CN105826518B - 锂电池用多层薄膜负极、制备方法及应用 - Google Patents
锂电池用多层薄膜负极、制备方法及应用 Download PDFInfo
- Publication number
- CN105826518B CN105826518B CN201610169397.6A CN201610169397A CN105826518B CN 105826518 B CN105826518 B CN 105826518B CN 201610169397 A CN201610169397 A CN 201610169397A CN 105826518 B CN105826518 B CN 105826518B
- Authority
- CN
- China
- Prior art keywords
- film
- tin
- thin film
- plural layers
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0605—Carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0423—Physical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0423—Physical vapour deposition
- H01M4/0426—Sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种锂电池用多层薄膜负极、制备方法及应用,属于锂离子电池技术领域。针对锡基电池在锂嵌脱时因体积变化导致锡基体开裂与粉化失效,以及纳米颗粒构成的电极首次循环容量损失明显而非纳米晶薄膜在提高循环性能方面幅度有限等问题,本发明提供了一种由碳薄膜和锡薄膜构成的多层薄膜负极,其中碳薄膜采用真空镀膜工艺制备,锡薄膜采用溅射镀膜工艺制备,该多层膜结构能够提供较多的嵌锂通道和嵌锂位置,更有利于锂离子嵌脱,同时碳薄膜具有弹性体和电子传输网络功能,能缓解锡电极充放电过程中由体积膨胀引起的电极崩塌,作为电子传输网络还能保持锡电极在深度循环后的高利用率。
Description
技术领域
本发明涉及一种锂电池用多层薄膜负极,同时还涉及该负极的制备方法及应用,属于锂离子电池技术领域。
背景技术
随着多功能便携式和高能量电子设备需求的日益增长,以及为减小环境污染而提出的使用电动汽车的迫切需求,开发高比容量、高稳定性、高安全性、长寿命、低成本的新型锂离子电池显得尤为重要。负极材料是锂电池的重要组成部分,对锂电池的综合性能起决定性作用。目前,商业化的碳负极材料主要存在以下问题:1)实际比容量低,在300~330mAh/g之间;2)首次不可逆容量损失大,锂不可逆地嵌入晶格形成固体电解质界面膜;3)倍率放电性能差,受限于锂离子扩散系数(约10-10cm2/s)。研究表明,对碳负极材料进行掺杂改性或表面处理能在一定程度上提高其比容量,但由于碳材料的理论比容量较低(372mAh/g),提升幅度甚为有限。
锡基负极材料具有高比容量和低成本的优势,现已成为国际上研究的主流负极材料之一。锡与锂可形成高原子比的Li22Sn5合金相,具有高达990mAh/g的理论比容量,是开发高性能锡基负极材料的基础,但是纯锡作为负极材料时在合金化和去合金化过程中体积变化极大,而锡自身的机械性能使之不能抵挡由此产生的应力,因此电极易出现变形与开裂。同理,锡基负极材料中起主要作用的活性物质是锡单质,它能与锂形成锂锡合金,并伴随锂离子的不断嵌脱,在该过程中锡基体将产生巨大的体积变化(达259%),导致电极变形与开裂,从而逐渐崩塌粉化失效,表现出较差的充放电循环性能。但如果锡颗粒足够小,就能在一定程度上提高其循环性能,而小颗粒伴有高比表面积,在形成SEI膜过程中易造成首周比容量的严重衰减。公开号CN101414674A的发明专利公开了一种锡/碳纳米多层膜负极,通过在铜箔基片上制备锡/碳纳米多层膜,能减弱锡嵌脱锂时体积变化导致的内应力,保持较为完整的薄膜初始结构,然而该锡/碳纳米多层膜负极经20次充放电循环后容量仅维持在515mAh/g,首次库仑效率73%,电极性能还有待进一步提高。
发明内容
本发明的目的是提供一种具有高比容量和高循稳定性的多层薄膜负极。
同时,本发明还提供一种多层薄膜负极的制备方法。
最后,本发明再提供一种多层薄膜负极在锂电池中的应用。
为了实现以上目的,本发明所采用的技术方案是:
多层薄膜负极,以铜箔(Cu)为基底,其上交替叠置有碳薄膜(C)和锡薄膜(Sn);碳薄膜采用真空镀膜工艺制备,工艺参数为:真空度小于10-3Pa,碳棒,电流35~45A,镀膜时间50~70s,膜厚30~50nm;锡薄膜采用溅射镀膜工艺制备,工艺参数为:氩气气氛,真空度5~10Pa,锡靶材,电压880~930V,离子流3~7mA,镀膜时间15~45min,膜厚100~200nm。
所述碳薄膜为无定形非晶碳薄膜;锡薄膜为沉积态,形成了部分纳米晶和大部分非晶态的锡薄膜。
优选的,在铜箔基底上依次叠置有碳薄膜和锡薄膜,层数为两层(C/Sn)或三层(C/Sn/C),或者依次叠置有锡薄膜和碳薄膜,层数为两层(Sn/C)。
多层薄膜负极的制备方法,包括方案一和方案二;
方案一的步骤如下:
1)以铜箔为基底,采用真空镀膜工艺在基底表面镀制碳薄膜,工艺参数为:真空度小于10-3Pa,碳棒,电流35~45A,镀膜时间50~70s;
2)采用溅射镀膜工艺在碳薄膜上镀制锡薄膜,工艺参数为:氩气气氛,真空度5~10Pa,锡靶材,电压880~930V,离子流3~7mA,镀膜时间15~45min;
或者包括步骤3),步骤3)的操作同步骤1);
方案二的步骤如下:
1)以铜箔为基底,采用溅射镀膜工艺在基底表面镀制锡薄膜,工艺参数为:氩气气氛,真空度5~10Pa,锡靶材,电压880~930V,离子流3~7mA,镀膜时间15~45min;
2)采用真空镀膜工艺在锡薄膜上镀制碳薄膜,工艺参数为:真空度小于10-3Pa,碳棒,电流35~45A,镀膜时间50~70s。
一种采用上述多层薄膜负极的锂离子电池。具体的,以纯锂片为正极,六氟磷酸锂为电解液溶质,体积比4:3:3的EC、EMC、DEC为溶剂,微孔聚乙烯或聚丙烯膜为隔膜,组装成扣式半电池。
本发明的有益效果:
针对锡基电池在锂嵌脱时因体积变化导致锡基体开裂与粉化失效,以及纳米颗粒构成的电极首次循环容量损失明显而非纳米晶薄膜在提高循环性能方面幅度有限等问题,提出一种由碳薄膜和锡薄膜构成的多层薄膜负极,其中碳薄膜采用真空镀膜工艺制备,锡薄膜采用溅射镀膜工艺制备,该多层膜结构能够提供较多的嵌锂通道和嵌锂位置,更有利于锂离子嵌脱,同时碳薄膜具有弹性体和电子传输网络功能,能缓解锡电极充放电过程中由体积膨胀引起的电极崩塌,作为电子传输网络还能保持锡电极在深度循环后的高利用率。
本发明可通过调节碳薄膜和锡薄膜的位置及厚度控制电极的比容量和循环性能,其中C/Sn薄膜电极在0.5C(496mA·g-1)电流密度下经45次循环后比容量仍保持在700mA·h·g-1,Sn/C薄膜电极经70次循环后比容量仍保持在700mA·h·g-1以上,而三明治结构C/Sn/C薄膜电极可通过调节锡薄膜的厚度优化比容量和循环性能。同时,多层薄膜负极具有良好的倍率性能。
附图说明
图1为实施例1中多层薄膜负极的显微组织图;
图2为实施例1~2中扣式半电池在0.5C(496mA·g-1)测试电流下的循环性能;
图3为实施例3~5及对比例1中扣式半电池在0.5C(496mA·g-1)测试电流下的循环性能;
图4为实施例3~5中扣式半电池在0.1C(99.3mA·g-1)测试电流下的循环性能;
图5为实施例1~2及对比例1中扣式半电池在不同测试电流下的循环性能。
具体实施方式
下述实施例仅对本发明作进一步详细说明,但不构成对本发明的任何限制。
实施例1
多层薄膜负极,其制备步骤如下:
1)以铜箔集流体为基底,采用真空镀膜工艺在基底表面镀制碳薄膜,工艺参数为:高真空度(低于10-3Pa),规格Φ5mm×100mm的碳棒,电流40A,热蒸发60s,形成厚度约50nm的碳薄膜;
2)采用溅射镀膜工艺在碳薄膜上镀制锡薄膜,工艺参数为:氩气气氛,真空度7Pa,锡靶材,电压900V,离子流5mA,溅射30min,形成厚度约150nm的锡薄膜,即得。显微组织图见图1。
扣式半电池,采用上述多层薄膜负极,并以纯锂片为正极,六氟磷酸锂为电解液溶质,体积比4:3:3的EC、EMC、DEC为溶剂,微孔聚乙烯膜为隔膜制得。
实施例2
多层薄膜负极,其制备步骤如下:
1)以铜箔集流体为基底,采用溅射镀膜工艺在基底表面镀制锡薄膜,工艺参数为:氩气气氛,真空度7Pa,锡靶材,电压900V,离子流5mA,溅射30min,形成厚度约150nm的锡薄膜;
2)采用真空镀膜工艺在锡薄膜上镀制碳薄膜,工艺参数为:高真空度(低于10- 3Pa),规格Φ5mm×100mm的碳棒,电流40A,热蒸发60s,形成厚度约50nm的碳薄膜,即得。
扣式半电池的组成及结构同实施例1。
实施例3
多层薄膜负极,其制备步骤如下:
1)以铜箔集流体为基底,采用真空镀膜工艺在基底表面镀制碳薄膜,工艺参数为:高真空度(低于10-3Pa),规格Φ5mm×100mm的碳棒,电流40A,热蒸发60s,形成厚度约50nm的碳薄膜;
2)采用溅射镀膜工艺在碳薄膜上镀制锡薄膜,工艺参数为:氩气气氛,真空度7Pa,锡靶材,电压900V,离子流5mA,溅射15min,形成厚度约100nm的锡薄膜;
3)重复步骤1),在锡薄膜上镀制一层厚度约50nm的碳薄膜,即得。
扣式半电池的组成及结构同实施例1。
实施例4
多层薄膜负极,其制备步骤如下:
1)以铜箔集流体为基底,采用真空镀膜工艺在基底表面镀制碳薄膜,工艺参数为:高真空度(低于10-3Pa),规格Φ5mm×100mm的碳棒,电流40A,热蒸发60s,形成厚度约50nm的碳薄膜;
2)采用溅射镀膜工艺在碳薄膜上镀制锡薄膜,工艺参数为:氩气气氛,真空度7.2Pa,锡靶材,电压880V,离子流5mA,溅射30min,形成厚度约150nm的锡薄膜;
3)重复步骤1),在锡薄膜上镀制一层厚度约50m的碳薄膜,即得。
扣式半电池的组成及结构同实施例1。
实施例5
多层薄膜负极,其制备步骤如下:
1)以铜箔集流体为基底,采用真空镀膜工艺在基底表面镀制碳薄膜,工艺参数为:高真空度(低于10-3Pa),规格Φ5mm×100mm的碳棒,电流40A,热蒸发60s,形成厚度约50nm的碳薄膜;
2)采用溅射镀膜工艺在碳薄膜上镀制锡薄膜,工艺参数为:氩气气氛,真空度6.8Pa,锡靶材,电压930V,离子流5mA,溅射45min,形成厚度约200nm的锡薄膜;
3)重复步骤1),在锡薄膜上镀制一层厚度约50nm的碳薄膜,即得。
扣式半电池的组成及结构同实施例1。
实施例6
多层薄膜负极,其制备步骤如下:
1)以铜箔集流体为基底,采用真空镀膜工艺在基底表面镀制碳薄膜,工艺参数为:高真空度(低于10-3Pa),规格Φ5mm×100mm的碳棒,电流35A,热蒸发60s,形成厚度约50nm的碳薄膜;
2)采用溅射镀膜工艺在碳薄膜上镀制锡薄膜,工艺参数为:氩气气氛,真空度7Pa,锡靶材,电压910V,离子流3mA,溅射15min,形成厚度约100nm的锡薄膜,即得;
3)重复步骤1),在锡薄膜上镀制一层厚度约50m的碳薄膜,即得。
扣式半电池的组成及结构同实施例1。
实施例7
多层薄膜负极,其制备步骤如下:
1)以铜箔集流体为基底,采用真空镀膜工艺在基底表面镀制碳薄膜,工艺参数为:高真空度(低于10-3Pa),规格Φ5mm×100mm的碳棒,电流45A,热蒸发60s,形成厚度约50nm的碳薄膜;
2)采用溅射镀膜工艺在碳薄膜上镀制锡薄膜,工艺参数为:氩气气氛,真空度7.2Pa,锡靶材,电压880V,离子流7mA,溅射30min,形成厚度约150nm的锡薄膜,即得;
3)重复步骤1),在锡薄膜上镀制一层厚度约50m的碳薄膜,即得。
扣式半电池的组成及结构同实施例1。
实施例8
多层薄膜负极,其制备步骤如下:
1)以铜箔集流体为基底,采用真空镀膜工艺在基底表面镀制碳薄膜,工艺参数为:高真空度(低于10-3Pa),规格Φ5mm×100mm的碳棒,电流38A,热蒸发60s,形成厚度约50nm的碳薄膜;
2)采用溅射镀膜工艺在碳薄膜上镀制锡薄膜,工艺参数为:氩气气氛,真空度6.8Pa,锡靶材,电压930V,离子流6mA,溅射45min,形成厚度约200nm的锡薄膜;
3)重复步骤1),在锡薄膜上镀制一层厚度约50nm的碳薄膜,即得。
扣式半电池的组成及结构同实施例1。
对比例1
纯锡薄膜负极,其制备步骤如下:以铜箔集流体为基底,采用溅射镀膜工艺在基底表面镀制锡薄膜,氩气气氛,真空度7Pa,锡靶材,电压900V,离子流5mA,溅射30min,形成厚度约150nm的锡薄膜,即得。
扣式半电池的组成及结构同实施例1。
对比例2
多层薄膜负极的制备同专利(公开号CN101414674A)中实施例1。
扣式半电池的组成及结构同实施例1。
试验例
取实施例1~8及对比例1~2中的扣式半电池,分别在0.5C(496mA·g-1)、0.1C(99.3mA·g-1)、0.2C(198mA·g-1)电流条件下测试其首周比容量、70周(或20周)比容量和70周库伦效率,结果见下表1及图2~5。
表1实施例1~8及对比例1~2中扣式半电池的循环性能
图2为实施例1~2中扣式半电池在0.5C(496mA·g-1)测试电流下的循环性能。从图中可以看出,实施例2中电池的循环稳定性远远优于实施例1,且容量保持率高,衰减少。其中C/Sn薄膜电极在0.5C(496mA·g-1)电流密度下经45次循环后比容量仍保持在700mA·h·g-1,Sn/C薄膜电极经70次循环后比容量仍保持在700mA·h·g-1以上。
图3为实施例3~5及对比例1中扣式半电池在0.5C(496mA·g-1)测试电流下的循环性能。从图中可以看出,相较实施例3~5,对比例1中电池的循环性能较差,稳定性欠佳,长周期(70周)循环后衰减严重。同时,在碳薄膜厚度固定时,锡薄膜厚度会对电池循环性能产生影响,表现为厚度越小,电池比容量减少,但循环稳定性提高,厚度越大比容量增大但稳定性降低。
图4为实施例6~8中扣式半电池在0.1C(99.3mA·g-1)测试电流下的循环性能。从图中可以看出,在碳薄膜厚度固定时,锡薄膜厚度对电池循环性能产生巨大影响,厚度越小电池比容量越小,但循环稳定性提高,厚度越大比容量越大但稳定性降低。
图5为实施例1~2及对比例1中扣式半电池在不同测试电流下的循环性能。从图中可以看出,实施例2中电池在大电流下5C(4960mA·g-1)的循环稳定性仍较好,有利于实现电池的快充快放。
Claims (7)
1.多层薄膜负极,以铜箔为基底,其特征在于:所述基底上交替叠置有碳薄膜和锡薄膜;碳薄膜采用真空镀膜工艺制备,工艺参数为:真空度小于10-3Pa,碳棒,电流35~45A,镀膜时间50~70s;锡薄膜采用溅射镀膜工艺制备,工艺参数为:氩气气氛,真空度5~10Pa,锡靶材,电压880~930V,离子流3~7mA,镀膜时间15~45min。
2.根据权利要求1所述的多层薄膜负极,其特征在于:所述基底上依次叠置有碳薄膜和锡薄膜,层数为两层或三层。
3.根据权利要求1所述的多层薄膜负极,其特征在于:所述基底上依次叠置有锡薄膜和碳薄膜,层数为两层。
4.如权利要求2所述多层薄膜负极的制备方法,其特征在于:步骤如下:
1)以铜箔为基底,采用真空镀膜工艺在基底表面镀制碳薄膜,工艺参数为:真空度小于10-3Pa,碳棒,电流35~45A,镀膜时间50~70s;
2)采用溅射镀膜工艺在碳薄膜上镀制锡薄膜,工艺参数为:氩气气氛,真空度5~10Pa,锡靶材,电压880~930V,离子流3~7mA,镀膜时间15~45min;
或者包括步骤3),步骤3)的操作同步骤1)。
5.如权利要求3所述多层薄膜负极的制备方法,其特征在于:步骤如下:
1)以铜箔为基底,采用溅射镀膜工艺在基底表面镀制锡薄膜,工艺参数为:氩气气氛,真空度5~10Pa,锡靶材,电压880~930V,离子流3~7mA,镀膜时间15~45min;
2)采用真空镀膜工艺在锡薄膜上镀制碳薄膜,工艺参数为:真空度小于10-3Pa,碳棒,电流35~45A,镀膜时间50~70s。
6.如权利要求1~3中任一项所述多层薄膜负极在锂离子电池中的应用。
7.根据权利要求6所述的应用,其特征在于:以纯锂片为正极,六氟磷酸锂为电解液溶质,体积比4:3:3的EC、EMC、DEC为溶剂,微孔聚乙烯或聚丙烯膜为隔膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610169397.6A CN105826518B (zh) | 2016-03-23 | 2016-03-23 | 锂电池用多层薄膜负极、制备方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610169397.6A CN105826518B (zh) | 2016-03-23 | 2016-03-23 | 锂电池用多层薄膜负极、制备方法及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105826518A CN105826518A (zh) | 2016-08-03 |
CN105826518B true CN105826518B (zh) | 2018-08-17 |
Family
ID=56524035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610169397.6A Active CN105826518B (zh) | 2016-03-23 | 2016-03-23 | 锂电池用多层薄膜负极、制备方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105826518B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106684325A (zh) * | 2017-01-10 | 2017-05-17 | 郑州大学 | 一种铌掺杂二氧化锡薄膜锂离子电池负极极片及其制备方法,锂离子电池 |
CN108807840A (zh) * | 2018-05-28 | 2018-11-13 | 云南大学 | 热处理工艺制备碳硅负极材料的方法 |
CN108807883A (zh) * | 2018-05-28 | 2018-11-13 | 云南大学 | 硅碳薄膜负极材料及其制备方法 |
CN109546076B (zh) * | 2018-11-21 | 2022-01-28 | 太原科技大学 | 一种三明治结构型锂硫电池正极片的制备方法 |
CN112103473A (zh) * | 2020-09-14 | 2020-12-18 | 深圳先进技术研究院 | 合金化负极及其制备方法、锂离子电池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1945881A (zh) * | 2006-11-02 | 2007-04-11 | 复旦大学 | 全固态薄膜锂电池及其制造方法 |
CN101373846A (zh) * | 2007-10-23 | 2009-02-25 | 松下电器产业株式会社 | 锂二次电池 |
CN101414674A (zh) * | 2008-08-05 | 2009-04-22 | 华南师范大学 | 锂离子电池锡/碳纳米多层膜负极材料及其制备方法和应用 |
CN101593828A (zh) * | 2008-05-27 | 2009-12-02 | 株式会社神户制钢所 | 锂离子二次电池用负极材料及其制造方法以及锂离子二次电池 |
-
2016
- 2016-03-23 CN CN201610169397.6A patent/CN105826518B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1945881A (zh) * | 2006-11-02 | 2007-04-11 | 复旦大学 | 全固态薄膜锂电池及其制造方法 |
CN101373846A (zh) * | 2007-10-23 | 2009-02-25 | 松下电器产业株式会社 | 锂二次电池 |
CN101593828A (zh) * | 2008-05-27 | 2009-12-02 | 株式会社神户制钢所 | 锂离子二次电池用负极材料及其制造方法以及锂离子二次电池 |
CN101414674A (zh) * | 2008-08-05 | 2009-04-22 | 华南师范大学 | 锂离子电池锡/碳纳米多层膜负极材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN105826518A (zh) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105826518B (zh) | 锂电池用多层薄膜负极、制备方法及应用 | |
Bazin et al. | High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries | |
CN102201565B (zh) | 一种高容量金属锂粉复合负极及制备方法和多层复合电极 | |
Hu et al. | Progress on Sn-based thin-film anode materials for lithium-ion batteries | |
Zhang et al. | The effect of the carbon nanotube buffer layer on the performance of a Li metal battery | |
CN105226258B (zh) | 一种锂离子电池负极复合薄膜材料及其制备方法 | |
CN103325998B (zh) | 柔性纳米SnO2/Si复合物锂离子电池负极材料及其制备方法 | |
CN103413920B (zh) | 一种锂离子电池用硅/取向碳纳米管复合负极材料及其制备方法 | |
WO2020094090A1 (zh) | 离子选择性复合隔膜及其制备方法和应用 | |
CN105006553A (zh) | 一种硫/碳/氧化物复合电极材料的制备方法 | |
CN104810505A (zh) | 一种锂离子电池负极片及其二次电池 | |
CN104466104A (zh) | 一种锂离子电池锗石墨烯复合负极材料及其制备方法 | |
CN103144393A (zh) | 一种三明治结构硅基薄膜材料及其制备方法和应用 | |
Polat et al. | Functionally graded Si based thin films as negative electrodes for next generation lithium ion batteries | |
KR20120129569A (ko) | 하이브리드 커패시터 | |
CN106997946B (zh) | 硅-铜复合材料、制备方法及在锂离子电池中的应用 | |
CN111916671A (zh) | 锂离子电池负极、锂离子电池及锂离子电池负极制备方法 | |
CN1319190C (zh) | 一种二次电池负极(阳极)及制作方法 | |
CN1870325A (zh) | 具有三层单元结构的锂离子二次电池负极材料及制备方法 | |
CN113991054B (zh) | 一种用于锂电池的无锂负极片、锂电池 | |
CN102054981A (zh) | 加掺氢碳元素的负极材料及其制备方法 | |
CN109273670B (zh) | 一种具有高比表面介孔保护膜的金属锂负极及其制备方法 | |
CN103924198A (zh) | 一种采用电子束蒸镀技术制备石墨烯导电薄膜的方法及其应用 | |
CN108899470B (zh) | 一种Li-S电池正极片夹层结构的制备方法 | |
RU161876U1 (ru) | Литий-ионный аккумулятор |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |