CN105720141A - 一种无损伤的GaN衬底激光剥离方法 - Google Patents
一种无损伤的GaN衬底激光剥离方法 Download PDFInfo
- Publication number
- CN105720141A CN105720141A CN201610141887.5A CN201610141887A CN105720141A CN 105720141 A CN105720141 A CN 105720141A CN 201610141887 A CN201610141887 A CN 201610141887A CN 105720141 A CN105720141 A CN 105720141A
- Authority
- CN
- China
- Prior art keywords
- laser
- gan
- gan substrate
- barrier layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000004888 barrier function Effects 0.000 claims abstract description 39
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 29
- 239000010980 sapphire Substances 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims description 21
- 238000005498 polishing Methods 0.000 claims description 6
- 238000000227 grinding Methods 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 229910021478 group 5 element Inorganic materials 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000012808 vapor phase Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 13
- 239000013078 crystal Substances 0.000 abstract 1
- 230000001066 destructive effect Effects 0.000 abstract 1
- 238000000407 epitaxy Methods 0.000 abstract 1
- 230000031700 light absorption Effects 0.000 abstract 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本发明提出一种无损伤的GaN衬底激光剥离方法,通过在蓝宝石外延的晶体材料中预生长一层激光阻挡层,该激光阻挡层包含超晶格结构或者量子阱结构,能够对逸出的高能量激光进行分布式布拉格反射或者光吸收,从而高能量激光不能进入到GaN衬底材料区域,最后避免激光对GaN外延层造成损伤。从根本上解决了在激光剥离过程中,激光对GaN衬底材料的损伤问题。
Description
技术领域
本发明涉及半导体光电材料技术领域,尤其涉及一种在蓝宝石衬底上激光剥离GaN基外延层的方法。
背景技术
以GaN及InGaN、AlGaN为主的Ⅲ-Ⅴ族氮化物材料,其1.9—6.2eV连续可调的直接带隙,优异的物理、化学稳定性,高饱和电子漂移速率和高击穿场强等优越性能使其成为短波长半导体光电器件的优选材料。作为制备GaN自支撑衬底材料的技术之一,激光剥离技术(LaserLift-offTechnique)由于能够在较低要求的环境条件下实现GaN衬底的快速剥离,从而得到了较大的发展。
然而,在激光剥离GaN衬底的过程中,很难避免对GaN衬底材料造成损伤。专利US7256483指出,激光剥离后的GaN需进行化学机械抛光(CMP)来减少损伤。另一方面,中国专利CN105006446A采用飞秒激光技术,以一种冷加工的方式来减少损伤,提高了激光剥离的质量。但是,该方法对激光光源有特殊要求,且无法从根本上解决激光产生的外延层损伤问题。
发明内容
本发明提出一种无损伤的GaN衬底激光剥离方法,通过在蓝宝石外延的晶体材料中预生长一层激光阻挡层,该激光阻挡层包含超晶格结构或者量子阱结构,能够对逸出的高能量激光进行分布式布拉格反射(DistributedBraggReflectors)或者光吸收,从而高能量激光不能进入到GaN衬底材料区域,最后避免激光对GaN外延层造成损伤。
为了解决上述技术问题,本发明采取以下技术方案。一种无损伤的GaN衬底激光剥离方法,包括以下步骤:
步骤①,在蓝宝石衬底上生长GaN缓冲层;
步骤②,在GaN缓冲层上生长包含有量子阱结构或者超晶格结构的激光阻挡层;
步骤③,在步骤②生长的激光阻挡层上生长GaN衬底;
步骤④,将激光从蓝宝石衬底的底面入射,对蓝宝石表面整体进行扫描照射,使GaN缓冲层被分解,GaN衬底和激光阻挡层的整体,从蓝宝石衬底完全被剥离;
步骤⑤,研磨抛光移除激光阻挡层,得到GaN衬底。
所述激光阻挡层的成分,由Ⅲ族元素中的一种或多种,与Ⅴ族元素中的一种或多种所组成。
所述激光阻挡层的结构,包含有量子阱结构、超晶格结构中的一种或者其二者结构的组合。
所述步骤④中GaN缓冲层的分解,可以是GaN缓冲层的部分分解或者完全分解。
所述步骤①②③中的生长,可以是液相法生长或者气相法生长。
所述步骤④中的激光,可以是连续激光或者脉冲激光。
本发明的优势:
1.从根本上解决了在激光剥离过程中,激光对GaN衬底材料的损伤问题;
2.进一步降低了对激光设备的要求,适合规模化生产。
附图说明
附图1是本发明的在蓝宝石衬底上生长GaN衬底材料(预生长一层激光阻挡层)的示意图;
附图2是本发明实施例一中激光剥离GaN衬底材料(预生长一层包含超晶格的激光阻挡层)的工艺示意图;
附图3是本发明实施例二中激光剥离GaN衬底材料(预生长一层包含量子阱的激光阻挡层)的工艺示意图
附图标记说明:
1:蓝宝石衬底,2:GaN衬底,3:GaN缓冲层,4:激光阻挡层,41:包含超晶格的激光阻挡层,42:包含量子阱的激光阻挡层,51:入射激光,52:阻挡层作用后的出射光。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并结合附图,对本发明作进一步详细说明。如图1所示在蓝宝石衬底1上依次生长GaN缓冲层3、激光阻挡层4以及GaN衬底2,生长完成后用于激光剥离。将入射激光51从蓝宝石衬底1的底面入射,对蓝宝石表面整体进行扫描照射,使GaN缓冲层3分解,其结果GaN衬底2和激光阻挡层4的整体,从蓝宝石衬底1完全被剥离。研磨抛光移除激光阻挡层4,得到GaN衬底2。
实施例一,一种无损伤的GaN衬底激光剥离方法,如图2所示,包括以下步骤:
步骤①,在蓝宝石衬底1上MOCVD生长8μm的GaN缓冲层3;
步骤②,调节MOCVD生长条件,在GaN缓冲层3上生长包含超晶格的激光阻挡层41(10个周期以上的GaN/AlGaN的超晶格结构);
步骤③,在包含超晶格的激光阻挡层41上生长200μm非掺杂的GaN衬底2;
步骤④,将步骤③所得的蓝宝石/外延层放入激光剥离设备中(YAG激光光源),其辐射的入射激光51从蓝宝石衬底1底面入射,在蓝宝石表面进行扫描辐射,GaN缓冲层3开始分解;同时,逃逸的入射激光51进入到包含超晶格的激光阻挡层41中,该包含超晶格的激光阻挡层41对入射激光51产生分布式布拉格反射,经阻挡层作用后的出射光52不能进入GaN衬底2中,因此对GaN衬底2不会造成损伤;当激光扫描整个蓝宝石衬底1完成后,GaN衬底2及包含超晶格的激光阻挡层41的整体,从蓝宝石衬底1完全被剥离;
步骤⑤,研磨抛光移除包含超晶格的激光阻挡层41,得到GaN衬底2。
实施例二,一种无损伤的GaN衬底激光剥离方法,如图3所示,也可以包括以下步骤:
步骤①,在蓝宝石衬底1上MOCVD生长5μm的GaN缓冲层3;
步骤②,调节MOCVD生长条件,在GaN缓冲层3上生长包含量子阱的激光阻挡层42;
步骤③,在包含超晶格的激光阻挡层42上生长250μm掺硅的GaN衬底2;
步骤④,将步骤③所得的蓝宝石/外延层放入激光剥离设备中(YAG激光光源),其辐射的入射激光51从蓝宝石衬底1的底面入射,在蓝宝石表面进行扫描照射,GaN缓冲层3开始分解;同时,逃逸的入射激光51进入到包含量子阱的激光阻挡层42中,该包含量子阱的激光阻挡层42对入射激光51产生吸收作用,经阻挡层作用后射出的相对低能量的出射光52,没达到GaN衬底2吸收的能量要求,因此对GaN衬底2不会造成损伤;当激光扫描整个蓝宝石衬底1完成后,GaN衬底2及包含量子阱的激光阻挡层42的整体,从蓝宝石衬底1完全被剥离;
步骤⑤,研磨抛光移除包含量子阱的激光阻挡层42,得到GaN衬底2。
Claims (6)
1.一种无损伤的GaN衬底激光剥离方法,其特征在于,包括以下步骤:
步骤①,在蓝宝石衬底上生长GaN缓冲层;
步骤②,在GaN缓冲层上生长包含有量子阱结构或/和超晶格结构的激光阻挡层;
步骤③,在步骤②生长的激光阻挡层上生长GaN衬底;
步骤④,将激光从蓝宝石衬底的底面入射,对蓝宝石表面整体进行扫描照射,致GaN缓冲层被分解,GaN衬底和激光阻挡层的整体从蓝宝石衬底完全被剥离;
步骤⑤,研磨抛光移除激光阻挡层,得到GaN衬底。
2.根据权利1要求所述一种无损伤的GaN衬底激光剥离方法,其特征在于,所述激光阻挡层的成分,由Ⅲ族元素中的一种或多种,与Ⅴ族元素中的一种或多种所组成。
3.根据权利1要求所述一种无损伤的GaN衬底激光剥离方法,其特征在于,所述激光阻挡层的结构,包含有量子阱结构、超晶格结构中的一种或者其二者结构的组合。
4.根据权利1要求所述一种无损伤的GaN衬底激光剥离方法,其特征在于,所述步骤④中GaN缓冲层的分解,是GaN缓冲层的部分分解或者完全分解。
5.根据权利1要求所述一种无损伤的GaN衬底激光剥离方法,其特征在于,所述步骤①②③中的生长,是液相法生长或者气相法生长。
6.根据权利1要求所述一种无损伤的GaN衬底激光剥离方法,其特征在于,所述步骤④中的激光,是连续激光或者脉冲激光。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610141887.5A CN105720141B (zh) | 2016-03-11 | 2016-03-11 | 一种无损伤的GaN衬底激光剥离方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610141887.5A CN105720141B (zh) | 2016-03-11 | 2016-03-11 | 一种无损伤的GaN衬底激光剥离方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105720141A true CN105720141A (zh) | 2016-06-29 |
CN105720141B CN105720141B (zh) | 2019-01-29 |
Family
ID=56158729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610141887.5A Active CN105720141B (zh) | 2016-03-11 | 2016-03-11 | 一种无损伤的GaN衬底激光剥离方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105720141B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107326435A (zh) * | 2017-07-28 | 2017-11-07 | 西安交通大学 | 一种生长GaN的SiC衬底的剥离方法 |
CN111293201A (zh) * | 2018-12-14 | 2020-06-16 | 广州国显科技有限公司 | 用于激光剥离的半导体结构以及半导体结构的制备方法 |
CN111681946A (zh) * | 2020-05-21 | 2020-09-18 | 东莞市中镓半导体科技有限公司 | 氮化镓单晶衬底的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1383185A (zh) * | 2002-05-31 | 2002-12-04 | 南京大学 | 激光剥离制备自支撑氮化镓衬底的方法 |
EP1653523A2 (en) * | 2004-10-28 | 2006-05-03 | LumiLeds Lighting U.S., LLC | Light emitting diode package |
KR20070088920A (ko) * | 2006-02-27 | 2007-08-30 | 한국광기술원 | 레이저 에너지 흡수 초격자 층을 구비한 질화물 발광소자및 그의 제조방법 |
CN105006446A (zh) * | 2015-06-25 | 2015-10-28 | 武汉大学 | 基于飞秒激光技术的GaN薄膜与蓝宝石衬底的剥离方法 |
-
2016
- 2016-03-11 CN CN201610141887.5A patent/CN105720141B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1383185A (zh) * | 2002-05-31 | 2002-12-04 | 南京大学 | 激光剥离制备自支撑氮化镓衬底的方法 |
EP1653523A2 (en) * | 2004-10-28 | 2006-05-03 | LumiLeds Lighting U.S., LLC | Light emitting diode package |
KR20070088920A (ko) * | 2006-02-27 | 2007-08-30 | 한국광기술원 | 레이저 에너지 흡수 초격자 층을 구비한 질화물 발광소자및 그의 제조방법 |
CN105006446A (zh) * | 2015-06-25 | 2015-10-28 | 武汉大学 | 基于飞秒激光技术的GaN薄膜与蓝宝石衬底的剥离方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107326435A (zh) * | 2017-07-28 | 2017-11-07 | 西安交通大学 | 一种生长GaN的SiC衬底的剥离方法 |
CN111293201A (zh) * | 2018-12-14 | 2020-06-16 | 广州国显科技有限公司 | 用于激光剥离的半导体结构以及半导体结构的制备方法 |
CN111293201B (zh) * | 2018-12-14 | 2022-04-26 | 广州国显科技有限公司 | 用于激光剥离的半导体结构以及半导体结构的制备方法 |
CN111681946A (zh) * | 2020-05-21 | 2020-09-18 | 东莞市中镓半导体科技有限公司 | 氮化镓单晶衬底的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105720141B (zh) | 2019-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kunert et al. | How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches | |
JP5167384B2 (ja) | 基板の分割方法 | |
US8163582B2 (en) | Method for fabricating a light emitting diode chip including etching by a laser beam | |
KR101227724B1 (ko) | 발광소자 및 그 제조방법 | |
US20170186913A1 (en) | Formation of nitride-based optoelectronic and electronic device structures on lattice-matched substrates | |
US8053264B2 (en) | Photoelectrochemical etching of P-type semiconductor heterostructures | |
US7501666B2 (en) | Method for forming p-type semiconductor region, and semiconductor element | |
EP0764989A1 (en) | Semiconductor light emitting device and method for fabricating semiconductor light emitting device | |
CN103703552A (zh) | 从外延半导体结构的生长基底激光分离外延膜或外延膜层的方法(变体) | |
JP4592636B2 (ja) | 窒化物層の製造方法及びこれを用いた垂直構造窒化物半導体発光素子の製造方法 | |
US7759219B2 (en) | Method of manufacturing nitride semiconductor device | |
CN105720141A (zh) | 一种无损伤的GaN衬底激光剥离方法 | |
US20210249252A1 (en) | Improved group iii nitride substrate, method of making, and method of use | |
JP7023882B2 (ja) | 半導体装置の製造方法、基板の製造方法、半導体装置、基板、及び、基板の製造装置 | |
WO2016076639A9 (ko) | 발광 소자 및 그 제조 방법 | |
US10573515B2 (en) | Production method for semiconductor | |
CN102723408A (zh) | 半导体外延结构的制备方法 | |
CN1855565A (zh) | 半导体发光器件以及半导体器件的制造方法 | |
van Look et al. | Laser scribing for facet fabrication of InGaN MQW diode lasers on sapphire substrates | |
US20240332021A1 (en) | Method for stripping gallium nitride substrate | |
US9018027B2 (en) | Method of fabricating gallium nitride-based semiconductor device | |
Wei et al. | InAs QDs monolithically grown on COMS compatible Si (001) and SOI platform with strong emission at 1300 nm and 1550 nm | |
Pan et al. | O-band InAs Quantum Dot Light Sources Monolithically Grown on Si | |
Lee | Direct bonding of gallium nitride to silicon carbide: Physical, and electrical characterization | |
CN102723406A (zh) | 半导体外延结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |