CN104197917B - A kind of Piezoelectric Driving and the micro hemispherical resonator gyro instrument of detection and preparation method thereof - Google Patents
A kind of Piezoelectric Driving and the micro hemispherical resonator gyro instrument of detection and preparation method thereof Download PDFInfo
- Publication number
- CN104197917B CN104197917B CN201410389959.9A CN201410389959A CN104197917B CN 104197917 B CN104197917 B CN 104197917B CN 201410389959 A CN201410389959 A CN 201410389959A CN 104197917 B CN104197917 B CN 104197917B
- Authority
- CN
- China
- Prior art keywords
- hemispherical
- micro
- piezoelectric body
- resonator
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 239000010409 thin film Substances 0.000 claims abstract description 23
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 235000012239 silicon dioxide Nutrition 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 229910003460 diamond Inorganic materials 0.000 claims description 12
- 239000010432 diamond Substances 0.000 claims description 12
- 239000003292 glue Substances 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 12
- 239000011733 molybdenum Substances 0.000 claims description 12
- 238000000206 photolithography Methods 0.000 claims description 12
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 12
- 229920005591 polysilicon Polymers 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 238000011161 development Methods 0.000 claims description 9
- 239000010408 film Substances 0.000 claims description 8
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000005498 polishing Methods 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- RRKXGHIWLJDUIU-UHFFFAOYSA-N 5-bromo-8-chloroisoquinoline Chemical compound C1=NC=C2C(Cl)=CC=C(Br)C2=C1 RRKXGHIWLJDUIU-UHFFFAOYSA-N 0.000 claims 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 11
- 238000012545 processing Methods 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 8
- 230000010354 integration Effects 0.000 abstract description 2
- 238000010923 batch production Methods 0.000 abstract 1
- 230000003071 parasitic effect Effects 0.000 description 5
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/567—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
- G01C19/5691—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially three-dimensional vibrators, e.g. wine glass-type vibrators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Manufacturing & Machinery (AREA)
- Gyroscopes (AREA)
Abstract
本发明提供了一种压电驱动和检测的微型半球谐振陀螺仪及其制备方法,包括一个单晶硅基底、一个中心固定支撑柱、一个微型半球谐振子、一个公共电极、八个薄膜压电体、八个均匀分布式信号电极,其中:单晶硅基底与微型半球谐振子通过中心固定支撑柱相连;公共电极与微型半球子的形状相同,位于微型半球谐振子与压电体之间;压电体与信号电极的形状相同,位于公共电极与信号电极之间。本发明采用压电驱动的方式激励微型半球谐振子进行工作,驱动模态和检测模态相互匹配。本发明结合MEMS体硅加工工艺和表面硅加工工艺进行制作。本发明利用逆压电效应和压电效应进行微陀螺仪的驱动和检测,具有一体化程度高、功耗低、便于批量化制作等特点。
The invention provides a piezoelectrically driven and detected miniature hemispherical resonant gyroscope and a preparation method thereof, comprising a single crystal silicon substrate, a central fixed support column, a miniature hemispherical resonator, a common electrode, eight thin-film piezoelectric Body, eight evenly distributed signal electrodes, in which: the single crystal silicon substrate and the micro-hemispheric resonator are connected through the central fixed support column; the common electrode has the same shape as the micro-hemispheric, and is located between the micro-hemispheric resonator and the piezoelectric body; The piezoelectric body has the same shape as the signal electrode, and is located between the common electrode and the signal electrode. The invention adopts piezoelectric driving mode to excite the miniature hemispherical resonator to work, and the driving mode and the detection mode match each other. The invention combines MEMS body silicon processing technology and surface silicon processing technology to make. The invention utilizes the inverse piezoelectric effect and the piezoelectric effect to drive and detect the micro gyroscope, and has the characteristics of high degree of integration, low power consumption, convenient batch production and the like.
Description
技术领域technical field
本发明涉及微机电技术领域的半球谐振陀螺仪,具体地,涉及一种压电驱动和检测的微型半球谐振陀螺仪及其制备方法。The invention relates to a hemispherical resonant gyroscope in the field of micro-electromechanical technology, in particular to a piezoelectrically driven and detected micro hemispherical resonant gyroscope and a preparation method thereof.
背景技术Background technique
陀螺仪是一种能够检测载体角度或角速度的惯性器件,在姿态控制和导航定位等领域有着非常重要的作用。随着国防科技和航空、航天工业的发展,惯性导航系统对于陀螺仪的要求也向低成本、小体积、高精度、多轴检测、高可靠性、能适应各种恶劣环境的方向发展。因此,MEMS陀螺仪的重要性不言而喻。特别地,微型谐振陀螺仪作为MEMS陀螺仪的一个重要研究方向,已经成为该领域的一个研究热点。Gyroscope is an inertial device that can detect the angle or angular velocity of the carrier, and it plays a very important role in the fields of attitude control, navigation and positioning. With the development of national defense technology and aviation and aerospace industries, the requirements of inertial navigation systems for gyroscopes are also developing in the direction of low cost, small size, high precision, multi-axis detection, high reliability, and adaptability to various harsh environments. Therefore, the importance of MEMS gyroscope is self-evident. In particular, as an important research direction of MEMS gyroscopes, micro-resonant gyroscopes have become a research hotspot in this field.
半球谐振陀螺仪利用半球谐振子进行检测,没有高速旋转部件,加之材料的稳定性和结构的对称性,使其具有许多突出的优点,是目前精度最高的机械振动陀螺仪。The hemispherical resonant gyroscope uses a hemispherical resonator for detection. There are no high-speed rotating parts, and the stability of the material and the symmetry of the structure make it have many outstanding advantages. It is the most precise mechanical vibration gyroscope at present.
经过现有技术的文献搜索发现,美国专利“VIBRATORY ROTATION SENSOR”(专利号:4951508)详细地介绍了半球谐振陀螺仪的原理及信号检测方法,对半球谐振陀螺仪的研究具有指导意义。然而,上述陀螺属于传统型的半球谐振陀螺仪,尺寸相对较大,限制了其应用范围。基于MEMS技术的微型半球谐振陀螺仪继承了传统型半球谐振陀螺仪的优点,又兼具体积小、功耗低、批量化生产等优势,具有重要的研究价值。目前常见的微型半球谐振陀螺仪均采用静电驱动和电容检测,这种驱动方法需要制作微小尺寸的电容间隙,并施加高幅值的直流偏置,从而提供足够的驱动力;这种检测方法需要制作微小尺寸的电容间隙以提高检测精度;利用这种方法驱动和检测的陀螺仪易受到寄生电容的影响。After searching the literature of the prior art, it was found that the US patent "VIBRATORY ROTATION SENSOR" (patent number: 4951508) introduced the principle and signal detection method of the hemispherical resonant gyroscope in detail, which has guiding significance for the research of the hemispherical resonant gyroscope. However, the above-mentioned gyroscope is a traditional hemispherical resonant gyroscope, and its size is relatively large, which limits its application range. The micro hemispherical resonant gyroscope based on MEMS technology inherits the advantages of the traditional hemispherical resonant gyroscope, and also has the advantages of small size, low power consumption and mass production, which has important research value. At present, the common miniature hemispherical resonant gyroscope adopts electrostatic drive and capacitance detection. This driving method needs to make a small-sized capacitance gap and apply a high-amplitude DC bias to provide sufficient driving force; this detection method requires Micro-sized capacitive gaps are made to improve detection accuracy; gyroscopes driven and sensed using this method are susceptible to parasitic capacitance.
基于此,迫切需要提出一种新的陀螺仪结构,使其避免或减小上述影响因素,同时扩展其应用范围。Based on this, it is urgent to propose a new gyroscope structure to avoid or reduce the above-mentioned influencing factors and expand its application range at the same time.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种压电驱动和检测的微型半球谐振陀螺仪及其制备方法,无需制作微小尺寸的电容间隙,无需施加高幅值的直流偏置,同时可避免寄生电容的影响。In view of the defects in the prior art, the purpose of the present invention is to provide a piezoelectrically driven and detected micro-hemispherical resonant gyroscope and its preparation method, without the need to make a small-sized capacitance gap, and without applying a high-amplitude DC bias, At the same time, the influence of parasitic capacitance can be avoided.
根据本发明的一个方面,提供一种压电驱动和检测的微型半球谐振陀螺仪,包括:According to one aspect of the present invention, there is provided a piezoelectric driven and detected miniature hemispherical resonant gyroscope, comprising:
一个单晶硅基底;a single crystal silicon substrate;
一个微型半球谐振子;A miniature hemispherical harmonic oscillator;
一个固定并支撑微型半球谐振子的中心固定支撑柱;A central fixed support column that fixes and supports the miniature hemispherical resonator;
一个公共电极;a common electrode;
八个均匀分布于公共电极上的薄膜式压电体;Eight thin-film piezoelectric bodies evenly distributed on the common electrode;
八个均匀分布式信号电极;Eight evenly distributed signal electrodes;
其中,单晶硅基底与微型半球谐振子通过中心固定支撑柱相连;公共电极与微型半球谐振子的形状相同,且位于微型半球谐振子与薄膜式压电体之间;薄膜式压电体与信号电极的形状相同,且位于公共电极与信号电极之间。Among them, the single crystal silicon substrate and the micro-hemispherical resonator are connected through a central fixed support column; the common electrode has the same shape as the micro-hemispherical resonator, and is located between the micro-hemispherical resonator and the thin-film piezoelectric body; the thin-film piezoelectric body and the The signal electrodes have the same shape and are located between the common electrode and the signal electrodes.
所述陀螺仪采用压电驱动的方式激励微型半球谐振子进行工作,驱动模态和检测模态相互匹配。所述陀螺仪利用逆压电效应和压电效应进行微陀螺仪的驱动和检测,相比于常用的静电驱动和电容检测,无需制作微小尺寸的电容间隙,无需施加高幅值的直流偏置,同时可避免寄生电容的影响,具有一体化程度高、功耗低、便于批量化制作等特点。The gyroscope excites the miniature hemispherical resonator to work in a piezoelectric driving manner, and the driving mode and the detection mode match each other. The gyroscope uses the inverse piezoelectric effect and the piezoelectric effect to drive and detect the micro gyroscope. Compared with the commonly used electrostatic drive and capacitance detection, there is no need to make a small-sized capacitance gap, and no need to apply a high-amplitude DC bias , At the same time, it can avoid the influence of parasitic capacitance, and has the characteristics of high degree of integration, low power consumption, and convenient mass production.
根据本发明的另一个方面,提供一种压电驱动和检测的微型半球谐振陀螺仪的制备方法,所述方法包括如下步骤:According to another aspect of the present invention, a kind of preparation method of the miniature hemispherical resonant gyroscope of piezoelectric drive and detection is provided, and described method comprises the steps:
第一步、对单晶硅基底进行清洗,在单晶硅基底上进行涂胶、光刻、显影、溅射掩膜层、去胶、各向同性刻蚀、去除掩膜层,在单晶硅基底上得到半球形凹槽;The first step is to clean the single crystal silicon substrate, apply glue, photolithography, development, sputter mask layer, deglue, isotropic etching, and remove the mask layer on the single crystal silicon substrate. A hemispherical groove is obtained on the silicon substrate;
第二步、在第一步的基础上利用热氧化法生长二氧化硅层,涂胶、光刻、显影、局部刻蚀二氧化硅层,得到具有圆形凹槽的二氧化硅牺牲层;In the second step, on the basis of the first step, the thermal oxidation method is used to grow the silicon dioxide layer, apply glue, photolithography, develop, and partially etch the silicon dioxide layer to obtain a silicon dioxide sacrificial layer with circular grooves;
第三步、在第二步的基础上沉积非掺杂多晶硅或非掺杂金刚石,并通过化学机械抛光去除半球形凹槽以外的多晶硅或金刚石,得到带有支撑柱的半球形结构层;The third step is to deposit non-doped polysilicon or non-doped diamond on the basis of the second step, and remove the polysilicon or diamond outside the hemispherical groove by chemical mechanical polishing to obtain a hemispherical structure layer with support columns;
第四步、在第三步的基础上溅射金属铝或金属钼,涂胶、光刻、显影、刻蚀,去除半球形凹槽以外的金属铝或金属钼,得到半球形公共电极;The fourth step is to sputter metal aluminum or metal molybdenum on the basis of the third step, apply glue, photolithography, develop, etch, remove metal aluminum or metal molybdenum other than the hemispherical groove, and obtain a hemispherical common electrode;
第五步、在第四步的基础上溅射氮化铝或PZT薄膜,得到压电薄膜层;The fifth step, sputtering aluminum nitride or PZT film on the basis of the fourth step to obtain a piezoelectric film layer;
第六步、在第五步的基础上溅射金属铝或金属钼,得到信号电极层;The sixth step is to sputter metal aluminum or metal molybdenum on the basis of the fifth step to obtain the signal electrode layer;
第七步、在第六步的基础上涂胶、光刻、显影,对信号电极层进行刻蚀,得到图形化后的信号电极层及均匀分布式信号电极;The seventh step is to apply glue, photolithography, and development on the basis of the sixth step, and etch the signal electrode layer to obtain the patterned signal electrode layer and evenly distributed signal electrodes;
第八步、在第七步的基础上以信号电极为掩膜,对压电薄膜层进行刻蚀,得到均匀分布式薄膜式压电体;The eighth step, on the basis of the seventh step, the signal electrode is used as a mask to etch the piezoelectric thin film layer to obtain a uniformly distributed thin film piezoelectric body;
第九步、在第八步的基础上利用BHF溶液对二氧化硅牺牲层进行腐蚀,从单晶硅基底上释放微型半球谐振子。In the ninth step, on the basis of the eighth step, the silicon dioxide sacrificial layer is etched with a BHF solution, and the micro hemispherical resonator is released from the single crystal silicon substrate.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)所述陀螺仪是结合MEMS体硅加工工艺和表面硅加工工艺进行制作的,是一种新颖的加工工艺;(1) The gyroscope is made in combination with the MEMS bulk silicon processing technology and the surface silicon processing technology, which is a novel processing technology;
(2)所述陀螺仪无需制作微小尺寸的电容间隙,无需施加高幅值的直流偏置,降低加工要求和能耗要求;(2) The gyroscope does not need to make a small-sized capacitance gap, and does not need to apply a high-amplitude DC bias, which reduces processing requirements and energy consumption requirements;
(3)所述陀螺仪可避免寄生电容的影响,提高检测的准确性。(3) The gyroscope can avoid the influence of parasitic capacitance and improve the accuracy of detection.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1(a)-图1(i)为本发明一较优实施例的制备流程图;Fig. 1 (a)-Fig. 1 (i) is the preparation flowchart of a preferred embodiment of the present invention;
图2(a)、图2(b)为本发明一较优实施例的三维结构图及其俯视图;Fig. 2 (a), Fig. 2 (b) are the three-dimensional structural diagram and top view thereof of a preferred embodiment of the present invention;
图中:1为单晶硅基底,2为中心固定支撑柱,3为微型半球谐振子,4为公共电极,5为薄膜式压电体,6为信号电极。In the figure: 1 is a single crystal silicon substrate, 2 is a central fixed support column, 3 is a micro hemispherical resonator, 4 is a common electrode, 5 is a thin-film piezoelectric body, and 6 is a signal electrode.
具体实施方式detailed description
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
实施例1Example 1
如图2(a)和图2(b)所示,本实施例提供一种压电驱动和检测的微型半球谐振陀螺仪,包括:As shown in Figure 2(a) and Figure 2(b), the present embodiment provides a piezoelectrically driven and detected miniature hemispherical resonant gyroscope, including:
一个单晶硅基底1;a single crystal silicon substrate 1;
一个中心固定支撑柱2;a central fixed support column 2;
一个微型半球谐振子3;A miniature hemispherical harmonic oscillator 3;
一个公共电极4;a common electrode 4;
八个薄膜式压电体5;Eight thin-film piezoelectric bodies 5;
八个均匀分布式信号电极6;Eight evenly distributed signal electrodes 6;
其中,单晶硅基底1与微型半球谐振子3通过中心固定支撑柱2相连;公共电极4与微型半球谐振子3的形状相同,位于微型半球谐振子3与薄膜式压电体5之间;薄膜式压电体5与信号电极6的形状相同,位于公共电极4与信号电极6之间。Among them, the single crystal silicon substrate 1 and the micro-hemispherical resonator 3 are connected through the central fixed support column 2; the common electrode 4 has the same shape as the micro-hemispherical resonator 3, and is located between the micro-hemispherical resonator 3 and the thin-film piezoelectric body 5; The thin-film piezoelectric body 5 has the same shape as the signal electrode 6 and is located between the common electrode 4 and the signal electrode 6 .
本实施例中,所述中心固定支撑柱2的材料为非掺杂多晶硅或非掺杂金刚石,用于固定并支撑微型半球谐振子3。In this embodiment, the material of the central fixed support pillar 2 is non-doped polysilicon or non-doped diamond, which is used to fix and support the micro-hemispherical resonator 3 .
本实施例中,所述微型半球谐振子3的材料与中心固定支撑柱2的材料相同,为非掺杂多晶硅或非掺杂金刚石,是驱动模态和检测模态的主要承载体。In this embodiment, the material of the miniature hemispherical resonator 3 is the same as that of the central fixed support pillar 2, which is non-doped polysilicon or non-doped diamond, which is the main carrier of the driving mode and the detection mode.
本实施例中,所述公共电极4的材料为金属铝或金属钼,为不同薄膜式压电体5提供相同的地信号。In this embodiment, the material of the common electrode 4 is metal aluminum or metal molybdenum, which provides the same ground signal for different thin-film piezoelectric bodies 5 .
本实施例中,所述薄膜式压电体5的材料为氮化铝或锆钛酸铅(PZT),均匀分布于公共电极4上。所述薄膜式压电体5分为驱动压电体和检测压电体,两者形状相同,间隔分布,所述驱动压电体为微型半球谐振子3提供驱动力,所述检测压电体通过微型半球谐振子3形成检测信号。In this embodiment, the material of the thin-film piezoelectric body 5 is aluminum nitride or lead zirconate titanate (PZT), which is evenly distributed on the common electrode 4 . The thin-film piezoelectric body 5 is divided into a driving piezoelectric body and a detection piezoelectric body, both of which have the same shape and are distributed at intervals. The driving piezoelectric body provides driving force for the miniature hemispherical resonator 3, and the detection piezoelectric body The detection signal is formed by the micro-hemispheric resonator 3 .
本实施例中,所述信号电极6的材料与公共电极4的材料相同,为金属铝或金属钼。所述信号电极6分为驱动电极和检测电极,驱动电极位于驱动压电体上,检测电极位于检测压电体上,所述驱动电极为驱动压电体提供驱动信号,所述检测电极从检测压电体提取检测信号。In this embodiment, the material of the signal electrode 6 is the same as that of the common electrode 4 , which is metal aluminum or metal molybdenum. The signal electrode 6 is divided into a driving electrode and a detection electrode. The driving electrode is located on the driving piezoelectric body, and the detection electrode is located on the detection piezoelectric body. The driving electrode provides a driving signal for the driving piezoelectric body. The piezoelectric body extracts the detection signal.
本实施例中,在微型半球谐振陀螺仪的所述信号电极6中的所述驱动电极上施加驱动电压,在所述公共电极4上施加地信号,从而在所述薄膜式压电体5中的所述驱动压电体的两侧形成电势差,通过逆压电效应使微型半球谐振子3工作在所需的驱动模态下,驱动模态的振动幅值和频率保持不变;当垂直于基体方向存在外加角速度时,检测模态的振动幅值会发生变化,并引起所述薄膜式压电体5中的所述检测压电体发生相同的振动,所述检测压电体的振动幅值大小与外加角速度的大小成正比,通过压电效应可以在所述信号电极6中的所述检测电极上检测该振动幅值的大小,即可计算得到外加角速度的大小。In this embodiment, a driving voltage is applied to the driving electrodes in the signal electrodes 6 of the micro-hemispheric resonant gyroscope, and a ground signal is applied to the common electrode 4, so that The two sides of the driving piezoelectric body form a potential difference, and the micro hemispherical resonator 3 works in the required driving mode through the inverse piezoelectric effect, and the vibration amplitude and frequency of the driving mode remain unchanged; when perpendicular to When there is an external angular velocity in the direction of the substrate, the vibration amplitude of the detection mode will change, and cause the same vibration of the detection piezoelectric body in the film piezoelectric body 5, and the vibration amplitude of the detection piezoelectric body The magnitude of the vibration amplitude is proportional to the magnitude of the applied angular velocity, and the magnitude of the vibration amplitude can be detected on the detection electrode in the signal electrode 6 through the piezoelectric effect, and the magnitude of the applied angular velocity can be calculated.
实施例2Example 2
如图1(a)-图1(i)所示,本实施例提供一种所述压电驱动和检测的微型半球谐振陀螺仪的制备方法,包括如下步骤:As shown in Figure 1 (a)-Figure 1 (i), the present embodiment provides a kind of preparation method of the miniature hemispherical resonant gyroscope of described piezoelectric drive and detection, comprises the following steps:
第一步、如图1(a)所示,对单晶硅基底1进行清洗,在单晶硅基底1上进行涂胶、光刻、显影、溅射掩膜层、去胶、各向同性刻蚀、去除掩膜层,在单晶硅基底1上得到半径为300-700μm的半球形凹槽;The first step, as shown in Fig. 1(a), is to clean the single crystal silicon substrate 1, apply glue on the single crystal silicon substrate 1, perform photolithography, development, sputtering mask layer, glue removal, and isotropic Etching and removing the mask layer to obtain a hemispherical groove with a radius of 300-700 μm on the single crystal silicon substrate 1;
第二步、如图1(b)所示,在第一步的基础上利用热氧化法生长二氧化硅层,涂胶、光刻、显影、局部刻蚀二氧化硅层,得到带有半径为15-40μm圆形凹槽的二氧化硅牺牲层;In the second step, as shown in Figure 1(b), on the basis of the first step, the thermal oxidation method is used to grow the silicon dioxide layer, glue coating, photolithography, development, and partial etching of the silicon dioxide layer to obtain a radius SiO2 sacrificial layer for 15-40 μm circular grooves;
第三步、如图1(c)所示,在第二步的基础上沉积非掺杂多晶硅或非掺杂金刚石,并通过化学机械抛光去除半球形凹槽以外的多晶硅或金刚石,得到带有支撑柱的厚度为1-5μm的半球形结构层;The third step, as shown in Figure 1(c), deposits non-doped polysilicon or non-doped diamond on the basis of the second step, and removes the polysilicon or diamond outside the hemispherical groove by chemical mechanical polishing, and obtains a The hemispherical structural layer of the support column with a thickness of 1-5 μm;
第四步、如图1(d)所示,在第三步的基础上溅射金属铝或金属钼,涂胶、光刻、显影、刻蚀,去除半球形凹槽以外的金属铝或金属钼,得到厚度为1-5μm的半球形公共电极4;The fourth step, as shown in Figure 1(d), sputters metal aluminum or metal molybdenum on the basis of the third step, coating, photolithography, development, etching, and removes metal aluminum or metal other than the hemispherical groove molybdenum to obtain a hemispherical common electrode 4 with a thickness of 1-5 μm;
第五步、如图1(e)所示,在第四步的基础上溅射氮化铝或PZT薄膜,得到厚度为0.5-3.5μm的压电薄膜层;The fifth step, as shown in Figure 1(e), sputters aluminum nitride or PZT film on the basis of the fourth step to obtain a piezoelectric film layer with a thickness of 0.5-3.5 μm;
第六步、如图1(f)所示,在第五步的基础上溅射金属铝或金属钼,得到厚度为0.5-3.5μm的信号电极层;The sixth step, as shown in Figure 1(f), sputters metal aluminum or metal molybdenum on the basis of the fifth step to obtain a signal electrode layer with a thickness of 0.5-3.5 μm;
第七步、如图1(g)所示,在第六步的基础上涂胶、光刻、显影,对信号电极层进行刻蚀,得到图形化后的信号电极层及均匀分布式信号电极6;The seventh step, as shown in Figure 1(g), on the basis of the sixth step, apply glue, photolithography, and development, and etch the signal electrode layer to obtain a patterned signal electrode layer and evenly distributed signal electrodes 6;
第八步、如图1(h)所示,在第七步的基础上以信号电极6为掩膜,对压电薄膜层进行刻蚀,得到均匀分布薄膜式压电体5;The eighth step, as shown in Figure 1(h), on the basis of the seventh step, the signal electrode 6 is used as a mask to etch the piezoelectric thin film layer to obtain a uniformly distributed thin film piezoelectric body 5;
第九步、如图1(i)所示,在第八步的基础上利用BHF溶液对二氧化硅牺牲层进行腐蚀,从单晶硅基底1上释放微型半球谐振子3。In the ninth step, as shown in FIG. 1(i), on the basis of the eighth step, the silicon dioxide sacrificial layer is etched with BHF solution, and the micro hemispherical resonator 3 is released from the single crystal silicon substrate 1 .
本实施例所述的陀螺仪采用压电驱动的方式激励微型半球谐振子3进行工作,其驱动模态和检测模态分别相互匹配。The gyroscope described in this embodiment excites the micro-hemispheric resonator 3 to work by means of piezoelectric driving, and its driving mode and detection mode match each other respectively.
实施例3Example 3
与实施例1和实施例2基本相同,所不同的是:Basically the same as embodiment 1 and embodiment 2, the difference is:
本实施例制备的陀螺仪:所述的中心固定支撑柱2和所述的微型半球谐振子3的材料为掺杂多晶硅或掺杂金刚石,所述微型半球谐振子3同时作为微型半球谐振子3和公共电极4,无需额外制作公共电极4;The gyroscope prepared in this embodiment: the materials of the central fixed support column 2 and the micro-hemispherical resonator 3 are doped polysilicon or doped diamond, and the micro-hemispherical resonator 3 simultaneously serves as the micro-hemispherical resonator 3 and common electrode 4, no need to make additional common electrode 4;
所以本实施例制备方法中的第三步:在第二步的基础上沉积掺杂多晶硅或掺杂金刚石;去除实施例2所述的制备方法中的第四步,直接进行第五步到第九步。其他操作与实施例2相同。Therefore, the third step in the preparation method of this embodiment: deposit doped polysilicon or doped diamond on the basis of the second step; remove the fourth step in the preparation method described in Example 2, and directly proceed from the fifth step to the first step nine steps. Other operations are the same as in Example 2.
本发明中的陀螺仪结合MEMS体硅加工工艺和表面硅加工工艺进行制作,是一种新颖的加工工艺。The gyroscope in the present invention is manufactured by combining MEMS bulk silicon processing technology and surface silicon processing technology, which is a novel processing technology.
本发明利用逆压电效应和压电效应进行微陀螺仪的驱动和检测,相比于常用的静电驱动和电容检测,无需制作微小尺寸的电容间隙,无需施加高幅值的直流偏置,可降低加工要求和能耗要求;The present invention utilizes the inverse piezoelectric effect and the piezoelectric effect to drive and detect the micro-gyroscope. Compared with the commonly used electrostatic drive and capacitance detection, it does not need to make a small-sized capacitance gap, and does not need to apply a high-amplitude DC bias. Reduce processing requirements and energy consumption requirements;
本发明中的陀螺仪可避免寄生电容的影响,提高检测的准确性。The gyroscope in the invention can avoid the influence of parasitic capacitance and improve the accuracy of detection.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410389959.9A CN104197917B (en) | 2014-08-08 | 2014-08-08 | A kind of Piezoelectric Driving and the micro hemispherical resonator gyro instrument of detection and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410389959.9A CN104197917B (en) | 2014-08-08 | 2014-08-08 | A kind of Piezoelectric Driving and the micro hemispherical resonator gyro instrument of detection and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104197917A CN104197917A (en) | 2014-12-10 |
CN104197917B true CN104197917B (en) | 2017-09-08 |
Family
ID=52083245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410389959.9A Active CN104197917B (en) | 2014-08-08 | 2014-08-08 | A kind of Piezoelectric Driving and the micro hemispherical resonator gyro instrument of detection and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104197917B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104457724A (en) * | 2014-12-25 | 2015-03-25 | 中国电子科技集团公司第二十六研究所 | Hemispherical resonant gyro reading base structure with high reliability and preparation method |
CN104897146B (en) * | 2015-05-29 | 2018-05-29 | 上海交通大学 | Piezoelectric type hemispherical gyroscope and preparation method thereof outside face |
CN105115486B (en) * | 2015-07-17 | 2018-03-20 | 东南大学 | The processing method of the axle spherical shell resonance gyroscope of electrostatic suspension three |
CN105387852B (en) * | 2015-10-19 | 2018-02-02 | 中北大学 | The self-aligned technology preparation method of micro- half spherical top harmonic oscillator |
CN105371833B (en) * | 2015-11-19 | 2018-03-23 | 上海交通大学 | A kind of polycyclic outer S-shaped flexible beam resonant gyroscope of disk and preparation method thereof |
CN105371832B (en) * | 2015-11-19 | 2018-02-09 | 上海交通大学 | A kind of polycyclic interior twin beams of disk isolates annulus resonant gyroscope and preparation method thereof |
CN105486297B (en) * | 2015-11-19 | 2018-05-29 | 上海交通大学 | A kind of polycyclic interior S-shaped flexible beam resonant gyroscope of disk and preparation method thereof |
CN105547272B (en) * | 2016-01-26 | 2019-01-25 | 上海交通大学 | A full-angle control signal detection system for piezoelectric hemispherical resonant gyroscope |
CN105716596B (en) * | 2016-01-26 | 2018-10-23 | 上海交通大学 | The digital control detecting system of piezoelectricity hemispherical resonator gyroscope |
CN106123885B (en) * | 2016-06-20 | 2018-11-16 | 东南大学 | A kind of Double-casing harmonic oscillator and preparation method thereof |
CN106017450B (en) * | 2016-07-18 | 2020-06-12 | 上海交通大学 | Digital signal processing system of piezoelectric hemispherical resonance micro gyroscope |
CN107389050B (en) * | 2017-07-04 | 2020-07-31 | 东南大学 | Micro-hemispherical resonator gyroscope with accurately controlled inner and outer electrode gaps and processing method thereof |
CN108502843B (en) * | 2018-03-28 | 2019-07-19 | 中北大学 | A processing method of silicon microcup-shaped resonant gyroscope based on polysilicon growth method |
CN112161617B (en) * | 2020-10-09 | 2024-01-19 | 中国电子科技集团公司第二十六研究所 | Axisymmetric resonator |
CN112414388B (en) * | 2020-11-20 | 2023-03-07 | 中国电子科技集团公司第二十六研究所 | Hemispherical resonant gyroscope capacitor structure for angular parameter detection and processing method |
CN115612982B (en) * | 2022-09-27 | 2024-10-22 | 华中科技大学 | Low-loss metallized film plating method and product of quartz glass hemispherical harmonic oscillator |
WO2024077035A1 (en) | 2022-10-04 | 2024-04-11 | Enertia Microsystems Inc. | Vibratory gyroscopes with resonator attachments |
CN116625344B (en) * | 2023-07-26 | 2023-10-13 | 中国船舶集团有限公司第七〇七研究所 | Resonant gyroscope based on low-loss hemispherical harmonic oscillator patterned electrode |
CN118518085B (en) * | 2024-07-24 | 2024-10-01 | 中国人民解放军国防科技大学 | Piezoelectric ring-shaped micromechanical gyroscope and preparation method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4951508A (en) * | 1983-10-31 | 1990-08-28 | General Motors Corporation | Vibratory rotation sensor |
JP4967663B2 (en) * | 2007-01-09 | 2012-07-04 | ソニー株式会社 | Vibration type gyro sensor, control circuit and electronic device |
JP5088540B2 (en) * | 2007-05-16 | 2012-12-05 | ソニー株式会社 | DETECTING DEVICE, DETECTING METHOD, AND ELECTRONIC DEVICE |
CN101476888B (en) * | 2009-02-05 | 2011-01-12 | 上海交通大学 | Hard Magnetic Suspension Vibrating Micro Gyro |
US8631702B2 (en) * | 2010-05-30 | 2014-01-21 | Honeywell International Inc. | Hemitoroidal resonator gyroscope |
JP5761350B2 (en) * | 2011-08-01 | 2015-08-12 | 株式会社村田製作所 | Vibrator and vibratory gyro |
CN103528576B (en) * | 2012-07-05 | 2017-01-25 | 北方电子研究院安徽有限公司 | Hemispherical resonance micro mechanical gyroscope and processing technology thereof |
CN103115616B (en) * | 2013-01-21 | 2015-05-13 | 西北工业大学 | Micro hemispherical resonator gyro and preparation method thereof |
CN103344229A (en) * | 2013-07-05 | 2013-10-09 | 西北工业大学 | Miniature hemispherical resonant gyroscope based on SOI (Silicon on Insulator) silicon slice and manufacturing method of miniature hemispherical resonant gyroscope |
-
2014
- 2014-08-08 CN CN201410389959.9A patent/CN104197917B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104197917A (en) | 2014-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104197917B (en) | A kind of Piezoelectric Driving and the micro hemispherical resonator gyro instrument of detection and preparation method thereof | |
CN102706337B (en) | Piezoelectric disc micromechanical gyroscope | |
CN105486297B (en) | A kind of polycyclic interior S-shaped flexible beam resonant gyroscope of disk and preparation method thereof | |
CN104197909B (en) | A kind of pair of semiglobe miniature resonant gyroscope and preparation method thereof | |
CN102980565B (en) | Circular ring fluctuation micromechanical gyroscope and preparation method thereof | |
CN103344227B (en) | Electrostatic drives piezoelectric detection bulk acoustic resonance three axle microthrust test and preparation method thereof | |
CN104197910B (en) | Micro hemispherical resonator gyro instrument based on micro- ball and preparation method thereof | |
CN105004334B (en) | Electromagnetic type hemispherical gyroscope and preparation method thereof outside face | |
CN105371833A (en) | Disc multi-ring outer S-shaped flexible beam resonator gyro and preparation method thereof | |
CN104197916B (en) | Hemispheroid solid fluctuation micro-gyroscope and manufacturing method thereof | |
CN104897146B (en) | Piezoelectric type hemispherical gyroscope and preparation method thereof outside face | |
CN106289216B (en) | Inner ring and outer discrete two-electrode distributed micro-gyroscope and preparation method thereof | |
CN102353371A (en) | Triaxial microgyroscope for capacitance detection through static driving | |
CN105371832B (en) | A kind of polycyclic interior twin beams of disk isolates annulus resonant gyroscope and preparation method thereof | |
US20150330782A1 (en) | Mass-loaded coriolis vibratory gyroscope | |
CN104197908B (en) | Recessed annular piezoelectric resonator gyroscope and preparation method thereof | |
CN104197918B (en) | Semi-circular piezoelectric resonator gyroscope and preparation method thereof | |
CN103697875A (en) | Pin-type piezoelectric gyroscope for matching solid fluctuation modes | |
CN103322995B (en) | Piezoelectric Driving electrostatic detection bulk acoustic resonance three axle microthrust test and preparation method thereof | |
CN106153028B (en) | Internal and external discrete double-electrode distributed micro gyroscope and preparation method thereof | |
CN102278983B (en) | Silicon micro-gyroscope with triangular oscillator and manufacturing method thereof | |
CN102679967B (en) | Piezoelectric biaxial micro gyroscope with rocking mass block | |
CN102980566A (en) | Conical ring fluctuation micromechanical gyroscope and preparation method thereof | |
CN104197912A (en) | Both-end-fixed silicon-based miniature hemispherical resonant gyroscope and manufacturing method thereof | |
JP2001027529A (en) | Angular velocity sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |