CN106201436A - True Random Number Generator based on double coupling Fibonacci oscillation rings - Google Patents
True Random Number Generator based on double coupling Fibonacci oscillation rings Download PDFInfo
- Publication number
- CN106201436A CN106201436A CN201610664871.2A CN201610664871A CN106201436A CN 106201436 A CN106201436 A CN 106201436A CN 201610664871 A CN201610664871 A CN 201610664871A CN 106201436 A CN106201436 A CN 106201436A
- Authority
- CN
- China
- Prior art keywords
- xor
- gate
- inverter
- exclusive
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010355 oscillation Effects 0.000 title claims description 28
- 238000010168 coupling process Methods 0.000 title claims description 6
- 238000005859 coupling reaction Methods 0.000 title claims description 6
- 230000008878 coupling Effects 0.000 title claims description 5
- 238000005070 sampling Methods 0.000 claims abstract description 32
- 238000013461 design Methods 0.000 claims abstract description 13
- 101001122448 Rattus norvegicus Nociceptin receptor Proteins 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 11
- 238000004891 communication Methods 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000000739 chaotic effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000528 statistical test Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/58—Random or pseudo-random number generators
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
本发明公开了一种基于双耦合斐波那契振荡环的真随机数发生器,主要解决现有技术中真随机数发生器的产生真随机数速率低和随机性差的问题。其包括振荡电路和采样电路,该振荡电路由若干个斐波那契振荡环构成,每个斐波那契振荡环包括若干异或门、同或门和若干反向器,异或门和同或门数量相等,异或门、同或门及反向器的个数及其连接方式由设计时采用的反馈多项式确定。该振荡电路用于产生随机振荡信号;该采样电路由若干个采样子电路构成,用于对振荡电路产生的随机振荡信号进行采样,所有采样子电路的输出经过异或生成速率在100Mbit/s以上的真随机数。本发明结构简单、熵源随机性好,可用于保密通信。
The invention discloses a true random number generator based on double-coupled Fibonacci oscillating rings, which mainly solves the problems of low rate of true random number generation and poor randomness of the true random number generator in the prior art. It includes an oscillating circuit and a sampling circuit. The oscillating circuit is composed of several Fibonacci oscillating rings. Each Fibonacci oscillating ring includes several XOR gates, XOR gates and several inverters. The number of OR gates is equal, and the number of XOR gates, NOR gates and inverters and their connection methods are determined by the feedback polynomial used in the design. The oscillating circuit is used to generate random oscillating signals; the sampling circuit is composed of several sampling sub-circuits, which are used to sample the random oscillating signals generated by the oscillating circuit. of true random numbers. The invention has simple structure, good randomness of entropy source, and can be used for secure communication.
Description
技术领域technical field
本发明属于数字电路技术领域,尤其涉及一种真随机数生成器,可用于保密通信。The invention belongs to the technical field of digital circuits, in particular to a true random number generator which can be used for secure communication.
背景技术Background technique
安全性高的真随机数发生器对于密码系统是至关重要的,它们经常被用来产生密钥、初始向量和一些对抗密码攻击的随机序列。传统地,一个最常用于产生真随机数的方法是将热噪声放大,如彭海辉、刘新宇、黄洁的专利(专利公开号:CN101727308A)集成电路中真随机数的产生方法,通过对数字电源信号及数字电源信号产生的噪声进行采样,再用DES算法对数据进行处理来获取真随机数;于慧红的专利(专利公开号:CN101751240B)一种利用比较相等电阻热噪声产生随机数的真随机数发生器,采用比较器对相同电阻的热噪声信号进行比较处理得随机数序列。白国强、张晓峰、陈弘毅的专利(专利公开号:CN101819515A)基于环型振荡器的真随机数发生电路及真随机数发生器,利用两个带有输入端的高频环形振荡电路和一个低频环形振荡电路构成真随机数发生电路,再对其进行后处理;王坚、张鸿飞、崔珂、高原、梁昊、金革的专利(专利公开号:CN102375722A)一种真随机数生成方法及发生器,利用多个独立的带外部使能端的高频振荡环产生多路输出信号,从中选取采样信号对其他路信号进行采样异或得到真随机数。True random number generators with high security are crucial to cryptosystems, and they are often used to generate keys, initialization vectors, and some random sequences against cryptographic attacks. Traditionally, one of the most commonly used methods for generating true random numbers is to amplify thermal noise, such as Peng Haihui, Liu Xinyu, and Huang Jie's patent (patent publication number: CN101727308A) method for generating true random numbers in integrated circuits. and the noise generated by the digital power supply signal, and then use the DES algorithm to process the data to obtain a true random number; Yu Huihong's patent (patent publication number: CN101751240B) is a true random number generated by comparing equal resistance thermal noise The number generator uses a comparator to compare the thermal noise signals of the same resistance to obtain a random number sequence. Bai Guoqiang, Zhang Xiaofeng, and Chen Hongyi's patent (patent publication number: CN101819515A) is based on a ring oscillator-based true random number generator circuit and a true random number generator, using two high-frequency ring oscillator circuits with input terminals and a low-frequency ring oscillator The circuit constitutes a true random number generation circuit, and then post-processes it; the patent (patent publication number: CN102375722A) of Wang Jian, Zhang Hongfei, Cui Ke, Gao Yuan, Liang Hao, and Jin Ge is a true random number generation method and generator, Multiple independent high-frequency oscillation rings with external enable terminals are used to generate multiple output signals, and sampling signals are selected from them to sample XOR signals from other channels to obtain true random numbers.
上述一些方法由于使用外部随机源,所以产生的随机数随机性难以得到保障,当攻击者控制了外部随机源时,使用这些随机数是及其不安全的;一些方法是基于反向器组成的振荡环产生随机数的,由于这样的振荡环在一个振荡周期的随机性极小,要获得随机性较高真随机数,必须等待其随机性累加一定程度时才能采样输出,所以此类方法不能产生高速率的真随机数。Because some of the above methods use external random sources, the randomness of the generated random numbers is difficult to guarantee. When the attacker controls the external random sources, it is extremely unsafe to use these random numbers; some methods are based on reversers. Oscillating rings generate random numbers. Because the randomness of such an oscillating ring is extremely small in one oscillation cycle, to obtain a true random number with high randomness, it is necessary to wait for its randomness to accumulate to a certain extent before sampling and outputting. Therefore, this method cannot Generates true random numbers at a high rate.
发明内容Contents of the invention
本发明的目的在于针对上述已有技术的不足,提出一种基于双耦合斐波那契振荡环的真随机数生成器,以提高真随机数的产生速率和安全性。The object of the present invention is to propose a true random number generator based on double-coupled Fibonacci oscillating rings to improve the generation rate and security of true random numbers.
为实现上述目的,本发明包括:To achieve the above object, the present invention includes:
振荡电路,用于产生具有随机相位偏移的随机振荡信号;an oscillating circuit for generating a random oscillating signal with a random phase offset;
采样电路,用于对振荡电路产生的随机振荡信号进行采样,将连续模拟信号转化为离散数字信号进行输出。The sampling circuit is used for sampling the random oscillating signal generated by the oscillating circuit, and converting the continuous analog signal into a discrete digital signal for output.
其特征在于:It is characterized by:
所述振荡电路,包括:The oscillating circuit includes:
若干个相同的双耦合斐波那契振荡环构成,其中:Several identical double-coupled Fibonacci oscillation rings are formed, among which:
每个双耦合斐波那契振荡环,包括上下两个反相器组、k个异或门XOR和k个同或门XNOR,k的取值根据设计时给定的反馈多项式确定;Each double-coupled Fibonacci oscillation ring includes two upper and lower inverter groups, k exclusive OR gates XOR and k exclusive OR gates XNOR, and the value of k is determined according to the feedback polynomial given during design;
每个反向器组由r个反相器串联连接构成,即每个反相器的输出端除最后一个反相器外,均连接到下一个反相器的输入端,r为设计时给定的反馈多项式的次数;Each inverter group is composed of r inverters connected in series, that is, the output of each inverter except the last inverter is connected to the input of the next inverter, and r is the design given The degree of the given feedback polynomial;
每个异或门XOR和每个同或门XNOR均有三个输入端口和一个输出端口,每个异或门XOR与每个同或门XNOR连接如下:Each exclusive OR gate XOR and each exclusive OR gate XNOR has three input ports and one output port, and each exclusive OR gate XOR is connected to each exclusive OR gate XNOR as follows:
第j个异或门XOR的第一输入端口与第j+1个异或门XORj+1的输出端口连接,第二输入端口与第j+1个同或门XNORj+1的输出端口连接,第三输入端口与上反向器组中的第cj个反向器的输出端口连接,其中,1≤j≤k-1;The first input port of the jth exclusive OR gate XOR is connected to the output port of the j+1th exclusive OR gate XOR j+1 , and the second input port is connected to the output port of the j+1th exclusive OR gate XNOR j+1 connected, the third input port is connected to the output port of the cjth inverter in the upper inverter group, where 1≤j≤k-1;
cj的取值根据设计时给定的反馈多项式决定。The value of cj is determined according to the feedback polynomial given during design.
第j个同或门XNORj的第一输入端口与第j+1个同或门XNORj+1的输出端口连接,第二输入端口与第j+1个异或门XORj+1的输出端口连接,第三输入端口与下反向器组的第个cj反向器的输出端口连接;The first input port of the jth NOR gate XNOR j is connected to the output port of the j+1th NOR gate XNOR j+1 , and the second input port is connected to the output of the j+1th XNOR gate XOR j+1 port connection, the third input port is connected to the output port of the cj reverser of the lower reverser group;
第k个异或门XORk的第一输入端口与上反向器组中的第ck个反向器的输出端口连接,第二输入端口与上反向器组中的第r个反向器的输出端口连接,第三输入端口与自身的输出端口连接;The first input port of the kth XOR gate XOR k is connected to the output port of the ckth inverter in the upper inverter group, and the second input port is connected to the rth inverter in the upper inverter group connected to the output port, and the third input port is connected to its own output port;
第k个同或门XNORk的第一输入端口与下反向器组中的第ck个反向器的输出端口连接,第二输入端口与下反向器组中的第r个反向器的输出端口连接,第三输入端口与自身的输出端口连接。The first input port of the kth NOR gate XNOR k is connected to the output port of the ckth inverter in the lower inverter group, and the second input port is connected to the rth inverter in the lower inverter group connected to the output port, and the third input port is connected to its own output port.
本发明具有如下优点如下:The present invention has the following advantages as follows:
1.生成的真随机数稳定性强、输出速率高。1. The generated true random number has strong stability and high output rate.
本发明由于通过两个独立的斐波那契振荡环中的异或门进行连接来实现两个斐波那契振荡环之间的耦合,能够产生稳定的混沌振荡,利用该稳定的混沌振荡可产生稳定高速的真随机数。The present invention realizes the coupling between the two Fibonacci oscillation rings by connecting the XOR gates in the two independent Fibonacci oscillation rings, can generate stable chaotic oscillation, and utilize the stable chaotic oscillation to realize Generating stable and high-speed true random numbers.
2.本发明由于采用间隔采样样式的采样电路,即在两个距离最远的异或门和两个距离最远的同或门上进行采样,极大降低了采样信号的相关性,从而提高随机性。2. The present invention greatly reduces the correlation of the sampling signal due to the sampling circuit of the interval sampling pattern, that is, sampling on the two farthest XOR gates and the two farthest same OR gates, thereby improving randomness.
3.本发明采用反馈多项式进行设计,由于不同反馈多项式对应着不同双耦合斐波那契振荡环,增加了设计的多样性和灵活性。3. The present invention adopts feedback polynomials for design, and since different feedback polynomials correspond to different double-coupled Fibonacci oscillation rings, the diversity and flexibility of the design are increased.
附图说明Description of drawings
图1为本发明的原理框图;Fig. 1 is a block diagram of the present invention;
图2为本发明的电路结构图。Fig. 2 is a circuit structure diagram of the present invention.
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
参照图1,本发明包括振荡电路、采样电路。其中振荡电路由若干个双耦合斐波那契振荡环构成,用于产生随机振荡信号;采样电路由若干个采样子电路构成,用于对振荡电路产生的随机振荡信号进行采样,该采样电路中采样子电路的输出经过异或作为该采样电路的输出端口,输出真随机数序列。Referring to Fig. 1, the present invention includes an oscillating circuit and a sampling circuit. The oscillation circuit is composed of several double-coupled Fibonacci oscillation rings, which are used to generate random oscillation signals; the sampling circuit is composed of several sampling sub-circuits, which are used to sample the random oscillation signals generated by the oscillation circuit. The output of the sampling sub-circuit is XORed as the output port of the sampling circuit to output a true random number sequence.
参照图2,对本发明的振荡电路和采样电路结构描述如下:With reference to Fig. 2, oscillation circuit and sampling circuit structure of the present invention are described as follows:
所述振荡电路,由若干个双耦合斐波那契振荡环构成,每个双耦合斐波那契振荡环包括:上、下两个反相器组、k个异或门XOR、k个同或门XNOR,k取决于设计时所给反馈多项式;The oscillating circuit is composed of several double-coupled Fibonacci oscillating rings, and each double-coupled Fibonacci oscillating ring includes: upper and lower two inverter groups, k exclusive OR gates XOR, k same OR gate XNOR, k depends on the feedback polynomial given during design;
反馈多项式可以体现出振荡电路所具有的数学特性并且能形象地表示出振荡电路中逻辑门的连接方式。本设计所采用反馈多项式表示为其中fi为反馈多项式的系数,i为自变量x的次数,f0=fr=1,当0<i<r时,fi的值为1或0,r为反馈多项式的次数,r为不小于8的整数;The feedback polynomial can reflect the mathematical characteristics of the oscillation circuit and can visually express the connection mode of the logic gate in the oscillation circuit. The feedback polynomial used in this design is expressed as Among them, f i is the coefficient of the feedback polynomial, i is the degree of the independent variable x, f 0 =f r =1, when 0<i<r, the value of f i is 1 or 0, r is the degree of the feedback polynomial, r is an integer not less than 8;
k为0<i<r中,所有反馈多项式系数fi中值为1的个数;k is the number of 1 in all feedback polynomial coefficients f i in 0<i<r;
每个反向器组由r个反相器串联连接构成,即每个反相器的输出端除最后一个反相器外,均连接到下一个反相器的输入端;Each inverter group is composed of r inverters connected in series, that is, the output end of each inverter is connected to the input end of the next inverter except the last inverter;
每个异或门XOR和每个同或门XNOR均有三个输入端口和一个输出端口,且每个异或门XOR与每个同或门XNOR连接如下:Each exclusive OR gate XOR and each exclusive OR gate XNOR has three input ports and one output port, and each exclusive OR gate XOR is connected to each exclusive OR gate XNOR as follows:
第j个异或门XORj的第一输入端口与第j+1个异或门XORj+1的输出端口连接,第j个异或门XORj的第二输入端口与第j+1个同或门XNORj+1的输出端口连接,第j个异或门XORj的第三输入端口与上反向器组中的第cj个反向器的输出端口连接,其中,1≤j≤k-1;The first input port of the jth XOR gate XOR j is connected to the output port of the j+1th XOR gate XOR j+1 , and the second input port of the jth XOR gate XOR j is connected to the j+1th XOR gate XOR j+1 The output port of the same OR gate XNOR j+1 is connected, and the third input port of the jth exclusive OR gate XOR j is connected to the output port of the cjth inverter in the upper inverter group, where 1≤j≤ k-1;
第j个同或门XNORj的第一输入端口与第j+1个同或门XNORj+1的输出端口连接,第j个同或门XNORj的第二输入端口与第j+1个异或门XORj+1的输出端口连接,第j个同或门XNORj的第三输入端口与下反向器组的第个cj反向器的输出端口连接;The first input port of the jth NOR gate XNOR j is connected to the output port of the j+1th NOR gate XNOR j+1 , and the second input port of the jth NOR gate XNOR j is connected to the j+1th NOR gate XNOR j+1 The output port of the exclusive OR gate XOR j+1 is connected, and the third input port of the jth same OR gate XNOR j is connected with the output port of the cj inverter of the lower inverter group;
第k个异或门XORk的第一输入端口与上反向器组中的第ck个反向器的输出端口连接,第k个异或门XORk的第二输入端口与上反向器组中的第r个反向器的输出端口连接,第k个异或门XORk的第三输入端口与自身的输出端口连接;The first input port of the kth XOR gate XOR k is connected to the output port of the ck inverter in the upper inverter group, and the second input port of the kth XOR gate XOR k is connected to the upper inverter The output port of the rth inverter in the group is connected, and the third input port of the kth XOR gate XOR k is connected with its own output port;
第k个同或门XNORk的第一输入端口与下反向器组中的第ck个反向器的输出端口连接,第k个同或门XNORk的第二输入端口与下反向器组中的第r个反向器的输出端口连接,第k个同或门XNORk的第三输入端口与自身的输出端口连接。The first input port of the k-th NOR gate XNOR k is connected to the output port of the ck-th inverter in the lower inverter group, and the second input port of the k-th NOR gate XNOR k is connected to the lower inverter The output port of the rth inverter in the group is connected, and the third input port of the kth NOR gate XNOR k is connected with its own output port.
上述cj、ck的取值决于设计时所采用的反馈多项式;The values of cj and ck above depend on the feedback polynomial used in the design;
本设计所采用反馈多项式表示为其中fi为反馈多项式的系数,i为自变量x的次数,f0=fr=1,当0<i<r时,fi的值为1或0,r为反馈多项式的次数,r为不小于8的整数;The feedback polynomial used in this design is expressed as Among them, f i is the coefficient of the feedback polynomial, i is the degree of the independent variable x, f 0 =f r =1, when 0<i<r, the value of f i is 1 or 0, r is the degree of the feedback polynomial, r is an integer not less than 8;
将所有值为1的反馈多项式系数fi的下标i按照从小到大排列成一个序列,可表示为c1、c2、..cj、..ck,其中cj为这个序列中的第j个数的值。Arrange the subscript i of all feedback polynomial coefficients f i with a value of 1 into a sequence from small to large, which can be expressed as c1, c2, ..cj, ..ck, where cj is the jth number in this sequence value.
所述采样电路,由若干个采样子电路和一个异或门即第k+2异或门XORk+2构成。The sampling circuit is composed of several sampling sub-circuits and an exclusive OR gate, that is, the k+2th exclusive OR gate XOR k+2 .
该每个采样子电路包括:四个D触发器,分别是第一D触发器D1、第二D触发器D2、第三D触发器D3、第四D触发器D4和1个异或门即第k+1异或门XORk+1。这四个D触发器分别与振荡电路中的双耦合斐波那契振荡环中的四个异或门相连,即第一触发器D1的输入为第一异或门XOR1的输出,第二触发器D2的输入为第一异或门XNOR1的输出,第三触发器D3的输入为第k异或门XORk的输出,第四触发器D4的输入为第k同或门XNORk的输出;该四个D触发器的输出作为第k+1异或门XORk+1的输入,第k+1异或门XOR k+1的输出作为采样电路子电路的输出,所有采样子电路的输出作为第k+2异或门XOR k+2的输入,第k+2异或门XORk+2输出是整个真随机数发生器的输出,该四个D触发器、第k+1异或门XOR k+1、第k+2异或门XOR k+2均由外部时钟电路提供的时钟CLK来控制,时钟CLK的最大频率为200MHz。Each sampling sub-circuit includes: four D flip-flops, respectively the first D flip-flop D 1 , the second D flip-flop D 2 , the third D flip-flop D 3 , the fourth D flip-flop D 4 and one The exclusive OR gate is the k+1th exclusive OR gate XOR k+1 . The four D flip-flops are respectively connected to the four exclusive OR gates in the double-coupled Fibonacci oscillation ring in the oscillation circuit, that is, the input of the first flip-flop D1 is the output of the first exclusive OR gate XOR 1 , and the first The input of the second flip-flop D2 is the output of the first exclusive OR gate XNOR 1 , the input of the third flip-flop D3 is the output of the kth exclusive OR gate XOR k , and the input of the fourth flip-flop D4 is the kth exclusive OR gate The output of the gate XNOR k ; the output of the four D flip-flops is used as the input of the k+1 exclusive OR gate XOR k +1, and the output of the k+1 exclusive OR gate XOR k+1 is used as the output of the sampling circuit sub-circuit, The output of all sampling sub-circuits is used as the input of the k+2 exclusive OR gate XOR k +2, and the output of the k+2 exclusive OR gate XOR k+2 is the output of the entire true random number generator. The four D flip-flops, Both the k+1th XOR gate XOR k+1 and the k+2th XOR gate XOR k+2 are controlled by the clock CLK provided by the external clock circuit, and the maximum frequency of the clock CLK is 200 MHz.
实施例:Example:
本实例中采用反馈多项式:f(x)=1+x+x3+x5+x13+x16,其等价于反馈多项式中f0=fr=1,当0<i<r时,其反馈多项式系数f1=f3=f5=f13=1,该反馈多项式系数中值为1的系数的个数有4个,即k为4;In this example, the feedback polynomial is used: f(x)=1+x+x 3 +x 5 +x 13 +x 16 , which is equivalent to the feedback polynomial where f 0 =f r =1, when 0<i<r, its feedback polynomial coefficient f 1 =f 3 =f 5 =f 13 =1, the number of coefficients with a value of 1 among the feedback polynomial coefficients is 4 , that is, k is 4;
将系数值为1的反馈多项式系数fi的下标i按照从小到大排列成的序列c1、c2、..cj、..ck,即为1、3、5、13;The subscript i of the feedback polynomial coefficient f i with a coefficient value of 1 is arranged in a sequence c1, c2, ..cj, ..ck from small to large, which is 1, 3, 5, 13;
根据以上所给的反馈多项式:f(x)=1+x+x3+x5+x13+x16,设计振荡电路的每个耦合斐波那契振荡环包括:上、下各有16个反向器的两个反向器组、四个异或门即第一异或门XOR1、第二异或门XOR2、第三异或门XOR3、第四异或门XOR4和四个同或门即第一同或门XNOR1、第二同或门XNOR2、第三同或门XNOR3、第四同或门XNOR4,每个异或门XOR与每个同或门XNOR连接如下:According to the feedback polynomial given above: f(x)=1+x+x 3 +x 5 +x 13 +x 16 , each coupling Fibonacci oscillation ring of the designed oscillation circuit includes: the upper and the lower have 16 Two inverter groups of three inverters, four exclusive OR gates, namely the first exclusive OR gate XOR 1 , the second exclusive OR gate XOR 2 , the third exclusive OR gate XOR 3 , the fourth exclusive OR gate XOR 4 and The four XNOR gates are the first XNOR gate XNOR 1 , the second XNOR gate XNOR 2 , the third XNOR gate XNOR 3 , and the fourth XNOR gate XNOR 4 , each XOR gate is connected with each XNOR gate The XNOR connection is as follows:
第一异或门XOR1的第一输入端口与第二异或门XOR2的输出端口连接,第一异或门XOR1的第二输入端口与第二同或门XNOR2的输出端口连接,第一异或门XOR1的第三输入端口与上反向器组中的第1个反向器的输出端口连接;The first input port of the first exclusive OR gate XOR 1 is connected to the output port of the second exclusive OR gate XOR 2 , the second input port of the first exclusive OR gate XOR 1 is connected to the output port of the second exclusive OR gate XNOR 2 , The third input port of the first XOR gate XOR 1 is connected to the output port of the first inverter in the upper inverter group;
第一同或门XNOR1的第一输入端口与第二同或门XNOR2的输出端口连接,第一同或门XNOR1的第二输入端口与第二异或门XOR2的输出端口连接,第一同或门XNOR1的第三输入端口与下反向器组中的第1个反向器的输出端口连接;The first input port of the first NOR gate XNOR 1 is connected to the output port of the second NOR gate XNOR 2 , the second input port of the first NOR gate XNOR 1 is connected to the output port of the second XOR gate XOR 2 , The third input port of the first NOR gate XNOR 1 is connected to the output port of the first inverter in the lower inverter group;
第二异或门XOR2的第一输入端口与第三异或门XOR3的输出端口连接,第二异或门XOR2的第二输入端口与第三同或门XNOR3的输出端口连接,第二异或门XOR2的第三输入端口与上反向器组中的第3个反向器的输出端口连接;The first input port of the second exclusive OR gate XOR 2 is connected to the output port of the third exclusive OR gate XOR 3 , the second input port of the second exclusive OR gate XOR 2 is connected to the output port of the third exclusive OR gate XNOR 3 , The third input port of the second XOR gate XOR 2 is connected to the output port of the third inverter in the upper inverter group;
第二同或门XNOR2的第一输入端口与第三同或门XNOR3的输出端口连接,第二同或门XNOR2的第二输入端口与第三异或门XOR3的输出端口连接,第二同或门XNOR2的第三输入端口与下反向器组中的第3个反向器的输出端口连接;The first input port of the second NOR gate XNOR 2 is connected to the output port of the third NOR gate XNOR 3 , and the second input port of the second NOR gate XNOR 2 is connected to the output port of the third XNOR gate XOR 3 , The third input port of the second NOR gate XNOR 2 is connected to the output port of the third inverter in the lower inverter group;
第三异或门XOR3的第一输入端口与第四异或门XOR4的输出端口连接,第三异或门XOR3的第二输入端口与第四同或门XNOR4的输出端口连接,第三异或门XOR3的第三输入端口与上反向器组中的第5个反向器的输出端口连接;The first input port of the third exclusive OR gate XOR 3 is connected to the output port of the fourth exclusive OR gate XOR 4 , the second input port of the third exclusive OR gate XOR 3 is connected to the output port of the fourth exclusive OR gate XNOR 4 , The third input port of the third XOR gate XOR 3 is connected to the output port of the fifth inverter in the upper inverter group;
第三同或门XNOR3的第一输入端口与第四同或门XNOR4的输出端口连接,第三同或门XNOR3的第二输入端口与第四异或门XOR4的输出端口连接,第三同或门XNOR3的第三输入端口与下反向器组中的第5个反向器的输出端口连接;The first input port of the third NOR gate XNOR 3 is connected to the output port of the fourth NOR gate XNOR 4 , and the second input port of the third NOR gate XNOR 3 is connected to the output port of the fourth XNOR gate XOR 4 , The third input port of the third NOR gate XNOR 3 is connected to the output port of the fifth inverter in the lower inverter group;
第四异或门XOR4的第一输入端口与上反向器组中的第13个反向器的输出端口连接,第四异或门XOR4的第二输入端口与上反向器组中的第16个反向器的输出端口连接,第四异或门XOR4的第三输入端口与自身的输出端口连接;The first input port of the fourth exclusive OR gate XOR 4 is connected to the output port of the 13th inverter in the upper inverter group, and the second input port of the fourth exclusive OR gate XOR 4 is connected to the output port of the upper inverter group. The output port of the 16th inverter is connected, and the third input port of the fourth XOR gate XOR 4 is connected with its own output port;
第四同或门XNOR4的第一输入端口与下反向器组中的第13个反向器的输出端口连接,第四同或门XNOR4的第二输入端口与下反向器组中的第16个反向器的输出端口连接,第四同或门XNOR4的第三输入端口与自身的输出端口连接。The first input port of the fourth NOR gate XNOR 4 is connected with the output port of the 13th inverter in the lower inverter group, and the second input port of the fourth NOR gate XNOR 4 is connected with the output port of the 13th inverter in the lower inverter group. The output port of the 16th inverter is connected, and the third input port of the fourth NOR gate XNOR 4 is connected with its own output port.
采样子电路的四个D触发器在100MHZ频率的外部时钟驱动下分别对振荡电路中的双耦合斐波那契振荡环中的四个异或门进行采样,即第一触发器D1在100MHZ频率的外部时钟驱动下对第一异或门XOR1进行采样,第二触发器D2在100MHZ频率的外部时钟驱动下对第一异或门XNOR1进行采样,第三触发器D3在100MHZ频率的外部时钟驱动下对第四异或门XOR4进行采样,第四触发器D4在100MHZ频率的外部时钟驱动下对第四同或门XNOR4进行采样;该四个D触发器采样结果经过第五异或门XOR5异或作为采样电路子电路的输出,所有采样子电路的输出经过第六异或门XOR6异或输出产生1000组1M的真随机序列。The four D flip-flops of the sampling sub-circuit respectively sample the four XOR gates in the double-coupled Fibonacci oscillation ring in the oscillation circuit under the drive of an external clock with a frequency of 100MHZ, that is, the first flip-flop D 1 operates at 100MHZ The first XOR gate XOR 1 is sampled under the drive of an external clock with a frequency of 100MHZ, the second flip-flop D 2 is driven by an external clock with a frequency of 100MHZ to sample the first XNOR gate XNOR 1 , and the third flip-flop D 3 is at 100MHZ The fourth XOR gate XOR 4 is sampled under the drive of an external clock with a frequency of 100 MHz, and the fourth flip-flop D 4 is sampled with the fourth NOR gate XNOR 4 driven by an external clock with a frequency of 100 MHz; the sampling results of the four D flip-flops After the fifth exclusive OR gate XOR 5 is used as the output of the sampling circuit sub-circuit, the outputs of all sampling sub-circuits are output through the sixth exclusive OR gate XOR 6 to generate 1000 groups of 1M true random sequences.
本发明的效果可通过以下测试进行说明:Effect of the present invention can be illustrated by following test:
1、测试方法:1. Test method:
采用美国国家标准和技术研究所NIST提供的SP800-22随机数检测标准对上述本实例产生的1000组1M的真随机序列的随机性进行检测,该检测标准包含15项检测内容,每一项检测产生的检测结果中包含一个P-value值和一个通过率Propotion值。当P-value值不低于0.001且通过率值不低于0.9806,表示该项检测内容通过。Use the SP800-22 random number detection standard provided by the National Institute of Standards and Technology NIST to detect the randomness of the 1000 sets of 1M true random sequences generated in the above example. The detection standard includes 15 detection items, each of which is The generated test result contains a P-value value and a pass rate Propotion value. When the P-value value is not lower than 0.001 and the pass rate value is not lower than 0.9806, it means that the test content is passed.
2、检测结果:2. Test results:
对用本实例产生的1000组1M的真随机序列,用美国国家标准和技术研究所NIST提供的SP800-22随机数检测标准进行检测,结果如表1For the 1000 sets of 1M true random sequences generated in this example, use the SP800-22 random number detection standard provided by the National Institute of Standards and Technology NIST to detect the results, as shown in Table 1
表1测试结果Table 1 Test results
从表1可见,本实例产生的真随机序列每项指标均达到了随机数的要求标准,表明本实例产生的随机数具有良好的随机性。It can be seen from Table 1 that each index of the true random sequence generated in this example meets the requirements of random numbers, indicating that the random numbers generated in this example have good randomness.
上述实例仅用具体实施说明本发明的实现方法,在此基础上可以有多种变形,这种基于本发明的结构变化均包含在本发明的保护范围之内。The above examples only illustrate the implementation method of the present invention with specific implementation, and there can be many modifications on this basis, and such structural changes based on the present invention are all included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610664871.2A CN106201436B (en) | 2016-08-12 | 2016-08-12 | True Random Number Generator based on double coupling Fibonacci oscillation rings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610664871.2A CN106201436B (en) | 2016-08-12 | 2016-08-12 | True Random Number Generator based on double coupling Fibonacci oscillation rings |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106201436A true CN106201436A (en) | 2016-12-07 |
CN106201436B CN106201436B (en) | 2018-08-31 |
Family
ID=57515433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610664871.2A Active CN106201436B (en) | 2016-08-12 | 2016-08-12 | True Random Number Generator based on double coupling Fibonacci oscillation rings |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106201436B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108345446A (en) * | 2018-03-08 | 2018-07-31 | 太原理工大学 | A kind of high speed random-number generating method and device |
CN111538475A (en) * | 2020-03-25 | 2020-08-14 | 上海交通大学 | Construction system and method of true random number generator based on FPGA |
CN107918535B (en) * | 2017-11-17 | 2021-02-19 | 宁波大学 | Metastable state true random number generator realized on FPGA |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101751240A (en) * | 2008-12-04 | 2010-06-23 | 北京中电华大电子设计有限责任公司 | True random number generator circuit for comparing thermal noises of equal resistors |
CN101819515A (en) * | 2010-02-08 | 2010-09-01 | 清华大学 | Ring-shaped oscillator based truly random number generation circuit and truly random number generator |
CN102130667A (en) * | 2011-01-18 | 2011-07-20 | 浙江大学 | A Digital True Random Oscillation Signal Generator |
CN102375722A (en) * | 2010-08-09 | 2012-03-14 | 中国科学技术大学 | True random number generation method and generator |
CN103049242A (en) * | 2012-12-04 | 2013-04-17 | 清华大学 | Digital true random number generator circuit |
CN103885747A (en) * | 2014-02-27 | 2014-06-25 | 浙江大学 | Low-power-consumption random number generator |
CN105426159A (en) * | 2015-12-22 | 2016-03-23 | 上海爱信诺航芯电子科技有限公司 | True random number generator based on digital circuit |
-
2016
- 2016-08-12 CN CN201610664871.2A patent/CN106201436B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101751240A (en) * | 2008-12-04 | 2010-06-23 | 北京中电华大电子设计有限责任公司 | True random number generator circuit for comparing thermal noises of equal resistors |
CN101819515A (en) * | 2010-02-08 | 2010-09-01 | 清华大学 | Ring-shaped oscillator based truly random number generation circuit and truly random number generator |
CN102375722A (en) * | 2010-08-09 | 2012-03-14 | 中国科学技术大学 | True random number generation method and generator |
CN102130667A (en) * | 2011-01-18 | 2011-07-20 | 浙江大学 | A Digital True Random Oscillation Signal Generator |
CN103049242A (en) * | 2012-12-04 | 2013-04-17 | 清华大学 | Digital true random number generator circuit |
CN103885747A (en) * | 2014-02-27 | 2014-06-25 | 浙江大学 | Low-power-consumption random number generator |
CN105426159A (en) * | 2015-12-22 | 2016-03-23 | 上海爱信诺航芯电子科技有限公司 | True random number generator based on digital circuit |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107918535B (en) * | 2017-11-17 | 2021-02-19 | 宁波大学 | Metastable state true random number generator realized on FPGA |
CN108345446A (en) * | 2018-03-08 | 2018-07-31 | 太原理工大学 | A kind of high speed random-number generating method and device |
CN111538475A (en) * | 2020-03-25 | 2020-08-14 | 上海交通大学 | Construction system and method of true random number generator based on FPGA |
CN111538475B (en) * | 2020-03-25 | 2023-06-23 | 上海交通大学 | System and method for constructing true random number generator based on FPGA |
Also Published As
Publication number | Publication date |
---|---|
CN106201436B (en) | 2018-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106293616B (en) | True Random Number Generator based on time delay feedback oscillator | |
CN102375722B (en) | True random number generation method and generator | |
CN102968290B (en) | A kind of true Random Number Generator of isomery lightweight | |
CN102662625A (en) | True random number generator and realization method thereof | |
WO2019195953A1 (en) | Two-input exclusive-or gate-based low-power consumption random number generation apparatus | |
CN113672199B (en) | A multi-entropy source random number generator with the function of physically unclonable function | |
CN106201436B (en) | True Random Number Generator based on double coupling Fibonacci oscillation rings | |
CN107479857A (en) | Random number produces and post processing circuitry | |
CN106293615B (en) | True Random Number Generator based on fully connected network | |
Lu et al. | A compact, lightweight and low-cost 8-bit datapath AES circuit for IOT applications in 28nm CMOS | |
CN103049242B (en) | digital true random number generator circuit | |
CN105354008A (en) | Output circuit and output method of random number generator | |
Wang et al. | On the linear complexity of Legendre sequences over F q | |
CN103701591A (en) | Sequence password realization method and key stream generating method and device | |
CN114911455A (en) | High-speed pseudo-random number generation method based on FPGA and high-speed pseudo-random number generator | |
Zhao et al. | High throughput implementation of SMS4 on FPGA | |
CN110750233B (en) | A Random Number Generator Based on Logic Gate Asymmetric Autonomous Boolean Network | |
Li et al. | A Fast Modular Inversion FPGA Implementation over GF (2 m) using Modified x 2n Unit | |
CN110795063B (en) | Physical random number generation method with adjustable power consumption and rate | |
Tamura et al. | 1.68 μJ/signature-generation 256-bit ECDSA over GF (p) signature generator for IoT devices | |
Tsoi et al. | High performance physical random number generator | |
CN111966329A (en) | A True Random Number Generator Based on Physically Unclonable Function PUF | |
CN106325814B (en) | True Random Number Generator based on double-ring coupled oscillating circuit | |
CN116522296A (en) | Strong PUF-oriented machine learning-resistant CRP confusion method | |
Peng et al. | A side-channel attack resistant AES with 500mbps, 1.92 pj/bit PVT variation tolerant true random number generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |