or phosphorus ion doped silicon, which is used for driving, detecting and controlling the miniature disc resonant gyroscope.

本实施例中,所述均匀分布式下电极3的材料为硼离子或磷离子掺杂硅,用于所述微型圆盘谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed lower electrode 3 is boron ion or phosphorus ion doped silicon, which is used for the driving, detection and control of the miniature disc resonant gyroscope.

本实施例中,所述单晶硅基底4和玻璃基底5的材料分别为高阻硅和二氧化硅这样的高阻材料,高阻材料可以减小十六个均分分布式上电极2和十六个均匀分布式下电极3之间的信号干扰。In this embodiment, the materials of the single crystal silicon substrate 4 and the glass substrate 5 are high-resistance materials such as high-resistance silicon and silicon dioxide, respectively. Signal interference between sixteen uniformly distributed lower electrodes 3 .

本实施例中,所述中心固定支撑柱6的材料为二氧化硅,也可以是高阻硅。In this embodiment, the material of the central fixed support column 6 is silicon dioxide, and may also be high-resistance silicon.

本实施例中,所述微型多环谐振陀螺仪也可工作在力平衡模式和全角度模式下,力平衡模式可直接检测外加角速度的大小,全角度模式可直接检测外加旋转角度的大小。In this embodiment, the micro multi-ring resonant gyroscope can also work in the force balance mode and the full angle mode. The force balance mode can directly detect the magnitude of the applied angular velocity, and the full angle mode can directly detect the magnitude of the applied rotation angle.

实施例4Example 4

如图4(a)-图4(c)所示,本实施例提供一种上下分立的双电极分布式微型杯形谐振陀螺仪,包括:As shown in FIG. 4( a )- FIG. 4( c ), this embodiment provides a two-electrode distributed micro-cup resonant gyroscope with upper and lower separation, including:

一个杯形的微型谐振子1;A cup-shaped micro-resonator 1;

十六个均匀分布式上电极2;Sixteen evenly distributed upper electrodes 2;

十六个均匀分布式下电极3;Sixteen evenly distributed lower electrodes 3;

一个单晶硅基底4;a single crystal silicon substrate 4;

一个玻璃基底5;a glass substrate 5;

一个中心固定支撑柱6;其中:A central fixed support column 6; of which:

所述中心固定支撑柱6的一端与所述单晶硅基底4连接,所述中心固定支撑柱6的另一端与所述微型谐振子1连接(如图4(a)所示);十六个所述均匀分布式上电极2设置于所述玻璃基底5的表面(如图4(b)所示),并均匀地分布在所述微型谐振子1的上侧(如图4(c)所示);十六个所述均匀分布式下电极3设置于所述单晶硅基底4的上表面,并均匀地分布在所述微型谐振子1的下侧(如图4(a)、图4(c)所示);所述单晶硅基底4与玻璃基底5键合。One end of the central fixed support column 6 is connected to the single crystal silicon substrate 4, and the other end of the central fixed support column 6 is connected to the micro-resonator 1 (as shown in FIG. 4(a)); 16 The uniformly distributed upper electrodes 2 are arranged on the surface of the glass substrate 5 (as shown in FIG. 4(b) ), and are evenly distributed on the upper side of the micro-resonator 1 (as shown in FIG. 4(c) ) shown); sixteen said uniformly distributed lower electrodes 3 are arranged on the upper surface of said single crystal silicon substrate 4 and evenly distributed on the lower side of said micro-resonator 1 (as shown in Figure 4(a), 4 (c)); the single crystal silicon substrate 4 and the glass substrate 5 are bonded.

本实施例中,所述微型谐振子1的材料为掺杂金刚石或掺杂多晶硅,是所述微型杯形谐振陀螺仪的主要振动体。In this embodiment, the material of the micro resonator 1 is doped diamond or doped polysilicon, which is the main vibrating body of the micro cup-shaped resonant gyroscope.

本实施例中,所述均匀分布式上电极2的材料为硼离子掺杂硅,也可以是磷离子掺杂硅,用于所述微型圆盘谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed upper electrode 2 is boron ion doped silicon, or phosphorus ion doped silicon, which is used for driving, detecting and controlling the miniature disc resonant gyroscope.

本实施例中,所述均匀分布式下电极3的材料为硼离子或磷离子掺杂硅,用于所述微型圆盘谐振陀螺仪的驱动、检测及控制。In this embodiment, the material of the uniformly distributed lower electrode 3 is boron ion or phosphorus ion doped silicon, which is used for the driving, detection and control of the miniature disc resonant gyroscope.

进一步的,所述陀螺仪可以设置金属引线,所述金属引线的一端与上电极、下电极连接,所述金属引线的另一端作为外部接口,所述金属引线用于信号施加和信号提取。Further, the gyroscope can be provided with a metal lead, one end of the metal lead is connected to the upper electrode and the lower electrode, the other end of the metal lead serves as an external interface, and the metal lead is used for signal application and signal extraction.

本实施例中,所述单晶硅基底4和玻璃基底5的材料分别为高阻硅和二氧化硅这样的高阻材料,高阻材料可以减小十六个均分分布式上电极2和十六个均匀分布式下电极3之间的信号干扰。In this embodiment, the materials of the single crystal silicon substrate 4 and the glass substrate 5 are high-resistance materials such as high-resistance silicon and silicon dioxide, respectively. Signal interference between sixteen uniformly distributed lower electrodes 3 .

本实施例中,所述中心固定支撑柱6的材料为二氧化硅,也可以是高阻硅。In this embodiment, the material of the central fixed support column 6 is silicon dioxide, and may also be high-resistance silicon.

本实施例中,所述微型杯形谐振陀螺仪也可工作在力平衡模式和全角度模式下,力平衡模式可直接检测外加角速度的大小,全角度模式可直接检测外加旋转角度的大小。In this embodiment, the micro-cup resonant gyroscope can also work in the force balance mode and the full angle mode. The force balance mode can directly detect the magnitude of the applied angular velocity, and the full angle mode can directly detect the magnitude of the applied rotation angle.

本发明结合了MEMS体硅加工工艺和表面硅加工工艺进行制作,是一种新颖的加工工艺;本发明中的微陀螺仪可提供不同的驱动、检测方式及不同的工作模式,可工作在需要复杂控制的系统中;本发明中的微陀螺仪可利用下电极和上电极分别进行驱动和检测,减小驱动电极和检测电极之间的寄生电容,提高检测精度。The invention combines the MEMS bulk silicon processing technology and the surface silicon processing technology for production, and is a novel processing technology; the micro gyroscope in the invention can provide different driving, detection methods and different working modes, and can work when required In a complex control system; the micro-gyroscope in the present invention can use the lower electrode and the upper electrode to drive and detect respectively, reduce the parasitic capacitance between the driving electrode and the detection electrode, and improve the detection accuracy.

实施例5Example 5

如图5(a)-图5(g)所示,本实施例提供一种上下分立的双电极分布式微型圆盘谐振陀螺仪的制备方法,包括如下步骤:As shown in Fig. 5(a)-Fig. 5(g), the present embodiment provides a preparation method of a two-electrode distributed micro-disc resonant gyroscope with upper and lower separation, including the following steps:

第一步、如图5(a)所示,在单晶硅基底上进行涂胶、光刻、显影、硅的各向同性刻蚀、去胶,以在单晶硅基底4上得到半径为300μm-700μm的圆柱形凹槽;The first step, as shown in Figure 5(a), is to carry out glue coating, photolithography, development, silicon isotropic etching, and debonding on the single crystal silicon substrate to obtain a radius of 300μm-700μm cylindrical groove;

第二步、如图5(b)所示,对单晶硅基底4进行清洗、涂胶、光刻、显影、硼离子注入、溅射、去胶工艺,以在单晶硅基底4上得到厚度为10μm-50μm的硼离子掺杂硅材料的下电极3;In the second step, as shown in FIG. 5( b ), the single crystal silicon substrate 4 is subjected to cleaning, gluing, photolithography, development, boron ion implantation, sputtering, and degumming processes to obtain a The bottom electrode 3 of boron ion-doped silicon material with a thickness of 10 μm-50 μm;

第三步、如图5(c)所示,在单晶硅基底上沉积厚度为1μm-6μm的二氧化硅,为制作微型圆盘谐振子1及电极间隙提供牺牲层;The third step, as shown in Figure 5(c), is to deposit silicon dioxide with a thickness of 1 μm-6 μm on the monocrystalline silicon substrate to provide a sacrificial layer for making the miniature disc resonator 1 and the electrode gap;

第四步、如图5(d)所示,在第三步的基础上沉积掺杂金刚石或掺杂多晶硅,并进行化学机械抛光,以制作厚度为10μm-30μm的微型圆盘谐振子1;The fourth step, as shown in Figure 5(d), is to deposit doped diamond or doped polysilicon on the basis of the third step, and perform chemical mechanical polishing to manufacture a miniature disc resonator 1 with a thickness of 10 μm-30 μm;

第五步、如图5(e)所示,在第四步的基础上利用BOE溶液刻蚀二氧化硅牺牲层并控制刻蚀时间,以释放微型圆盘谐振子1,将残余部分作为半径为15μm-35μm的中心固定支撑柱6;The fifth step, as shown in Figure 5(e), on the basis of the fourth step, the silicon dioxide sacrificial layer is etched with BOE solution and the etching time is controlled to release the micro-disc resonator 1, and the residual part is used as the radius Fix the support column 6 for the center of 15μm-35μm;

第六步、如图5(f)所示,在玻璃基底5上涂胶、光刻、显影、电镀镍、去胶,以制作高度为20μm-70μm的金属镍材料的上电极2;The sixth step, as shown in FIG. 5( f ), applies glue, photolithography, development, nickel electroplating, and glue removal on the glass substrate 5 to make the upper electrode 2 of metal nickel material with a height of 20 μm-70 μm;

第七步、如图5(g)所示,倒置玻璃基底5,并与单晶硅基底4进行键合,使玻璃基底5的中心部分与单晶硅基底4的中心固定支撑柱的中心对准,实现两个基底固定,从而得到上下分立的双电极分布式微陀螺仪。In the seventh step, as shown in FIG. 5(g), the glass substrate 5 is inverted and bonded with the single crystal silicon substrate 4, so that the center part of the glass substrate 5 is aligned with the center of the fixed support column in the center of the single crystal silicon substrate 4. The two substrates can be fixed, so as to obtain a two-electrode distributed micro-gyroscope that is separated up and down.

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the above-mentioned specific embodiments, and those skilled in the art can make various variations or modifications within the scope of the claims, which do not affect the essential content of the present invention.

Claims (9)

1.一种上下分立的双电极分布式微陀螺仪,其特征在于,包括:单晶硅基底、中心固定支撑柱、微型谐振子、上电极、下电极和玻璃基底;其中:1. a two-electrode distributed micro-gyroscope that is separated up and down, is characterized in that, comprises: monocrystalline silicon substrate, center fixed support column, miniature resonator, upper electrode, lower electrode and glass substrate; Wherein: 所述上电极为多个,多个上电极分布均匀在微型谐振子的上侧,构成均匀分布式上电极,同时所述上电极设置于所述单晶硅基底的表面或者玻璃基底的表面;There are a plurality of the upper electrodes, and the plurality of upper electrodes are evenly distributed on the upper side of the micro-resonator to form a uniformly distributed upper electrode, and at the same time, the upper electrodes are arranged on the surface of the single crystal silicon substrate or the surface of the glass substrate; 所述下电极为多个,多个下电极均匀分布在微型谐振子的下侧,构成均匀分布式下电极,同时所述下电极设置于所述单晶硅基底的表面或者玻璃基底的表面;There are a plurality of the lower electrodes, and the plurality of lower electrodes are evenly distributed on the lower side of the micro-resonator to form a uniformly distributed lower electrode, and at the same time, the lower electrodes are arranged on the surface of the single crystal silicon substrate or the surface of the glass substrate; 所述中心固定支撑柱的一端与所述单晶硅基底连接,所述中心固定支撑柱的另一端与所述微型谐振子连接;所述单晶硅基底与所述玻璃基底键合;One end of the central fixed support column is connected to the single crystal silicon substrate, and the other end of the central fixed support column is connected to the micro resonator; the single crystal silicon substrate is bonded to the glass substrate; 所述微型谐振子作为所述微陀螺仪的振动体,所述上电极和下电极用于多种微陀螺仪结构的驱动、检测及控制;The micro-resonator is used as the vibrating body of the micro-gyroscope, and the upper electrode and the lower electrode are used for driving, detection and control of various micro-gyroscope structures; 所述微陀螺仪工作在角速率模式下时,施加交流驱动信号,在所述微型谐振子上施加直流偏置信号,均匀分布式上电极通过静电力使所述微型谐振子工作在所需的驱动模态下,驱动模态的振动幅值和频率保持不变;当垂直于单晶硅基底方向存在外加角速度时,检测模态的振动幅值会发生变化,该振动幅值的大小与外加角速度的大小成正比,同时引起所述均匀分布式上电极与所述微型谐振子之间的电容发生变化;通过采集所述均匀分布式上电极上的信号变化计算检测模态振动幅值的大小,进而计算外加角速度的大小。When the micro-gyroscope works in the angular rate mode, an AC drive signal is applied, a DC bias signal is applied to the micro-resonator, and the uniformly distributed upper electrodes make the micro-resonator work at the required level through electrostatic force. In the driving mode, the vibration amplitude and frequency of the driving mode remain unchanged; when there is an applied angular velocity perpendicular to the direction of the single crystal silicon substrate, the vibration amplitude of the detection mode will change, and the magnitude of the vibration amplitude is related to the applied angular velocity. The magnitude of the angular velocity is proportional to the size, and at the same time, the capacitance between the uniformly distributed upper electrode and the micro-resonator changes; the magnitude of the modal vibration amplitude is calculated and detected by collecting the signal changes on the uniformly distributed upper electrode , and then calculate the magnitude of the applied angular velocity. 2.根据权利要求1所述的一种上下分立的双电极分布式微陀螺仪,其特征在于,所述微陀螺仪采集所述均匀分布式下电极上的信号变化计算检测模态振动幅值的大小,进而计算外加角速度的大小,从而减小所述均匀分布式上电极之间的寄生电容,提高检测精度。2. a kind of upper and lower discrete two-electrode distributed micro-gyroscope according to claim 1, is characterized in that, described micro-gyroscope collects the signal change on described uniformly distributed lower electrode to calculate and detect modal vibration amplitude. The magnitude of the applied angular velocity is then calculated, thereby reducing the parasitic capacitance between the uniformly distributed upper electrodes and improving the detection accuracy. 3.根据权利要求1所述的一种上下分立的双电极分布式微陀螺仪,其特征在于,所述微陀螺仪在所述均匀分布式下电极上施加交流驱动信号,并在所述均匀分布式上电极或所述均匀分布式下电极上采集检测信号,提供不同的驱动、检测及控制方式。3. The upper and lower discrete two-electrode distributed micro-gyroscope according to claim 1, wherein the micro-gyroscope applies an AC drive signal on the uniformly distributed lower electrode, and the uniformly distributed The detection signal is collected on the upper electrode or the uniformly distributed lower electrode, and different driving, detection and control modes are provided. 4.根据权利要求1所述的一种上下分立的双电极分布式微陀螺仪,其特征在于,所述微陀螺仪通过所述均匀分布式下电极上的信号变化判断所述微陀螺仪的工作状态,在非正常工作状态下,通过控制算法在所述均匀分布式下电极上施加控制信号,可调节所述微陀螺仪的工作状态,从而使所述微陀螺仪正常工作。4. a kind of upper and lower discrete two-electrode distributed micro-gyroscope according to claim 1, is characterized in that, described micro-gyroscope judges the work of described micro-gyroscope by the signal change on described uniformly distributed lower electrode In an abnormal working state, a control signal is applied to the uniformly distributed lower electrode through a control algorithm, so that the working state of the micro-gyroscope can be adjusted, so that the micro-gyroscope can work normally. 5.根据权利要求1所述的一种上下分立的双电极分布式微陀螺仪,其特征在于,所述微陀螺仪能工作在力平衡模式和全角度模式下,力平衡模式直接检测外加角速度的大小,全角度模式直接检测外加旋转角度的大小。5. a kind of upper and lower discrete two-electrode distributed micro-gyroscope according to claim 1, is characterized in that, described micro-gyroscope can work under force balance mode and full angle mode, and force balance mode directly detects the value of the applied angular velocity. Size, full angle mode directly detects the size of the added rotation angle. 6.根据权利要求1-5任一项所述的一种上下分立的双电极分布式微陀螺仪,其特征在于,所述上电极和所述下电极的材料为硼离子或磷离子掺杂硅或者为金属镍;当上电极或者下电极位于单晶硅基底上时,材料为硼离子或磷离子掺杂硅;当上电极或者下电极位于玻璃基底上时,材料为金属镍。6. The upper and lower discrete dual-electrode distributed micro-gyroscope according to any one of claims 1-5, wherein the material of the upper electrode and the lower electrode is boron ion or phosphorus ion doped silicon Or it is metal nickel; when the upper electrode or the lower electrode is located on a single crystal silicon substrate, the material is boron ion or phosphorus ion doped silicon; when the upper electrode or the lower electrode is located on a glass substrate, the material is metal nickel. 7.根据权利要求1-5任一项所述的一种上下分立的双电极分布式微陀螺仪,其特征在于,所述单晶硅基底和玻璃基底的材料分别为高阻硅和二氧化硅的高阻材料,高阻材料用于减小上电极与下电极之间的信号干扰。7. A kind of upper and lower discrete dual-electrode distributed micro-gyroscope according to any one of claims 1-5, wherein the materials of the single-crystal silicon substrate and the glass substrate are high-resistance silicon and silicon dioxide, respectively The high resistance material is used to reduce the signal interference between the upper electrode and the lower electrode. 8.根据权利要求1-5任一项所述的一种上下分立的双电极分布式微陀螺仪,其特征在于,所述中心固定支撑柱的材料为高阻硅或者二氧化硅;8. The upper and lower discrete dual-electrode distributed micro-gyroscope according to any one of claims 1-5, wherein the material of the central fixed support column is high-resistance silicon or silicon dioxide; 所述微型谐振子的材料为掺杂金刚石或掺杂多晶硅。The material of the micro-resonator is doped diamond or doped polysilicon. 9.一种根据权利要求1-8任一项所述的上下分立的双电极分布式微陀螺仪的制备方法,其特征在于,包括如下步骤:9. a preparation method of the upper and lower discrete dual-electrode distributed micro-gyroscope according to any one of claims 1-8, is characterized in that, comprises the steps: 第一步、对单晶硅基底和玻璃基底进行清洗、涂胶、光刻、显影、硼离子注入、溅射、去胶工艺,在单晶硅基底上得到硼离子或磷离子掺杂硅材料的上电极或下电极;The first step is to perform cleaning, coating, photolithography, development, boron ion implantation, sputtering, and debonding processes on the single crystal silicon substrate and the glass substrate to obtain boron ion or phosphorus ion doped silicon material on the single crystal silicon substrate the upper electrode or lower electrode; 第二步、在单晶硅基底上进行涂胶、光刻、显影、硅的各向同性刻蚀、去胶,以在单晶硅基底上得到微型谐振子形状对应的凹槽;The second step is to apply glue, photolithography, development, silicon isotropic etching, and debonding on the monocrystalline silicon substrate to obtain grooves corresponding to the shape of the micro-resonator on the monocrystalline silicon substrate; 第三步、在单晶硅基底上沉积二氧化硅,为制作微型谐振子及上电极或下电极间隙提供牺牲层;The third step is to deposit silicon dioxide on the single crystal silicon substrate to provide a sacrificial layer for making micro-resonators and the gap between the upper or lower electrodes; 第四步、在单晶硅基底上沉积掺杂金刚石或掺杂多晶硅,并进行化学机械抛光,以制作微型谐振子;The fourth step, depositing doped diamond or doped polysilicon on the single crystal silicon substrate, and carrying out chemical mechanical polishing to make micro-resonators; 第五步、在第四步的基础上利用BOE溶液刻蚀二氧化硅牺牲层并控制刻蚀时间,以释放微型谐振子,并将残余部分作为中心固定支撑柱;The fifth step is to use the BOE solution to etch the silicon dioxide sacrificial layer on the basis of the fourth step and control the etching time to release the micro-resonator, and use the residual part as the center to fix the support column; 第六步、在玻璃基底上进行涂胶、光刻、显影、电镀镍、去胶,以制作金属镍材料的上电极或下电极;The sixth step is to apply glue, photolithography, development, nickel electroplating, and glue removal on the glass substrate to make the upper electrode or the lower electrode of the metal nickel material; 第七步、倒置玻璃基底,并与单晶硅基底进行键合,使玻璃基底的中心部分与单晶硅基底的中心固定支撑柱的中心对准,实现两个基底固定,从而得到上下分立的双电极分布式微陀螺仪。The seventh step is to invert the glass substrate and bond it with the single crystal silicon substrate, so that the center part of the glass substrate is aligned with the center of the center fixed support column of the single crystal silicon substrate, so that the two substrates are fixed, so as to obtain the upper and lower discrete Two-electrode distributed microgyroscope.
CN201610635051.0A 2016-08-04 2016-08-04 Discrete upper and lower two-electrode distributed micro-gyroscope and preparation method thereof Expired - Fee Related CN106323259B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610635051.0A CN106323259B (en) 2016-08-04 2016-08-04 Discrete upper and lower two-electrode distributed micro-gyroscope and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610635051.0A CN106323259B (en) 2016-08-04 2016-08-04 Discrete upper and lower two-electrode distributed micro-gyroscope and preparation method thereof

Publications (2)

Publication Number Publication Date
CN106323259A CN106323259A (en) 2017-01-11
CN106323259B true CN106323259B (en) 2020-09-15

Family

ID=57739426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610635051.0A Expired - Fee Related CN106323259B (en) 2016-08-04 2016-08-04 Discrete upper and lower two-electrode distributed micro-gyroscope and preparation method thereof

Country Status (1)

Country Link
CN (1) CN106323259B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109261477B (en) * 2018-10-23 2025-01-21 浙江大学 A micro-electromechanical piezoelectric ultrasonic transducer with etched holes and segmented upper electrodes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2636198Y (en) * 2003-07-14 2004-08-25 财团法人工业技术研究院 Membrane micro gyroscope and measuring device with the gyroscope
FR2936049B1 (en) * 2008-09-16 2010-09-17 Sagem Defense Securite PARTIALLY METALLIZING RESONATOR FOR ANGULAR PARAMETER DETECTOR.
CN103344229A (en) * 2013-07-05 2013-10-09 西北工业大学 Miniature hemispherical resonant gyroscope based on SOI (Silicon on Insulator) silicon slice and manufacturing method of miniature hemispherical resonant gyroscope
CN103322994B (en) * 2013-08-01 2015-10-07 东南大学 Silica-based super-thin micro-hemispherical resonator gyroscope of a kind of biplate integrated form and preparation method thereof
CN104165623B (en) * 2014-08-08 2017-02-15 上海交通大学 Internal-external double-electrode type miniature hemispherical resonance gyroscope and preparation method thereof

Also Published As

Publication number Publication date
CN106323259A (en) 2017-01-11

Similar Documents

Publication Publication Date Title
CN104165623B (en) Internal-external double-electrode type miniature hemispherical resonance gyroscope and preparation method thereof
CN104197917B (en) A kind of Piezoelectric Driving and the micro hemispherical resonator gyro instrument of detection and preparation method thereof
CN106289216B (en) Inner ring and outer discrete two-electrode distributed micro-gyroscope and preparation method thereof
CN105486297B (en) A kind of polycyclic interior S-shaped flexible beam resonant gyroscope of disk and preparation method thereof
CN106153028B (en) Internal and external discrete double-electrode distributed micro gyroscope and preparation method thereof
CN103344227B (en) Electrostatic drives piezoelectric detection bulk acoustic resonance three axle microthrust test and preparation method thereof
CN105371833B (en) A kind of polycyclic outer S-shaped flexible beam resonant gyroscope of disk and preparation method thereof
CN105004334B (en) Electromagnetic type hemispherical gyroscope and preparation method thereof outside face
CN104197910B (en) Micro hemispherical resonator gyro instrument based on micro- ball and preparation method thereof
CN104197909A (en) Double-hemisphere-structured miniature resonant gyroscope and manufacturing method thereof
CN104197916B (en) Hemispheroid solid fluctuation micro-gyroscope and manufacturing method thereof
CN104457725B (en) High sensitivity bulk acoustic wave silicon micro-gyroscope
CN105371832B (en) A kind of polycyclic interior twin beams of disk isolates annulus resonant gyroscope and preparation method thereof
CN104897146B (en) Piezoelectric type hemispherical gyroscope and preparation method thereof outside face
CN103363970A (en) Electromagnetic-driving electromagnetic-detection triaxial microgyroscope with bulk acoustic wave resonance, and preparation method thereof
CN106323261B (en) Two-electrode distributed micro-gyroscope with upper discrete and lower annular and preparation method thereof
CN104197918B (en) Semi-circular piezoelectric resonator gyroscope and preparation method thereof
CN104197908B (en) Recessed annular piezoelectric resonator gyroscope and preparation method thereof
CN106323260B (en) Side-separated adjacent-surface annular double-electrode distributed micro gyroscope and preparation method thereof
CN103322995B (en) Piezoelectric Driving electrostatic detection bulk acoustic resonance three axle microthrust test and preparation method thereof
CN104197912B (en) A kind of fixed silicon-base miniature hemispherical resonant gyro of both-end and preparation method thereof
US20150330782A1 (en) Mass-loaded coriolis vibratory gyroscope
CN103344230B (en) Electrostatic drives electrostatic detection bulk acoustic resonance three axle microthrust test and preparation method thereof
CN106323259B (en) Discrete upper and lower two-electrode distributed micro-gyroscope and preparation method thereof
CN104897148A (en) Cellular solid fluctuating micromechanical gyroscope and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200915

CF01 Termination of patent right due to non-payment of annual fee