CN105278225A - Wavelength conversion device, manufacture method thereof, correlative light-emitting device, and projection system - Google Patents
Wavelength conversion device, manufacture method thereof, correlative light-emitting device, and projection system Download PDFInfo
- Publication number
- CN105278225A CN105278225A CN201410348434.0A CN201410348434A CN105278225A CN 105278225 A CN105278225 A CN 105278225A CN 201410348434 A CN201410348434 A CN 201410348434A CN 105278225 A CN105278225 A CN 105278225A
- Authority
- CN
- China
- Prior art keywords
- wavelength conversion
- conversion device
- layer
- ceramic substrate
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title description 2
- 239000000843 powder Substances 0.000 claims abstract description 134
- 239000011521 glass Substances 0.000 claims abstract description 118
- 239000000758 substrate Substances 0.000 claims abstract description 108
- 239000000919 ceramic Substances 0.000 claims abstract description 80
- 239000002245 particle Substances 0.000 claims abstract description 72
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 54
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 25
- 239000002002 slurry Substances 0.000 claims description 21
- 230000005284 excitation Effects 0.000 claims description 18
- 238000005245 sintering Methods 0.000 claims description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 11
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical group O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 9
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- 239000005388 borosilicate glass Substances 0.000 claims description 6
- 230000007797 corrosion Effects 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 4
- 102100032047 Alsin Human genes 0.000 claims description 3
- 101710187109 Alsin Proteins 0.000 claims description 3
- 229910052582 BN Inorganic materials 0.000 claims description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052810 boron oxide Inorganic materials 0.000 claims description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 3
- 150000002602 lanthanoids Chemical class 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 3
- 239000005365 phosphate glass Substances 0.000 claims description 3
- 239000005368 silicate glass Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 claims description 3
- 229910000165 zinc phosphate Inorganic materials 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 8
- 238000002310 reflectometry Methods 0.000 abstract description 6
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 224
- 239000000463 material Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 125000000914 phenoxymethylpenicillanyl group Chemical group CC1(S[C@H]2N([C@H]1C(=O)*)C([C@H]2NC(COC2=CC=CC=C2)=O)=O)C 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C14/00—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
- C03C14/006—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0284—Diffusing elements; Afocal elements characterized by the use used in reflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0294—Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明公开了一种波长转换装置及其制备方法、相关发光装置和投影系统,该波长转换装置包括:依次叠置的发光层、漫反射层和陶瓷基板;发光层包含荧光粉和第一玻璃粉,其中,荧光粉占发光层的体积分数为14.1%~38.7%;漫反射层包含白色散射粒子和第一玻璃粉,其中,白色散射粒子占漫反射层的体积分数为22.0%~62.9%;陶瓷基板的线膨胀系数大于第一玻璃粉的线膨胀系数,并小于荧光粉和白色散射粒子的线膨胀系数。通过调控发光层中荧光粉的体积分数和漫反射层中白色散射粒子的体积分数,使得发光层和漫反射层分别具有足够高的发光效率和反射率,同时具有较小的内部热阻和界面热阻,从而达到获得稳定的高发光效率的出射光的有益效果。
The invention discloses a wavelength conversion device and its preparation method, a related light-emitting device and a projection system. The wavelength conversion device comprises: a light-emitting layer, a diffuse reflection layer and a ceramic substrate stacked in sequence; the light-emitting layer contains fluorescent powder and a first glass Powder, wherein the fluorescent powder accounts for 14.1% to 38.7% by volume of the light-emitting layer; the diffuse reflection layer contains white scattering particles and the first glass powder, wherein the volume fraction of white scattering particles to the diffuse reflection layer is 22.0% to 62.9% ; The linear expansion coefficient of the ceramic substrate is greater than that of the first glass powder, and smaller than that of the fluorescent powder and white scattering particles. By adjusting the volume fraction of phosphor powder in the light-emitting layer and the volume fraction of white scattering particles in the diffuse reflection layer, the light-emitting layer and the diffuse reflection layer have sufficiently high luminous efficiency and reflectivity, respectively, and have small internal thermal resistance and interface. Thermal resistance, so as to achieve the beneficial effect of obtaining stable and high-efficiency outgoing light.
Description
技术领域technical field
本发明涉及显示和照明领域,特别涉及一种波长转换装置及其制备方法、相关发光装置和投影装置。The invention relates to the field of display and illumination, in particular to a wavelength conversion device and a preparation method thereof, a related light-emitting device and a projection device.
背景技术Background technique
随着显示和照明技术的发展,原始的LED或卤素灯泡作为光源越来越不能满足显示和照明高功率和高亮度的需求。采用固态光源如LD(LaserDiode,激光二极管)发出的激发光以激发波长转换材料的方法能够获得各种颜色的可见光,该技术越来越多的应用于照明和显示中。这种技术具有效率高、能耗少、成本低、寿命长的优势,是现有白光或者单色光光源的理想替代方案。With the development of display and lighting technology, the original LED or halogen bulb as a light source is increasingly unable to meet the high power and high brightness requirements of display and lighting. Visible light of various colors can be obtained by using excitation light emitted by a solid-state light source such as LD (Laser Diode, laser diode) to excite wavelength conversion materials, and this technology is increasingly used in lighting and display. This technology has the advantages of high efficiency, low energy consumption, low cost, and long life, and is an ideal alternative to existing white or monochromatic light sources.
现有技术中的激光激发波长转换材料的光源,为了提高光利用率,多采用反射式——光经过荧光粉片(即发光层)后入射于反射板(即反射层和基板),然后被反射回荧光粉片,以确保光沿同一方向出射,避免因荧光粉片的散射作用而造成的光损失。然而,随着激发光功率及其功率密度的逐步提高,波长转换装置(包括反光层和反射层)的耐高温性能越来越难以满足人们的需求。一方面,作为反射层的金属反射膜在高温下易发生氧化,导致其反射率下降;另一方面,用于封装荧光粉的硅胶只能在200℃下长期工作,当温度上升到250℃时,硅胶就会很快劣化,导致其透光率下降。In the prior art, the light source of laser excitation wavelength conversion material, in order to improve the light utilization rate, mostly adopts reflective type—the light passes through the phosphor sheet (ie, the light-emitting layer) and then enters the reflector (ie, the reflective layer and the substrate), and is then absorbed Reflected back to the phosphor sheet to ensure that the light exits in the same direction and avoid light loss due to the scattering effect of the phosphor sheet. However, with the gradual increase of the excitation light power and its power density, the high temperature resistance performance of the wavelength conversion device (including the reflective layer and the reflective layer) is becoming more and more difficult to meet people's needs. On the one hand, the metal reflective film used as the reflective layer is prone to oxidation at high temperatures, resulting in a decrease in its reflectivity; on the other hand, the silica gel used to encapsulate the phosphor can only work at 200°C for a long time, when the temperature rises to 250°C , the silica gel will quickly deteriorate, resulting in a decrease in its light transmittance.
对于反射层,为防止金属反射层在高温下氧化,已有一些研究者尝试将一些稳定的无机散射材料制备成为反射层,该无机散射材料能够耐受较高温度而不发生化学反应。而对于用于粘接荧光粉和无机散射材料的硅胶,有研究者提出了利用玻璃材料替代,该玻璃材料具有良好的透光率,同时软化点温度较高。For the reflective layer, in order to prevent the metal reflective layer from being oxidized at high temperature, some researchers have attempted to prepare some stable inorganic scattering materials as the reflective layer, which can withstand higher temperatures without chemical reaction. As for the silica gel used to bond phosphors and inorganic scattering materials, some researchers have proposed to use glass materials instead, which have good light transmittance and high softening point temperature.
然而,在实际应用中发现,这种以无机散射材料作为反射层、以玻璃材料作为荧光粉和无机散射材料的粘接剂的波长转换装置,虽然能够在高功率激光照射下保持稳定,但是其散热差、发光效率低。However, it has been found in practical applications that this wavelength conversion device, which uses inorganic scattering materials as the reflective layer and glass materials as the bonding agent between phosphor powder and inorganic scattering materials, can remain stable under high-power laser irradiation, but its Poor heat dissipation and low luminous efficiency.
发明内容Contents of the invention
针对上述技术问题,本发明提供了一种波长转换装置,该波长转换装置的各组分的含量及线膨胀系数满足一定的关系,能够满足在高功率光源照射下具有稳定的高发光效率的出射光。In view of the above technical problems, the present invention provides a wavelength conversion device, the content and linear expansion coefficient of each component of the wavelength conversion device satisfy a certain relationship, and can meet the requirements of stable and high luminous efficiency under the irradiation of a high-power light source. shoot light.
本发明提供了一种波长转换装置,包括:依次叠置的发光层、漫反射层和陶瓷基板;发光层包含荧光粉和第一玻璃粉,其中,荧光粉占发光层的体积分数为14.1%~38.7%;漫反射层包含白色散射粒子和第一玻璃粉,其中,白色散射粒子占漫反射层的体积分数为22.0%~62.9%;陶瓷基板的线膨胀系数大于第一玻璃粉的线膨胀系数;陶瓷基板的线膨胀系数小于荧光粉的线膨胀系数;陶瓷基板的线膨胀系数小于白色散射粒子的线膨胀系数。The invention provides a wavelength conversion device, comprising: a luminescent layer, a diffuse reflection layer and a ceramic substrate stacked in sequence; the luminescent layer contains fluorescent powder and a first glass powder, wherein the volume fraction of the fluorescent powder in the luminescent layer is 14.1% ~38.7%; the diffuse reflection layer contains white scattering particles and the first glass frit, wherein the volume fraction of white scattering particles in the diffuse reflection layer is 22.0% to 62.9%; the linear expansion coefficient of the ceramic substrate is greater than that of the first glass frit coefficient; the linear expansion coefficient of the ceramic substrate is smaller than that of the fluorescent powder; the linear expansion coefficient of the ceramic substrate is smaller than that of the white scattering particles.
优选地,荧光粉占发光层的体积分数为29.1%~38.7%。Preferably, the volume fraction of phosphor powder in the light-emitting layer is 29.1%-38.7%.
优选地,陶瓷基板的线膨胀系数为4.0×10-6/K~6.0×10-6/K,陶瓷基板的导热系数大于等于80W/mK。Preferably, the linear expansion coefficient of the ceramic substrate is 4.0×10 -6 /K˜6.0×10 -6 /K, and the thermal conductivity of the ceramic substrate is greater than or equal to 80 W/mK.
优选地,陶瓷基板为氮化铝基板、碳化硅基板中的一种。Preferably, the ceramic substrate is one of an aluminum nitride substrate and a silicon carbide substrate.
优选地,还包括界面粘接层,位于陶瓷基板与漫反射层之间。Preferably, an interface bonding layer is also included, located between the ceramic substrate and the diffuse reflection layer.
优选地,界面粘接层为氧化铝层。Preferably, the interface bonding layer is an aluminum oxide layer.
优选地,陶瓷基板为氮化铝基板,氧化铝层为氮化铝基板的表面经氧化处理得到。Preferably, the ceramic substrate is an aluminum nitride substrate, and the aluminum oxide layer is obtained by oxidizing the surface of the aluminum nitride substrate.
优选地,界面粘接层为玻璃粘接层,该玻璃粘接层包含第一玻璃粉。Preferably, the interface bonding layer is a glass bonding layer, and the glass bonding layer contains the first glass frit.
优选地,界面粘接层为银玻璃粘接层,该银玻璃粘接层包含银、第二玻璃粉,第二玻璃粉的熔点低于第一玻璃粉。Preferably, the interface bonding layer is a silver-glass bonding layer, and the silver-glass bonding layer contains silver and a second glass powder, and the melting point of the second glass powder is lower than that of the first glass powder.
优选地,陶瓷基板的表面为经过腐蚀处理的表面。Preferably, the surface of the ceramic substrate is etched.
优选地,第一玻璃粉为硼硅酸盐玻璃,该第一玻璃粉中的氧化硼的摩尔百分比为10%~19%,氧化硅的摩尔百分比为70%~90%。Preferably, the first glass powder is borosilicate glass, the molar percentage of boron oxide in the first glass powder is 10%-19%, and the molar percentage of silicon oxide is 70%-90%.
优选地,第一玻璃粉为硅酸盐玻璃粉、硼硅酸盐玻璃粉、硼磷酸盐玻璃粉、锌磷酸盐玻璃粉中至少两种的组合。Preferably, the first glass powder is a combination of at least two of silicate glass powder, borosilicate glass powder, borophosphate glass powder and zinc phosphate glass powder.
优选地,白色散射粒子为氧化铝、氧化镁、氮化硼、氧化钇、氧化锌、氧化钛和氧化锆中的一种或几种的组合。Preferably, the white scattering particles are one or a combination of aluminum oxide, magnesium oxide, boron nitride, yttrium oxide, zinc oxide, titanium oxide and zirconium oxide.
优选地,漫反射层对可见光的反射率大于90%。Preferably, the reflectance of the diffuse reflection layer to visible light is greater than 90%.
优选地,荧光粉的结构式为(Y1-aLna)3(Al1-bGab)5O12:Ce或(Ca1-a-bSraBab)AlSiN3:Eu,其中0≤a≤1,0≤b≤1,Ln为镧系元素。Preferably, the structural formula of the phosphor is (Y 1-a Ln a ) 3 (Al 1-b Ga b ) 5 O 12 :Ce or (Ca 1-ab Sr a Ba b )AlSiN 3 :Eu, where 0≤a ≤1, 0≤b≤1, Ln is a lanthanide element.
优选地,发光层与漫反射层之间为连续过渡层。Preferably, there is a continuous transition layer between the light emitting layer and the diffuse reflection layer.
本发明还提供一种制备上述波长转换装置的方法,包括如下步骤:The present invention also provides a method for preparing the above-mentioned wavelength conversion device, comprising the following steps:
步骤一:提供陶瓷基板;Step 1: providing a ceramic substrate;
步骤二:将白色散射粒子、第一玻璃粉和有机载体混合制得漫反射层浆料,将漫反射层浆料覆盖在陶瓷基板的经过处理的表面上,制得漫反射层生片,白色散射粒子占白色散射粒子与第一玻璃粉的总体积的体积分数为22.0%~62.9%;白色散射粒子的线膨胀系数大于陶瓷基板的线膨胀系数;第一玻璃粉的线膨胀系数小于陶瓷基板的线膨胀系数;Step 2: Mix the white scattering particles, the first glass powder and the organic carrier to prepare a diffuse reflection layer slurry, cover the diffuse reflection layer slurry on the treated surface of the ceramic substrate, and prepare a diffuse reflection layer green sheet, white The volume fraction of the scattering particles in the total volume of the white scattering particles and the first glass powder is 22.0% to 62.9%; the linear expansion coefficient of the white scattering particles is greater than that of the ceramic substrate; the linear expansion coefficient of the first glass powder is smaller than that of the ceramic substrate coefficient of linear expansion;
步骤三:将荧光粉、第一玻璃粉和有机载体混合制得发光层浆料,将发光层浆料覆盖在漫反射层生片上,制得发光层生片,荧光粉占荧光粉与第一玻璃粉的总体积的体积分数为14.1%~38.7%;荧光粉的线膨胀系数大于陶瓷基板的线膨胀系数;Step 3: Mix the phosphor powder, the first glass powder and the organic carrier to prepare the luminescent layer slurry, and cover the luminescent layer slurry on the diffuse reflection layer green sheet to obtain the luminescent layer green sheet. The phosphor powder accounts for the phosphor powder and the first The volume fraction of the total volume of the glass powder is 14.1% to 38.7%; the linear expansion coefficient of the phosphor powder is greater than that of the ceramic substrate;
步骤四:将发光层生片、漫反射层生片和陶瓷基板共同烧结,制得波长转换装置。Step 4: co-sintering the light-emitting layer green sheet, the diffuse reflection layer green sheet, and the ceramic substrate to obtain a wavelength conversion device.
优选地,步骤一包括:对陶瓷基板表面作氧化处理以形成氧化层,或对陶瓷基板表面作腐蚀处理,或对陶瓷基板表面先氧化处理再腐蚀处理,或对陶瓷基板表面先腐蚀处理再氧化处理。Preferably, step 1 includes: performing oxidation treatment on the surface of the ceramic substrate to form an oxide layer, or performing corrosion treatment on the surface of the ceramic substrate, or first oxidation treatment on the surface of the ceramic substrate and then etching treatment, or first etching treatment on the surface of the ceramic substrate and then oxidation treatment deal with.
本发明还提供了一种发光装置,包括激发光源,还包括上述任意一项的波长转换装置。The present invention also provides a light-emitting device, which includes an excitation light source and any one of the above-mentioned wavelength conversion devices.
本发明还提供了一种投影装置,包括上述的发光装置。The present invention also provides a projection device, including the above-mentioned light emitting device.
与现有技术相比,本发明包括如下有益效果:Compared with the prior art, the present invention includes the following beneficial effects:
本发明中,通过调控发光层中荧光粉的体积分数和漫反射层中白色散射粒子的体积分数分别处于某个合适的范围内,实现两者的协同作用和优势互补,使得发光层和漫反射层分别具有足够高的发光效率和反射率,同时,由于本发明中第一玻璃粉的用量足够将荧光粉和白色散射粒子包裹,所以发光层和漫反射层内部具有较小的孔隙率,从而内部热阻降低;另一方面,由于陶瓷基板的线膨胀系数大于玻璃粉的线膨胀系数且小于荧光粉和白色散射粒子的线膨胀系数,在本发明的发光层和漫反射层的组成比例下,陶瓷基板的线膨胀系数与发光层和漫反射层的平均线膨胀系数接近,使得在制备和使用本发明波长转换装置时,陶瓷基板与漫反射层的接触面两侧的材料不会因膨胀或收缩而产生过大的相对位移,从而使陶瓷基板与漫反射层结合牢固、具有较小的界面热阻。In the present invention, by regulating the volume fraction of the fluorescent powder in the luminescent layer and the volume fraction of the white scattering particles in the diffuse reflection layer to be in a certain appropriate range, the synergy and complementary advantages of the two are realized, so that the luminescent layer and the diffuse reflection layer The layers have sufficiently high luminous efficiency and reflectivity, and at the same time, since the amount of the first glass frit in the present invention is sufficient to wrap the fluorescent powder and the white scattering particles, the inside of the luminescent layer and the diffuse reflection layer have relatively small porosity, thereby Internal thermal resistance reduces; On the other hand, because the coefficient of linear expansion of ceramic substrate is greater than that of glass frit and less than the coefficient of linear expansion of fluorescent powder and white scattering particle, under the composition ratio of luminescent layer and diffuse reflection layer of the present invention , the coefficient of linear expansion of the ceramic substrate is close to the average coefficient of linear expansion of the light-emitting layer and the diffuse reflection layer, so that when the wavelength conversion device of the present invention is prepared and used, the materials on both sides of the contact surface of the ceramic substrate and the diffuse reflection layer will not be affected by expansion. Or shrink to produce excessive relative displacement, so that the ceramic substrate and the diffuse reflection layer are firmly combined and have a small interface thermal resistance.
综上所述,本发明的技术方案通过调控波长转换装置中各层组分的含量及线膨胀系数满足一定的关系,使得波长转换装置的发光效率高、内部热阻和界面热阻均降低,从而达到获得稳定的高发光效率的出射光的有益效果。In summary, the technical solution of the present invention satisfies a certain relationship between the content of each layer component and the linear expansion coefficient in the wavelength conversion device, so that the luminous efficiency of the wavelength conversion device is high, and the internal thermal resistance and interface thermal resistance are both reduced. Therefore, the beneficial effect of obtaining stable and high-luminous-efficiency outgoing light is achieved.
附图说明Description of drawings
图1为本发明的波长转换装置的实施例一的结构示意图;FIG. 1 is a schematic structural view of Embodiment 1 of the wavelength conversion device of the present invention;
图2为本发明的波长转换装置的实施例二的结构示意图;FIG. 2 is a schematic structural diagram of Embodiment 2 of the wavelength conversion device of the present invention;
图3为本发明的波长转换装置的实施例三的结构示意图。FIG. 3 is a schematic structural diagram of Embodiment 3 of the wavelength conversion device of the present invention.
具体实施方式detailed description
下面结合附图和实施方式对本发明实施例进行详细说明。为描述清楚,下文所描述的“上”“下”均指的图中的上下。Embodiments of the present invention will be described in detail below with reference to the drawings and implementation methods. For clarity of description, "upper" and "lower" described below all refer to upper and lower in the drawings.
实施例一Embodiment one
请参见图1,图1为本发明的波长转换装置的实施例一的结构示意图。如图所示,波长转换装置100包括发光层110、漫反射层120和陶瓷基板130。其中发光层110为包含荧光粉和第一玻璃粉的烧结体,漫反射层120为包含白色散射粒子和第一玻璃粉的烧结体。Please refer to FIG. 1 . FIG. 1 is a schematic structural diagram of Embodiment 1 of the wavelength conversion device of the present invention. As shown in the figure, the wavelength conversion device 100 includes a light emitting layer 110 , a diffuse reflection layer 120 and a ceramic substrate 130 . Wherein the light emitting layer 110 is a sintered body comprising phosphor powder and the first glass powder, and the diffuse reflection layer 120 is a sintered body comprising white scattering particles and the first glass powder.
激发光源发出的激发光入射于发光层110后,激发荧光粉发出受激光。受激光和未被激发的激发光穿过发光层110后,入射于漫反射层120,而后被反射回发光层110,其中受激光和部分未被激发的激发光穿过发光层110后出射,其余部分的激发光被发光层110激发光转化为受激光。该波长转换装置100的总入射光为激发光,总出射光为受激光和部分未被激发的激发光。After the excitation light emitted by the excitation light source is incident on the light-emitting layer 110, the phosphor powder is excited to emit the subject light. After the excited light and the unexcited excitation light pass through the light-emitting layer 110, they are incident on the diffuse reflection layer 120, and then are reflected back to the light-emitting layer 110, wherein the excited light and part of the unexcited excitation light pass through the light-emitting layer 110 and exit, The rest of the excitation light is converted by the light-emitting layer 110 into the accepted light. The total incident light of the wavelength conversion device 100 is the excitation light, and the total output light is the stimulated light and part of the unexcited excitation light.
在波长转换装置100进行光波长转换时,其产生的热量主要包括:激发光在发光层110中转化为受激光而放出的热、激发光和受激光在漫反射层120中反射而产生的热(漫反射层不能达到100%反射率)、激发光和受激光在发光层110和漫反射层120中传播而产生的热。而波长转换装置100的热传播路径,主要是从荧光粉到发光层110中的第一玻璃粉,再到漫反射层120中的第一玻璃粉和白色散射粒子,再通过漫反射层120中的与陶瓷基板130相接触的第一玻璃粉到达陶瓷基板130发散出去。由此可见,波长转换装置100的散热,除了受各部件组成成分本身的热导率影响外,主要取决于发光层110的致密度、漫反射层120的致密度、以及漫反射层120和陶瓷基板130的界面结合程度。When the wavelength conversion device 100 performs light wavelength conversion, the heat generated mainly includes: the heat released by the conversion of the excitation light into the subject light in the light-emitting layer 110, the heat generated by the reflection of the excitation light and the subject light in the diffuse reflection layer 120 (The diffuse reflective layer cannot achieve 100% reflectivity), the heat generated by the propagation of the excitation light and the received light in the light emitting layer 110 and the diffuse reflective layer 120 . The heat propagation path of the wavelength conversion device 100 is mainly from the fluorescent powder to the first glass powder in the light-emitting layer 110, then to the first glass powder and white scattering particles in the diffuse reflection layer 120, and then through the diffuse reflection layer 120. The first glass frit in contact with the ceramic substrate 130 reaches the ceramic substrate 130 and is emitted. It can be seen that the heat dissipation of the wavelength conversion device 100, in addition to being affected by the thermal conductivity of the components of each component, mainly depends on the density of the light emitting layer 110, the density of the diffuse reflection layer 120, and the density of the diffuse reflection layer 120 and ceramics. The degree of interfacial bonding of the substrate 130 .
本实施例中,发光层110由荧光粉和第一玻璃粉组成,其中,荧光粉占发光层110的体积分数为14.1%~38.7%。In this embodiment, the light emitting layer 110 is composed of phosphor powder and the first glass powder, wherein the volume fraction of the phosphor powder in the light emitting layer 110 is 14.1%-38.7%.
本实施例中,发光层110是由荧光粉、第一玻璃粉和有机载体混合烧结而成,其中有机载体在烧结过程中被去除,而第一玻璃粉在烧结过程中软化并形成连续体,填充到荧光粉颗粒之间,将荧光粉包裹成层。由于发光层110中,荧光粉是波长转换作用的主体,因此荧光粉的量决定了波长转换装置能够转化的光的量。在荧光粉量一定的情况下,如果荧光粉占发光层110的比例过少,则发光层110的厚度过大,导致发光层110沿热量传播方向的热阻大;另一方面,若荧光粉占发光层110的比例过大,则第一玻璃粉的量不足以将各个荧光粉颗粒包裹,从而使得荧光粉颗粒彼此相邻并形成孔隙,该孔隙的存在不仅增加了发光层110本身的热阻,还增加了荧光粉颗粒与第一玻璃粉之间的界面热阻,从而使得发光层110的导热性能低下。本实施例通过实验,得到荧光粉占发光层110的体积分数为14.1%~38.7%时,能够兼顾发光性能和导热性能;而且当荧光粉占发光层110的体积分数为29.1%~38.7%时,发光层110的发光散热性能更加优异。In this embodiment, the light-emitting layer 110 is formed by mixing and sintering phosphor powder, first glass powder and organic carrier, wherein the organic carrier is removed during the sintering process, and the first glass powder is softened and forms a continuous body during the sintering process. It is filled between the phosphor particles and wraps the phosphor into layers. Since phosphor powder is the main body of wavelength conversion in the light emitting layer 110 , the amount of phosphor powder determines the amount of light that can be converted by the wavelength conversion device. In the case of a certain amount of fluorescent powder, if the proportion of fluorescent powder in the light-emitting layer 110 is too small, the thickness of the light-emitting layer 110 is too large, resulting in a large thermal resistance of the light-emitting layer 110 along the direction of heat propagation; on the other hand, if the fluorescent powder If the proportion of the light-emitting layer 110 is too large, the amount of the first glass powder is not enough to wrap each phosphor particle, so that the phosphor particles are adjacent to each other and form pores. The existence of this hole not only increases the heat of the light-emitting layer 110 itself. resistance, and also increases the thermal resistance of the interface between the phosphor particles and the first glass frit, so that the thermal conductivity of the light-emitting layer 110 is reduced. Through experiments in this embodiment, it is obtained that when the volume fraction of the phosphor powder in the luminescent layer 110 is 14.1% to 38.7%, both luminous performance and thermal conductivity can be taken into account; and when the volume fraction of the phosphor powder in the luminescent layer 110 is 29.1% to 38.7%. , the light-emitting and heat-dissipating properties of the light-emitting layer 110 are more excellent.
荧光粉吸收峰值波长较短的光并发射峰值波长较长的光。具体的,荧光粉可以选择吸收峰值波长420nm~470nm的蓝光并发射峰值波长500nm~600nm的光的石榴石基荧光粉材料(Y1-aLna)3(Al1-bGab)5O12:Ce(0≤a≤1,0≤b≤1),也可以选择吸收峰值波长420nm~470nm的蓝光并发射峰值波长600nm~660nm的氮化物荧光粉(Ca1-a-bSraBab)AlSiN3:Eu(0≤a≤1,0≤b≤1),其中Ln为镧系元素。此类荧光粉的平均线膨胀系数大致为7×10-6/K~9×10-6/K。Phosphor absorbs light with a shorter peak wavelength and emits light with a longer peak wavelength. Specifically, the phosphor can be selected from a garnet-based phosphor material (Y 1-a Ln a ) 3 (Al 1-b Ga b ) 5 O that absorbs blue light with a peak wavelength of 420nm to 470nm and emits light with a peak wavelength of 500nm to 600nm. 12 : Ce (0≤a≤1,0≤b≤1), you can also choose to absorb blue light with a peak wavelength of 420nm~470nm and emit a nitride phosphor with a peak wavelength of 600nm~660nm (Ca 1-ab Sr a Ba b ) AlSiN 3 :Eu (0≤a≤1,0≤b≤1), wherein Ln is a lanthanide element. The average linear expansion coefficient of this type of phosphor is approximately 7×10 -6 /K˜9×10 -6 /K.
第一玻璃粉用于粘接荧光粉,并作为光和热在发光层110中传播的介质,可以选择硅酸盐玻璃粉、硼硅酸盐玻璃粉、硼磷酸盐玻璃粉、锌磷酸盐玻璃粉等。本实施例中,优选高透光率耐高温的硼硅酸盐玻璃粉,其光透过率超过90%。此类玻璃粉的平均线膨胀系数大致为3×10-6/K~3.5×10-6/K。本实施例中,氧化硼占第一玻璃粉的摩尔百分比为10%~19%,氧化硅占第一玻璃粉的摩尔百分比为70%~90%。The first glass powder is used to bond the fluorescent powder, and as a medium for light and heat to propagate in the luminescent layer 110, silicate glass powder, borosilicate glass powder, borophosphate glass powder, zinc phosphate glass can be selected powder etc. In this embodiment, borosilicate glass frit with high light transmittance and high temperature resistance is preferred, and its light transmittance exceeds 90%. The average coefficient of linear expansion of this type of glass frit is approximately 3×10 -6 /K~3.5×10 -6 /K. In this embodiment, the molar percentage of boron oxide in the first glass frit is 10%-19%, and the molar percentage of silicon oxide in the first glass frit is 70%-90%.
此外,第一玻璃粉可以是单一种类的玻璃粉,也可以是两种或两种以上玻璃粉的组合。本发明中,也可以选用水玻璃、玻璃釉料作为粘接剂替代第一玻璃粉,此处不作赘述。In addition, the first glass powder can be a single type of glass powder, or a combination of two or more glass powders. In the present invention, water glass and glass frit may also be selected as the adhesive to replace the first glass powder, which will not be repeated here.
本实施例中,漫反射层120由白色散射粒子和第一玻璃粉组成,其中,白色散射粒子占漫反射层120的体积分数为22.0%~62.9%,漫反射层120对可见光的反射率大于90%。In this embodiment, the diffuse reflection layer 120 is composed of white scattering particles and the first glass frit, wherein the volume fraction of the white scattering particles in the diffuse reflection layer 120 is 22.0% to 62.9%, and the reflectance of the diffuse reflection layer 120 to visible light is greater than 90%.
与镜面反射只有一次反射不同,本实施例中的反射过程中,光经白色散射粒子多次反射,而且随着反射次数的增加,光损耗也在增加,这部分损耗的光转化为热量,从而对波长转换装置的散热产生不利影响。当白色散射粒子占漫反射层120的比例过小时,在漫反射层沿平行于其入射面的切面上,白色散射粒子的分布稀疏,光会继续向漫反射层的内部传播直至被反射。为了使漫反射层120的反射率高于90%,漫反射层120需具有足够大厚度。而光传播距离的增加,将导致光从入射与漫反射层到出射的过程中被反射的次数增加,也即产生的热量增加。另一方面,当白色散射粒子占漫反射层120的比例过大时,则第一玻璃粉的量不足以将各个白色散射粒子包裹,从而使得白色散射粒子彼此相邻并形成孔隙,该孔隙的存在不仅增加了漫反射层120本身的热阻,还增加了白色散射粒子与第一玻璃粉之间的界面热阻,从而使得漫反射层120的导热性能低下。本实施例通过实验,得到白色散射粒子占漫反射层层120的体积分数为22.0%~62.9%时,能够兼顾反射性能和导热性能。Unlike specular reflection, which only has one reflection, in the reflection process in this embodiment, the light is reflected multiple times by the white scattering particles, and as the number of reflections increases, the light loss also increases, and this part of the lost light is converted into heat, thereby This adversely affects the heat dissipation of the wavelength conversion device. When the proportion of white scattering particles in the diffuse reflection layer 120 is too small, the white scattering particles are sparsely distributed on the cross section of the diffuse reflection layer parallel to its incident plane, and the light will continue to propagate to the inside of the diffuse reflection layer until it is reflected. In order to make the reflectance of the diffuse reflection layer 120 higher than 90%, the diffuse reflection layer 120 needs to have a sufficiently large thickness. The increase in the light propagation distance will lead to an increase in the number of times the light is reflected during the process from the incident and diffuse reflection layers to the exit, that is, the heat generated increases. On the other hand, when the proportion of the white scattering particles in the diffuse reflection layer 120 is too large, the amount of the first glass powder is not enough to wrap each white scattering particle, so that the white scattering particles are adjacent to each other and form pores. Existence not only increases the thermal resistance of the diffuse reflection layer 120 itself, but also increases the thermal resistance of the interface between the white scattering particles and the first glass frit, thereby reducing the thermal conductivity of the diffuse reflection layer 120 . Through experiments in this embodiment, it is obtained that when the volume fraction of the white scattering particles in the diffuse reflection layer 120 is 22.0% to 62.9%, both reflective performance and thermal conductivity performance can be taken into account.
光入射于漫反射层120后,经白色散射粒子反射后向发光层110的方向出射。白色散射粒子或者具有对可见光较高的反射率,或者具有高折射率并利用光的全反射性质进行反射。本实施例中,由于波长转换装置100在工作状态的温度较高,因此白色散射粒子选择化学稳定性、温度稳定性好的氧化铝、氧化镁、氧化钇、氮化硼、氧化锌、氧化钛或氧化锆的粉末,这些材料都能够在玻璃粉软化点温度附近保持稳定。After the light is incident on the diffuse reflection layer 120 , it is reflected by the white scattering particles and then exits toward the light emitting layer 110 . The white scattering particles either have a high reflectivity for visible light, or have a high refractive index and use the total reflection property of light to reflect. In this embodiment, since the temperature of the wavelength conversion device 100 in the working state is relatively high, the white scattering particles are selected from aluminum oxide, magnesium oxide, yttrium oxide, boron nitride, zinc oxide, and titanium oxide with good chemical stability and temperature stability. Or powder of zirconia, these materials can keep stable near the softening point temperature of glass powder.
漫反射层120中的玻璃粉优选与发光层110中的第一玻璃粉相同的玻璃粉,这种组成能够保证漫反射层120与发光层110之间更牢固的结合,而且在热胀冷缩中不会因为两者热膨胀系数不同而产生空隙。当然,漫反射层120中的玻璃粉也可以选择与发光层110不同的The glass powder in the diffuse reflection layer 120 is preferably the same glass powder as the first glass powder in the luminous layer 110. This composition can ensure a firmer bond between the diffuse reflection layer 120 and the luminescent layer 110, and it can withstand thermal expansion and contraction. There will be no voids due to the difference in thermal expansion coefficient between the two. Of course, the glass frit in the diffuse reflection layer 120 can also be chosen to be different from that of the light emitting layer 110.
本实施例中,陶瓷基板130将发光层110和漫反射层120产生的热传导并发散出去。该陶瓷基板需具有良好的导热性能,其导热系数大于等于80W/mK。本实施例中的陶瓷基板130为氮化铝基板,其也可以选择碳化硅或类似材料作为基板材料。In this embodiment, the ceramic substrate 130 conducts and dissipates the heat generated by the light emitting layer 110 and the diffuse reflection layer 120 . The ceramic substrate needs to have good thermal conductivity, and its thermal conductivity is greater than or equal to 80W/mK. The ceramic substrate 130 in this embodiment is an aluminum nitride substrate, and silicon carbide or similar materials can also be selected as the substrate material.
除了陶瓷基板130本身的热导率外,陶瓷基板130与漫反射层120接触而产生的界面热阻为波长转换装置散热的重要部分。由于漫反射层120是有在陶瓷基板130上涂覆玻璃粉与白色散射粒子混合浆料高温烧结形成的,如果漫反射层120的热膨胀系数与陶瓷基板130差距过大,漫反射层在高温冷却过程中会产生较大的热应力,造成漫其产生微裂纹,更为严重就会产生脱落,造成陶瓷基板130与漫反射层120热阻增大。In addition to the thermal conductivity of the ceramic substrate 130 itself, the interface thermal resistance generated by the contact between the ceramic substrate 130 and the diffuse reflection layer 120 is an important part of the heat dissipation of the wavelength conversion device. Since the diffuse reflective layer 120 is formed by coating the ceramic substrate 130 with a slurry mixed with glass powder and white scattering particles and sintered at high temperature, if the thermal expansion coefficient of the diffuse reflective layer 120 is too different from that of the ceramic substrate 130, the diffuse reflective layer will be cooled at high temperature. During the process, relatively large thermal stress will be generated, resulting in diffuse micro-cracks, and more seriously, shedding, resulting in increased thermal resistance between the ceramic substrate 130 and the diffuse reflection layer 120 .
由于各层的组成成分不同,这些不同的成分分别具有不同的平均线膨胀系数,当波长转换装置被加热和冷却过程中,漫反射层120的形变与陶瓷基板130的形变不同,从而导致其界面产生空隙,进而导致其界面热阻增大,对波长转换装置的散热产生不利影响。Since the components of each layer are different, and these different components have different average linear expansion coefficients, when the wavelength conversion device is heated and cooled, the deformation of the diffuse reflection layer 120 is different from that of the ceramic substrate 130, resulting in a Voids are generated, which in turn leads to an increase in the thermal resistance of the interface, which has an adverse effect on the heat dissipation of the wavelength conversion device.
由于白色散射粒子和荧光粉的线膨胀系数大于第一玻璃粉的线膨胀系数,根据复合材料的热膨胀系数计算方法,发光层110的平均线膨胀系数介于荧光粉和第一玻璃粉的线膨胀系数之间,漫反射层120的平均线膨胀系数介于白色散射粒子和第一玻璃粉的线膨胀系数之间,也即陶瓷基板的线膨胀系数大于第一玻璃粉的线膨胀系数并小于荧光粉和白色散射粒子的线膨胀系数。因此,选择陶瓷基板使其热膨胀系数与发光层110和漫反射层120的平均线膨胀系数接近,能够尽可能减小因热膨胀系数不匹配而造成的界面热阻大。本实施例中,选择线膨胀系数为4×10-6/K~6×10-6/K的氮化铝基板,不仅能保证基板的导热性能和机械强度,而且其不会在制造或使用过程中因与漫反射层热膨胀系数不匹配而产生较大的界面热阻。Since the linear expansion coefficients of the white scattering particles and the phosphor powder are greater than that of the first glass powder, according to the calculation method of the thermal expansion coefficient of the composite material, the average linear expansion coefficient of the light-emitting layer 110 is between that of the phosphor powder and the first glass powder. coefficients, the average linear expansion coefficient of the diffuse reflection layer 120 is between the linear expansion coefficients of the white scattering particles and the first glass frit, that is, the linear expansion coefficient of the ceramic substrate is greater than that of the first glass frit and smaller than that of the fluorescent Linear expansion coefficient of powder and white scattering particles. Therefore, choosing the ceramic substrate so that its thermal expansion coefficient is close to the average linear expansion coefficient of the light emitting layer 110 and the diffuse reflection layer 120 can minimize the large interface thermal resistance caused by the mismatch of thermal expansion coefficients. In this embodiment, the aluminum nitride substrate with a linear expansion coefficient of 4×10 -6 /K to 6×10 -6 /K can not only ensure the thermal conductivity and mechanical strength of the substrate, but also ensure that it will not be used during manufacture or use. In the process, a large interface thermal resistance is generated due to the mismatch of the thermal expansion coefficient of the diffuse reflection layer.
本实施例一中的波长转换装置100的制备方法如下:The preparation method of the wavelength conversion device 100 in the first embodiment is as follows:
步骤一:提供陶瓷基板130;Step 1: providing a ceramic substrate 130;
步骤二:将白色散射粒子、第一玻璃粉和有机载体混合制得漫反射层浆料,将该浆料覆盖在陶瓷基板130的经过处理的表面上,制得漫反射层生片,漫反射层生片中的第一玻璃粉未发生软化变形;Step 2: mix the white scattering particles, the first glass powder and the organic carrier to prepare a slurry for the diffuse reflection layer, and cover the slurry on the treated surface of the ceramic substrate 130 to prepare a green sheet for the diffuse reflection layer. The first glass frit in the green sheet does not soften and deform;
步骤三:将荧光粉、第一玻璃粉和有机载体混合制得发光层浆料,将该浆料覆盖在漫反射层生片上,制得发光层生片;Step 3: mixing the fluorescent powder, the first glass powder and the organic carrier to prepare a light-emitting layer slurry, and covering the slurry on the diffuse reflection layer green sheet to obtain a light-emitting layer green sheet;
步骤四:将发光层生片、漫反射层生片和陶瓷基板的叠层共同烧结,制得波长转换装置。Step 4: co-sintering the lamination of the light-emitting layer green sheet, the diffuse reflection layer green sheet and the ceramic substrate to obtain a wavelength conversion device.
在步骤二中,漫反射层生片未经烧结,第一玻璃粉未经历软化过程,仅通过低温烘烤除去了部分有机载体,因此漫反射层生片并未形成一个致密、连续的表面结构。在步骤四中,发光层生片、漫反射层生片和陶瓷基板共同烧结,其中发光层生片与漫反射层生片的接触面两侧的第一玻璃粉在其软化点附近流动性增强,玻璃粉彼此粘接成为连续体,使发光层与漫反射层之间形成了连续过渡层,该连续过渡层没有明显的相界面,因此发光层与漫反射层之间的界面热阻很小,从而传热性能良好。In step 2, the diffuse reflective layer green sheet is not sintered, the first glass powder has not undergone a softening process, and only part of the organic carrier is removed by low-temperature baking, so the diffuse reflective layer green sheet does not form a dense and continuous surface structure . In Step 4, the light-emitting layer green sheet, the diffuse reflection layer green sheet and the ceramic substrate are sintered together, wherein the first glass powder on both sides of the contact surface between the light-emitting layer green sheet and the diffuse reflection layer green sheet has increased fluidity near its softening point , the glass powder is bonded to each other to form a continuous body, so that a continuous transition layer is formed between the luminous layer and the diffuse reflection layer. The continuous transition layer has no obvious phase interface, so the interface thermal resistance between the luminescent layer and the diffuse reflection layer is very small , so that the heat transfer performance is good.
上述制备步骤中,有机载体用于使荧光粉与第一玻璃粉或白色散射粒子与第一玻璃粉均匀混合,可以选择苯基、甲基等各个体系的硅油、乙醇、乙二醇、二甲苯、乙基纤维素、萜品醇、丁基卡必醇、PVA、PVB、PAA、PEG中的一个或者多个混合体。有机载体能够促进玻璃粉与荧光粉或白色散射粒子混合均匀,其大部分在烧结过程中分解,但也有可能有极少部分残留在波长转换装置中。In the above preparation steps, the organic carrier is used to uniformly mix the fluorescent powder with the first glass powder or the white scattering particles with the first glass powder, and can choose silicone oil, ethanol, ethylene glycol, xylene, etc. of various systems such as phenyl, methyl, etc. , ethyl cellulose, terpineol, butyl carbitol, PVA, PVB, PAA, PEG in one or more mixtures. The organic carrier can promote the uniform mixing of glass powder and phosphor powder or white scattering particles, most of which are decomposed during the sintering process, but a very small part may remain in the wavelength conversion device.
本实施例的一个具体实施方式制得的波长转换装置中,荧光粉占发光层110的体积分数为29.1%,白色散射粒子占漫反射层120的体积分数为49.2%。在激发光照射下,测得波长转换装置100的起始发光强度为2875.6lm,在经过2分钟照射后,测得波长转换装置100的发光强度下降了6.3%,该发光强度和衰减程度能够满足波长转换装置100在发光装置中的应用。In the wavelength conversion device manufactured according to a specific implementation of this example, the volume fraction of phosphor powder in the light-emitting layer 110 is 29.1%, and the volume fraction of white scattering particles in the diffuse reflection layer 120 is 49.2%. Under excitation light irradiation, the measured initial luminous intensity of the wavelength conversion device 100 is 2875.6lm. After 2 minutes of irradiation, it is measured that the luminous intensity of the wavelength conversion device 100 has dropped by 6.3%. The luminous intensity and attenuation degree can be The application of the wavelength conversion device 100 in a light emitting device is satisfied.
在更多的比较例中,不改变荧光粉占发光层110的体积分数,仅改变漫反射层120中的白色散射粒子的体积分数,在激光的照射下,分别测量波长转换装置100初始发光强度和经两分钟照射后的发光强度,得到如表1所示对比结果。其中白色散射粒子占漫反射层120的体积分数为22.0%时,起始发光强度为2855.1lm,两分钟后衰减5.8%;白色散射粒子占漫反射层120的体积分数为53.0%时,起始发光强度为2963.3lm,两分钟后衰减7.3%;白色散射粒子占漫反射层120的体积分数为62.9%时,起始发光强度为2980.4lm,两分钟后衰减6.9%;白色散射粒子占漫反射层120的体积分数为69.3%时,起始发光强度为2923.8lm,两分钟后衰减66.0%,该比例下散热效果很差,影响了波长转换装置100的正常使用。在荧光粉占发光层110的体积分数取除29.1%以外的14.1%~38.7%之间的其它数值时,改变漫反射层中白色散射粒子的体积分数,仍可得到相似的结论。In more comparative examples, without changing the volume fraction of the phosphor powder in the light-emitting layer 110, only changing the volume fraction of the white scattering particles in the diffuse reflection layer 120, and measuring the initial luminous intensity of the wavelength conversion device 100 under the irradiation of laser light And the luminous intensity after two minutes of irradiation, the comparison results shown in Table 1 are obtained. Wherein, when the volume fraction of white scattering particles in the diffuse reflection layer 120 is 22.0%, the initial luminous intensity is 2855.1lm, and decays by 5.8% after two minutes; when the volume fraction of white scattering particles in the diffuse reflection layer 120 is 53.0%, the starting intensity The initial luminous intensity is 2963.3lm, which decays by 7.3% after two minutes; when the volume fraction of white scattering particles in the diffuse reflection layer 120 is 62.9%, the initial luminous intensity is 2980.4lm, and decays by 6.9% after two minutes; the white scattering particles When the volume fraction of the diffuse reflection layer 120 is 69.3%, the initial luminous intensity is 2923.8lm, and the attenuation is 66.0% after two minutes. Under this ratio, the heat dissipation effect is very poor, which affects the normal use of the wavelength conversion device 100 . When the volume fraction of phosphor powder in the light-emitting layer 110 is taken as other values between 14.1% and 38.7% other than 29.1%, similar conclusions can still be obtained by changing the volume fraction of white scattering particles in the diffuse reflection layer.
表1不同白色散射粒子体积分数对装置发光强度和稳定性的影响Table 1 Effects of different volume fractions of white scattering particles on the luminous intensity and stability of the device
可见当白色散射粒子的体积分数较小时,波长转换装置的光损耗较大,导致其发光强度较低;而当白色散射粒子的体积分数较大时,漫反射层的热阻增大,导致其热量无法散发出去,使荧光粉工作温度升高、光转换效率下降。It can be seen that when the volume fraction of white scattering particles is small, the light loss of the wavelength conversion device is large, resulting in low luminous intensity; and when the volume fraction of white scattering particles is large, the thermal resistance of the diffuse reflection layer increases, resulting in its The heat cannot be dissipated, so that the working temperature of the phosphor increases and the light conversion efficiency decreases.
在本实施例的其他对比例中,波长转换装置的漫反射层120包含体积分数为49.2%的白色散射粒子不变,改变发光层110中的荧光粉的体积分数,在激光的照射下,分别测量波长转换装置100初始发光强度和经两分钟照射后的发光强度,得到如表2所示结果。其中荧光粉占发光层110的体积分数为14.1%时,起始发光强度为2544.5lm,两分钟后衰减5.4%,该比例下,荧光粉量较少,发光效果不高;荧光粉占发光层110的体积分数为19.0%时,起始发光强度为2593.4lm,两分钟后衰减5.6%;荧光粉占发光层110的体积分数为31.3%时,起始发光强度为2875.6lm,两分钟后衰减6.9%;荧光粉占发光层110的体积分数为37.0%时,起始发光强度为2877.0lm,两分钟后衰减8.4%;荧光粉占发光层110的体积分数为38.7%时,起始发光强度为2882.6lm,两分钟后衰减9.8%。In other comparative examples of this embodiment, the diffuse reflection layer 120 of the wavelength conversion device contains white scattering particles with a volume fraction of 49.2%. The initial luminous intensity of the wavelength conversion device 100 and the luminous intensity after two minutes of irradiation were measured, and the results shown in Table 2 were obtained. Wherein, when the volume fraction of the phosphor powder in the light-emitting layer 110 is 14.1%, the initial luminous intensity is 2544.5lm, and decays by 5.4% after two minutes. When the volume fraction of layer 110 is 19.0%, the initial luminous intensity is 2593.4lm, which decays by 5.6% after two minutes; 6.9% attenuation after 1 minute; when the volume fraction of the phosphor powder in the luminescent layer 110 is 37.0%, the initial luminous intensity is 2877.0lm, and decays 8.4% after two minutes; when the volume fraction of the phosphor powder in the luminescent layer 110 is 38.7%, The initial luminous intensity is 2882.6lm, which decays by 9.8% after two minutes.
在白色散射粒子的体积分数取除49.2%以外的22.0%~62.9%之间的其它数值时,改变发光层中荧光粉的体积分数,仍可得到相似的结论。When the volume fraction of white scattering particles is taken as other values between 22.0% and 62.9% other than 49.2%, similar conclusions can still be obtained by changing the volume fraction of phosphor powder in the light-emitting layer.
表2不同荧光粉体积分数对发光强度和稳定性的影响Table 2 Effect of different phosphor volume fractions on luminous intensity and stability
可见,当荧光粉体积分数较小时,发光层110吸收并转换的激发光少,导致波长转换装置100的发光强度低;而当荧光粉体积分数较大时,虽然波长转换装置100的起始发光强度提高了,但发光层内部孔隙增多,导致其热阻增大,导致荧光粉产生的热量无法散发出去,使荧光粉工作温度升高、光转换效率下降。It can be seen that when the phosphor powder volume fraction is small, the light-emitting layer 110 absorbs and converts less excitation light, resulting in low luminous intensity of the wavelength conversion device 100; and when the phosphor powder volume fraction is large, although the wavelength conversion device 100 has The initial luminous intensity increases, but the internal pores of the luminescent layer increase, resulting in an increase in its thermal resistance, resulting in the inability to dissipate the heat generated by the phosphor, which increases the operating temperature of the phosphor and reduces the light conversion efficiency.
然而,在其它系列实验中,例如取荧光粉的体积分数为52%(超出14.1%~38.7%),改变白色散射粒子的体积分数,发现波长转换装置要么发光强度低,要么发光强度衰减很快;同理,取白色散射粒子在72%(超出22.0%~62.9%)不变,而改变荧光粉的体积分数,结果发现波长转换装置发光强度衰减很快。However, in other series of experiments, such as taking the volume fraction of phosphor powder as 52% (exceeding from 14.1% to 38.7%), and changing the volume fraction of white scattering particles, it was found that the wavelength conversion device either had low luminous intensity, or the luminous intensity decayed quickly ; Similarly, take the white scattering particles at 72% (exceeding 22.0% ~ 62.9%) unchanged, and change the volume fraction of the phosphor, it is found that the luminous intensity of the wavelength conversion device decays quickly.
经过上述系列实验得出,漫反射层的白色散射粒子和发光层的荧光粉的体积分数须处于一定的范围内,同时二者必须同时符合该比例要求,才能既保证具有高反射率和发光效率,又具有较低的热阻,本实施例中,白色散射粒子占漫反射层的体积分数为22.0%~62.9%,荧光粉占发光层的体积分数为14.1%~38.7%,则能够满足使波长转换装置具有稳定的高发光效率的出射光。为进一步提高波长转换装置的发光强度,荧光粉占发光层的体积分数优选为29.1%~38.7%。After the above series of experiments, it is concluded that the volume fraction of the white scattering particles in the diffuse reflection layer and the phosphor powder in the light-emitting layer must be within a certain range, and the two must meet the ratio requirements at the same time to ensure high reflectivity and luminous efficiency. , and has lower thermal resistance. In this embodiment, the volume fraction of white scattering particles in the diffuse reflection layer is 22.0% to 62.9%, and the volume fraction of phosphor powder in the light emitting layer is 14.1% to 38.7%. The wavelength conversion device has stable and high luminous efficiency outgoing light. In order to further increase the luminous intensity of the wavelength conversion device, the volume fraction of the fluorescent powder in the luminescent layer is preferably 29.1%-38.7%.
实施例二Embodiment two
请参见图2,图2为本发明的波长转换装置的实施例二的结构示意图。如图所示,波长转换装置200包括发光层210、漫反射层220和陶瓷基板230,与实施例一不同的是,本实施例中,波长转换装置200还包括界面粘接层231。Please refer to FIG. 2 . FIG. 2 is a schematic structural diagram of Embodiment 2 of the wavelength conversion device of the present invention. As shown in the figure, the wavelength conversion device 200 includes a light-emitting layer 210 , a diffuse reflection layer 220 and a ceramic substrate 230 . Different from Embodiment 1, in this embodiment, the wavelength conversion device 200 also includes an interface bonding layer 231 .
本实施例中,陶瓷基板230为氮化铝基板,界面粘接层231为氧化铝层,而且氧化铝层231形成于氮化铝基板230的表面,属于陶瓷基板230的一部分。In this embodiment, the ceramic substrate 230 is an aluminum nitride substrate, the interface bonding layer 231 is an alumina layer, and the alumina layer 231 is formed on the surface of the aluminum nitride substrate 230 and is a part of the ceramic substrate 230 .
本实施例中的波长转换装置200的制备方法如下:The preparation method of the wavelength conversion device 200 in this embodiment is as follows:
步骤一:提供氮化铝基板230,对氮化铝基板230进行表面致密化处理,具体包括在800~1000℃下对氮化铝基板230加热0.5~2h,得到氧化铝层231;Step 1: providing an aluminum nitride substrate 230, and performing surface densification treatment on the aluminum nitride substrate 230, specifically including heating the aluminum nitride substrate 230 at 800-1000° C. for 0.5-2 hours to obtain an aluminum oxide layer 231;
步骤二:将白色散射粒子、第一玻璃粉和有机载体混合制得漫反射层浆料,将该浆料覆盖在氮化铝基板230的经过处理的表面上,制得漫反射层生片,漫反射层生片中的第一玻璃粉未发生软化变形;Step 2: mixing the white scattering particles, the first glass powder and the organic carrier to prepare a slurry for the diffuse reflection layer, covering the slurry on the treated surface of the aluminum nitride substrate 230 to prepare a green sheet for the diffuse reflection layer, The first glass frit in the green sheet of the diffuse reflection layer is not softened and deformed;
步骤三:将荧光粉、第一玻璃粉和有机载体混合制得发光层浆料,将该浆料覆盖在漫反射层生片上,制得发光层生片;Step 3: mixing the fluorescent powder, the first glass powder and the organic carrier to prepare a light-emitting layer slurry, and covering the slurry on the diffuse reflection layer green sheet to obtain a light-emitting layer green sheet;
步骤四:将发光层生片、漫反射层生片和氮化铝基板的叠层共同烧结,制得波长转换装置。Step 4: co-sintering the lamination of the light-emitting layer green sheet, the diffuse reflection layer green sheet and the aluminum nitride substrate to obtain a wavelength conversion device.
由于氮化铝表面易形成疏松的氧化层,这将导致漫反射层与陶瓷基板结合时的实际接触面积不够大,并对热量从漫反射层传递到陶瓷基板产生不利影响。因此,本实施例对陶瓷基板230做表面处理,通过高温氧化处理,使氮化铝基板230表面形成致密的氧化铝层231,从而使陶瓷基板230与漫反射层220通过氧化铝层231紧密相接。该氧化铝层231厚度为0.1μm~100μm,此厚度不会导致波长转换装置200的热阻产生明显变化。Since a loose oxide layer is easily formed on the surface of aluminum nitride, the actual contact area when the diffuse reflection layer is combined with the ceramic substrate is not large enough, and has an adverse effect on heat transfer from the diffuse reflection layer to the ceramic substrate. Therefore, in this embodiment, the surface of the ceramic substrate 230 is treated, and a dense aluminum oxide layer 231 is formed on the surface of the aluminum nitride substrate 230 through high-temperature oxidation treatment, so that the ceramic substrate 230 and the diffuse reflection layer 220 are closely connected through the aluminum oxide layer 231. catch. The aluminum oxide layer 231 has a thickness of 0.1 μm˜100 μm, and this thickness will not cause significant changes in the thermal resistance of the wavelength conversion device 200 .
此外,还可以通过酸腐蚀的方法去除氮化铝基板230表面的疏松层,即将本实施例制备方法中的步骤一替换为,将氮化铝基板231置于酸液中浸泡腐蚀。该处理过程可以去除氮化铝表面疏松的氧化结构。In addition, the loose layer on the surface of the aluminum nitride substrate 230 can also be removed by acid etching, that is, step 1 in the preparation method of this embodiment is replaced by immersing the aluminum nitride substrate 231 in an acid solution for corrosion. This treatment process can remove the loose oxide structure on the surface of aluminum nitride.
在其他实施例中,也可以将表面氧化处理和表面腐蚀处理相结合,先氧化处理再腐蚀处理,或者先腐蚀处理再氧化处理。In other embodiments, the surface oxidation treatment and the surface corrosion treatment may also be combined, oxidation treatment first and then corrosion treatment, or corrosion treatment first and then oxidation treatment.
实施例三Embodiment three
请参见图3,图3为本发明的波长转换装置的实施例三的结构示意图。如图所示,波长转换装置300包括发光层310、漫反射层320、陶瓷基板330以及界面粘接层340。与实施例二不同的是,本实施例中,界面粘接层340为独立于陶瓷基板330的层结构。Please refer to FIG. 3 . FIG. 3 is a schematic structural diagram of Embodiment 3 of the wavelength conversion device of the present invention. As shown in the figure, the wavelength conversion device 300 includes a light emitting layer 310 , a diffuse reflection layer 320 , a ceramic substrate 330 and an interface bonding layer 340 . Different from the second embodiment, in this embodiment, the interface bonding layer 340 is a layer structure independent of the ceramic substrate 330 .
本实施例中,界面粘接层340为玻璃粘接层,该玻璃粘接层包含与漫反射层320中的相同的第一玻璃粉。In this embodiment, the interface bonding layer 340 is a glass bonding layer, and the glass bonding layer includes the same first glass frit as that in the diffuse reflection layer 320 .
由于制备工艺的问题,在陶瓷基板330上烧制漫反射层320时,可能有白色散射粒子直接与陶瓷基板330接触。由于白色散射粒子没有如玻璃粉般经历软化再成型过程,因此其与陶瓷基板330的接触面积小,并会在其周围产生孔隙,从而导致界面热阻大。因此本实施例通过在陶瓷基板330表面增加玻璃粘接层340,防止白色散射粒子之间与陶瓷基板接触。当然,本发明也可以选择与第一玻璃粉不同的玻璃粉作为玻璃粘接层340。Due to the problem of the preparation process, when the diffuse reflection layer 320 is fired on the ceramic substrate 330 , there may be white scattering particles in direct contact with the ceramic substrate 330 . Since the white scattering particles do not undergo a softening and reshaping process like glass powder, their contact area with the ceramic substrate 330 is small, and voids are generated around them, resulting in large interface thermal resistance. Therefore, in this embodiment, the glass bonding layer 340 is added on the surface of the ceramic substrate 330 to prevent white scattering particles from contacting the ceramic substrate. Of course, in the present invention, a glass frit different from the first glass frit can also be selected as the glass bonding layer 340 .
在本实施例的一个变形实施例中,界面粘接层340为银玻璃粘接层,该银玻璃粘接层包含纳米银颗粒和第二玻璃粉。纳米银颗粒散布在该银玻璃粘接层340中,增大了银玻璃粘接层340的热导率,使其相对于玻璃粘接层具有更优的导热性能。其中,第二玻璃粉的软化点低于漫反射层320中的第一玻璃粉。一方面,第二玻璃粉的软化点低,保证了纳米银在烧结过程中不会温度过高而氧化;另一方面,第二玻璃粉的软化点低于第一玻璃粉的软化点,使其在烧结过程中流动性相对漫反射层更强,能够更好的填充陶瓷基板330以及漫反射层320中的孔隙。此外,银玻璃粘接层340厚度较薄,不会因第二玻璃粉在烧结过程中流动性强而导致波长转换装置的层结构被破坏。In a modified embodiment of this embodiment, the interface bonding layer 340 is a silver glass bonding layer, and the silver glass bonding layer includes nano silver particles and a second glass frit. Nano-silver particles are dispersed in the silver-glass adhesive layer 340, which increases the thermal conductivity of the silver-glass adhesive layer 340, making it have better thermal conductivity than the glass adhesive layer. Wherein, the softening point of the second glass powder is lower than that of the first glass powder in the diffuse reflection layer 320 . On the one hand, the softening point of the second glass powder is low, which ensures that the nano-silver will not be oxidized due to excessive temperature during the sintering process; on the other hand, the softening point of the second glass powder is lower than that of the first glass powder, so that During the sintering process, its fluidity is stronger than that of the diffuse reflection layer, and it can better fill the pores in the ceramic substrate 330 and the diffuse reflection layer 320 . In addition, the silver glass bonding layer 340 is relatively thin, so that the layer structure of the wavelength conversion device will not be damaged due to the strong fluidity of the second glass frit during the sintering process.
本实施例中的波长转换装置300的制备方法如下:The preparation method of the wavelength conversion device 300 in this embodiment is as follows:
步骤一:提供氮化铝基板330,对氮化铝基板330进行表面致密化处理,在氮化铝基板330表面覆盖一层界面粘接层;Step 1: providing an aluminum nitride substrate 330, performing a surface densification treatment on the aluminum nitride substrate 330, and covering the surface of the aluminum nitride substrate 330 with an interface bonding layer;
步骤二:将白色散射粒子、第一玻璃粉和有机载体混合制得漫反射层浆料,将该浆料覆盖在氮化铝基板330的经过处理的表面上,制得漫反射层生片,漫反射层生片中的第一玻璃粉未发生软化变形;Step 2: mixing the white scattering particles, the first glass powder and the organic carrier to prepare a slurry for the diffuse reflection layer, covering the slurry on the treated surface of the aluminum nitride substrate 330 to prepare a green sheet for the diffuse reflection layer, The first glass frit in the green sheet of the diffuse reflection layer is not softened and deformed;
步骤三:将荧光粉、第一玻璃粉和有机载体混合制得发光层浆料,将该浆料覆盖在漫反射层生片上,制得发光层生片;Step 3: mixing the fluorescent powder, the first glass powder and the organic carrier to prepare a light-emitting layer slurry, and covering the slurry on the diffuse reflection layer green sheet to obtain a light-emitting layer green sheet;
步骤四:将发光层生片、漫反射层生片和氮化铝基板的叠层共同烧结,制得波长转换装置。Step 4: co-sintering the lamination of the light-emitting layer green sheet, the diffuse reflection layer green sheet and the aluminum nitride substrate to obtain a wavelength conversion device.
其中,步骤一中的界面粘接层可以为第一玻璃粉粘接层或银玻璃粘接层。Wherein, the interface bonding layer in step 1 may be the first glass frit bonding layer or the silver glass bonding layer.
本发明还提供了一种发光装置,该发光装置包括激发光源和波长转换装置,其中波长转换装置可以具有上述各实施例中的结构与功能。该发光装置可以应用于投影、显示系统,例如液晶显示器(LCD,LiquidCrystalDisplay)或数码光路处理器(DLP,DigitalLightProcessor)投影机;也可以应用于照明系统,例如汽车照明灯;也可以应用于3D显示技术领域中。本发明还提供了一种投影系统,该投影系统包括发光装置和投影装置,其中发光装置可以具有上述发光装置的结构与功能。The present invention also provides a light-emitting device, which includes an excitation light source and a wavelength conversion device, wherein the wavelength conversion device may have the structures and functions of the above-mentioned embodiments. The light-emitting device can be applied to projection and display systems, such as liquid crystal display (LCD, Liquid Crystal Display) or digital light path processor (DLP, Digital Light Processor) projectors; it can also be applied to lighting systems, such as automotive lighting; it can also be applied to 3D display in the technical field. The present invention also provides a projection system, which includes a light emitting device and a projection device, wherein the light emitting device may have the structure and function of the above light emitting device.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410348434.0A CN105278225B (en) | 2014-07-21 | 2014-07-21 | Wavelength converter and preparation method thereof, related lighting fixtures and projection arrangement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410348434.0A CN105278225B (en) | 2014-07-21 | 2014-07-21 | Wavelength converter and preparation method thereof, related lighting fixtures and projection arrangement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105278225A true CN105278225A (en) | 2016-01-27 |
CN105278225B CN105278225B (en) | 2018-05-15 |
Family
ID=55147494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410348434.0A Active CN105278225B (en) | 2014-07-21 | 2014-07-21 | Wavelength converter and preparation method thereof, related lighting fixtures and projection arrangement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105278225B (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105716039A (en) * | 2016-04-12 | 2016-06-29 | 杨阳 | Light conversion device and preparation method and application thereof |
CN107631272A (en) * | 2016-07-13 | 2018-01-26 | 深圳市光峰光电技术有限公司 | A kind of Wavelength converter and preparation method thereof |
CN107689554A (en) * | 2016-08-06 | 2018-02-13 | 深圳市光峰光电技术有限公司 | A kind of Wavelength converter and preparation method thereof, light-emitting device and projection arrangement |
CN108105604A (en) * | 2016-11-25 | 2018-06-01 | 深圳市光峰光电技术有限公司 | Luminescent ceramic structure and preparation method thereof, related lighting fixtures and projection arrangement |
WO2018129076A1 (en) * | 2017-01-04 | 2018-07-12 | 3M Innovative Properties Company | Color compensating optical filters |
WO2019010910A1 (en) * | 2017-07-13 | 2019-01-17 | 深圳市光峰光电技术有限公司 | Wavelength conversion device and light source |
WO2019015220A1 (en) * | 2017-07-21 | 2019-01-24 | 深圳市光峰光电技术有限公司 | Wavelength conversion device, light source comprising same and projection device |
WO2019015221A1 (en) * | 2017-07-21 | 2019-01-24 | 深圳市光峰光电技术有限公司 | Wavelength conversion device, light source comprising same, and projection device |
CN109388010A (en) * | 2017-08-08 | 2019-02-26 | 松下知识产权经营株式会社 | Fluorescent plate, light supply apparatus and projection-type image display device |
JP2019032506A (en) * | 2017-08-08 | 2019-02-28 | パナソニックIpマネジメント株式会社 | Fluorescent plate, light source device, and projection type video display device |
CN109564308A (en) * | 2016-08-05 | 2019-04-02 | 日本电气硝子株式会社 | Wavelength conversion member and its manufacturing method |
WO2019071865A1 (en) * | 2017-10-10 | 2019-04-18 | 深圳光峰科技股份有限公司 | Wavelength conversion device |
CN109668061A (en) * | 2019-01-23 | 2019-04-23 | 厦门大学 | A kind of laser lighting component and its manufacturing method using asbestos fibre |
CN109681846A (en) * | 2017-10-18 | 2019-04-26 | 深圳光峰科技股份有限公司 | Wavelength converter and preparation method thereof |
CN109703120A (en) * | 2019-01-23 | 2019-05-03 | 厦门大学 | A reflective blue light laser lighting assembly |
CN109798457A (en) * | 2019-01-23 | 2019-05-24 | 厦门大学 | A kind of transmission-type blue laser light fixture |
CN109838763A (en) * | 2017-09-13 | 2019-06-04 | 深圳光峰科技股份有限公司 | A kind of Wavelength converter and preparation method thereof |
WO2019104829A1 (en) * | 2017-11-29 | 2019-06-06 | 深圳光峰科技股份有限公司 | Wavelength conversion device |
CN110006005A (en) * | 2017-12-12 | 2019-07-12 | 日本电气硝子株式会社 | Wavelength convert component and its manufacturing method and light emitting device |
JP2019164258A (en) * | 2018-03-20 | 2019-09-26 | セイコーエプソン株式会社 | Wavelength conversion element, method for manufacturing wavelength conversion element, light source device, and projector |
CN110764347A (en) * | 2018-07-26 | 2020-02-07 | 无锡视美乐激光显示科技有限公司 | Wavelength conversion device, laser light source device thereof and laser projector |
WO2020057297A1 (en) * | 2018-09-20 | 2020-03-26 | 深圳光峰科技股份有限公司 | Diffuse reflection device and preparation method thereof, and wavelength conversion device |
CN111176060A (en) * | 2018-11-12 | 2020-05-19 | 中强光电股份有限公司 | Wavelength conversion module, manufacturing method of wavelength conversion module, and projection device |
CN111812928A (en) * | 2019-04-12 | 2020-10-23 | 中强光电股份有限公司 | Wavelength conversion device and projection device |
CN112130407A (en) * | 2019-06-25 | 2020-12-25 | 精工爱普生株式会社 | Wavelength conversion element, light source device, and projector |
CN114315342A (en) * | 2021-12-02 | 2022-04-12 | 中山大学 | A composite material with high thermal conductivity and high reflection for reducing laser speckle and its preparation method and application |
US11327391B2 (en) | 2020-05-08 | 2022-05-10 | Coretronic Corporation | Wavelength conversion device and projection device |
US11424391B2 (en) | 2018-06-11 | 2022-08-23 | Coretronic Corporation | Wavelength-converting element, projection apparatus, and manufacturing method of wavelength-converting element |
US11500278B2 (en) | 2018-06-11 | 2022-11-15 | Coretronic Corporation | Wavelength-converting element, projection apparatus, and manufacturing method of wavelength-converting element |
US20220390821A1 (en) * | 2021-06-04 | 2022-12-08 | Coretronic Corporation | Wavelength conversion module and projection device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090315057A1 (en) * | 2008-06-24 | 2009-12-24 | Sharp Kabushiki Kaisha | Light-emitting apparatus, surface light source, and method for manufacturing package for light-emitting apparatus |
CN102194807A (en) * | 2010-03-12 | 2011-09-21 | 展晶科技(深圳)有限公司 | Light-emitting diode packaging structure and manufacturing method thereof |
CN102606981A (en) * | 2012-03-30 | 2012-07-25 | 昆山市诚泰电气股份有限公司 | Reflector |
JP2012140479A (en) * | 2010-12-28 | 2012-07-26 | Mitsuboshi Belting Ltd | Composition for forming reflective coat and reflective substrate using the composition |
CN102633440A (en) * | 2012-04-26 | 2012-08-15 | 南通脉锐光电科技有限公司 | Glass coating containing fluorophor and method for producing glass coating, and light-emitting device and method for manufacturing light-emitting device |
CN102800791A (en) * | 2011-05-20 | 2012-11-28 | 斯坦雷电气株式会社 | Light source device and lighting device |
-
2014
- 2014-07-21 CN CN201410348434.0A patent/CN105278225B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090315057A1 (en) * | 2008-06-24 | 2009-12-24 | Sharp Kabushiki Kaisha | Light-emitting apparatus, surface light source, and method for manufacturing package for light-emitting apparatus |
CN102194807A (en) * | 2010-03-12 | 2011-09-21 | 展晶科技(深圳)有限公司 | Light-emitting diode packaging structure and manufacturing method thereof |
JP2012140479A (en) * | 2010-12-28 | 2012-07-26 | Mitsuboshi Belting Ltd | Composition for forming reflective coat and reflective substrate using the composition |
CN102800791A (en) * | 2011-05-20 | 2012-11-28 | 斯坦雷电气株式会社 | Light source device and lighting device |
CN102606981A (en) * | 2012-03-30 | 2012-07-25 | 昆山市诚泰电气股份有限公司 | Reflector |
CN102633440A (en) * | 2012-04-26 | 2012-08-15 | 南通脉锐光电科技有限公司 | Glass coating containing fluorophor and method for producing glass coating, and light-emitting device and method for manufacturing light-emitting device |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105716039A (en) * | 2016-04-12 | 2016-06-29 | 杨阳 | Light conversion device and preparation method and application thereof |
CN107631272A (en) * | 2016-07-13 | 2018-01-26 | 深圳市光峰光电技术有限公司 | A kind of Wavelength converter and preparation method thereof |
US10894738B2 (en) | 2016-07-13 | 2021-01-19 | Appotronics Corporation Limited | Wavelength conversion device and method for manufacturing the same |
CN107631272B (en) * | 2016-07-13 | 2021-08-20 | 深圳光峰科技股份有限公司 | A kind of wavelength conversion device and preparation method thereof |
CN109564308A (en) * | 2016-08-05 | 2019-04-02 | 日本电气硝子株式会社 | Wavelength conversion member and its manufacturing method |
CN107689554A (en) * | 2016-08-06 | 2018-02-13 | 深圳市光峰光电技术有限公司 | A kind of Wavelength converter and preparation method thereof, light-emitting device and projection arrangement |
CN107689554B (en) * | 2016-08-06 | 2020-10-20 | 深圳光峰科技股份有限公司 | Wavelength conversion device, preparation method thereof, light-emitting device and projection device |
CN108105604A (en) * | 2016-11-25 | 2018-06-01 | 深圳市光峰光电技术有限公司 | Luminescent ceramic structure and preparation method thereof, related lighting fixtures and projection arrangement |
CN108105604B (en) * | 2016-11-25 | 2020-05-29 | 深圳光峰科技股份有限公司 | Luminescent ceramic structure, preparation method thereof, related light-emitting device and projection device |
WO2018129076A1 (en) * | 2017-01-04 | 2018-07-12 | 3M Innovative Properties Company | Color compensating optical filters |
US11448808B2 (en) | 2017-01-04 | 2022-09-20 | 3M Innovative Properties Company | Color compensating optical filters having low refractive index layer |
WO2019010910A1 (en) * | 2017-07-13 | 2019-01-17 | 深圳市光峰光电技术有限公司 | Wavelength conversion device and light source |
CN109424942A (en) * | 2017-07-21 | 2019-03-05 | 深圳光峰科技股份有限公司 | Wavelength converter, light source and projection arrangement comprising it |
WO2019015221A1 (en) * | 2017-07-21 | 2019-01-24 | 深圳市光峰光电技术有限公司 | Wavelength conversion device, light source comprising same, and projection device |
WO2019015220A1 (en) * | 2017-07-21 | 2019-01-24 | 深圳市光峰光电技术有限公司 | Wavelength conversion device, light source comprising same and projection device |
JP2019032506A (en) * | 2017-08-08 | 2019-02-28 | パナソニックIpマネジメント株式会社 | Fluorescent plate, light source device, and projection type video display device |
CN109388010A (en) * | 2017-08-08 | 2019-02-26 | 松下知识产权经营株式会社 | Fluorescent plate, light supply apparatus and projection-type image display device |
JP7142205B2 (en) | 2017-08-08 | 2022-09-27 | パナソニックIpマネジメント株式会社 | Fluorescent plate, light source device, and projection display device |
CN109838763A (en) * | 2017-09-13 | 2019-06-04 | 深圳光峰科技股份有限公司 | A kind of Wavelength converter and preparation method thereof |
CN109838763B (en) * | 2017-09-13 | 2021-04-30 | 深圳光峰科技股份有限公司 | Wavelength conversion device and preparation method thereof |
CN109654391B (en) * | 2017-10-10 | 2020-09-11 | 深圳光峰科技股份有限公司 | wavelength conversion device |
CN109654391A (en) * | 2017-10-10 | 2019-04-19 | 深圳光峰科技股份有限公司 | Wavelength converter |
WO2019071865A1 (en) * | 2017-10-10 | 2019-04-18 | 深圳光峰科技股份有限公司 | Wavelength conversion device |
CN109681846A (en) * | 2017-10-18 | 2019-04-26 | 深圳光峰科技股份有限公司 | Wavelength converter and preparation method thereof |
WO2019104829A1 (en) * | 2017-11-29 | 2019-06-06 | 深圳光峰科技股份有限公司 | Wavelength conversion device |
CN110006005A (en) * | 2017-12-12 | 2019-07-12 | 日本电气硝子株式会社 | Wavelength convert component and its manufacturing method and light emitting device |
JP2019164258A (en) * | 2018-03-20 | 2019-09-26 | セイコーエプソン株式会社 | Wavelength conversion element, method for manufacturing wavelength conversion element, light source device, and projector |
US11424391B2 (en) | 2018-06-11 | 2022-08-23 | Coretronic Corporation | Wavelength-converting element, projection apparatus, and manufacturing method of wavelength-converting element |
US11500278B2 (en) | 2018-06-11 | 2022-11-15 | Coretronic Corporation | Wavelength-converting element, projection apparatus, and manufacturing method of wavelength-converting element |
US11715818B2 (en) | 2018-06-11 | 2023-08-01 | Coretronic Corporation | Wavelength-converting element, projection apparatus, and manufacturing method of wavelength-converting element |
CN110764347A (en) * | 2018-07-26 | 2020-02-07 | 无锡视美乐激光显示科技有限公司 | Wavelength conversion device, laser light source device thereof and laser projector |
WO2020057297A1 (en) * | 2018-09-20 | 2020-03-26 | 深圳光峰科技股份有限公司 | Diffuse reflection device and preparation method thereof, and wavelength conversion device |
CN111176060A (en) * | 2018-11-12 | 2020-05-19 | 中强光电股份有限公司 | Wavelength conversion module, manufacturing method of wavelength conversion module, and projection device |
US11054732B2 (en) | 2018-11-12 | 2021-07-06 | Coretronic Corporation | Wavelength conversion module, manufacturing method of wavelength conversion module and projection device |
CN109703120B (en) * | 2019-01-23 | 2020-09-18 | 厦门大学 | Reflective blue laser lighting assembly |
CN109798457A (en) * | 2019-01-23 | 2019-05-24 | 厦门大学 | A kind of transmission-type blue laser light fixture |
CN109703120A (en) * | 2019-01-23 | 2019-05-03 | 厦门大学 | A reflective blue light laser lighting assembly |
CN109668061A (en) * | 2019-01-23 | 2019-04-23 | 厦门大学 | A kind of laser lighting component and its manufacturing method using asbestos fibre |
US11294266B2 (en) | 2019-04-12 | 2022-04-05 | Coretronic Corporation | Wavelength conversion device having reflective layer with different thickness and projection device using the same |
CN111812928A (en) * | 2019-04-12 | 2020-10-23 | 中强光电股份有限公司 | Wavelength conversion device and projection device |
CN112130407B (en) * | 2019-06-25 | 2022-02-18 | 精工爱普生株式会社 | Wavelength conversion element, light source device, and projector |
CN112130407A (en) * | 2019-06-25 | 2020-12-25 | 精工爱普生株式会社 | Wavelength conversion element, light source device, and projector |
US11327391B2 (en) | 2020-05-08 | 2022-05-10 | Coretronic Corporation | Wavelength conversion device and projection device |
US20220390821A1 (en) * | 2021-06-04 | 2022-12-08 | Coretronic Corporation | Wavelength conversion module and projection device |
US11762269B2 (en) * | 2021-06-04 | 2023-09-19 | Coretronic Corporation | Wavelength conversion module and projection device |
CN114315342A (en) * | 2021-12-02 | 2022-04-12 | 中山大学 | A composite material with high thermal conductivity and high reflection for reducing laser speckle and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN105278225B (en) | 2018-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105278225B (en) | Wavelength converter and preparation method thereof, related lighting fixtures and projection arrangement | |
Zheng et al. | Unique color converter architecture enabling phosphor-in-glass (PiG) films suitable for high-power and high-luminance laser-driven white lighting | |
JP6677680B2 (en) | Wavelength conversion device, method of manufacturing the same, and related light emitting device | |
CN106206904B (en) | A wavelength conversion device, a fluorescent color wheel and a light-emitting device | |
JP6348189B2 (en) | Wavelength converter and related light emitting device | |
JP5759776B2 (en) | Light source device and lighting device | |
CN104953014B (en) | A kind of multilayered structure glass phosphor sheet and preparation method thereof and light emitting device | |
CN102106003B (en) | An optical element for a light emitting device and a method of manufacturing thereof | |
CN106195925A (en) | A kind of Wavelength converter, light-emitting device and projection arrangement | |
CN102800791A (en) | Light source device and lighting device | |
CN105738994B (en) | Wavelength conversion device and related lighting device, fluorescent color wheel and projection device | |
TWI823976B (en) | Wavelength conversion elements, methods of making the same, light conversion devices, and methods for generating white light | |
CN106287580A (en) | Wavelength converter and preparation method thereof, related lighting fixtures and optical projection system | |
CN204829755U (en) | Wavelength conversion equipment , relevant illuminator and projecting system | |
US20170137328A1 (en) | Method of making a ceramic wavelength converter assembly | |
CN108474881A (en) | Wavelength converting member and light-emitting device | |
WO2018095211A1 (en) | Luminescent ceramic structure and preparation method therefor, and related light-emitting device and projecting device | |
WO2018205694A1 (en) | Wavelength conversion device and phosphor-converted laser light source | |
CN110017435A (en) | Wavelength converter | |
KR101964418B1 (en) | Phosphor composition and lighting device the same | |
WO2017040433A1 (en) | Laser-activated remote phosphor target and system | |
WO2022052616A1 (en) | Transmission type wavelength conversion device and light-emitting device thereof | |
CN107689554A (en) | A kind of Wavelength converter and preparation method thereof, light-emitting device and projection arrangement | |
CN110872514B (en) | Near infrared light-emitting device | |
WO2019061818A1 (en) | Wavelength conversion device and light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20171106 Address after: 518055 Guangdong city of Shenzhen province Nanshan District Xili town tea light road Shenzhen city integrated circuit design and application of Industrial Park 401 Applicant after: APPOTRONICS Corp.,Ltd. Address before: 518055 Guangdong city of Shenzhen province Nanshan District Xili town tea light road Shenzhen Industrial Park 401 integrated circuit design and Application Applicant before: YLX Inc. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 518000 20-22, 20-22 headquarters building, 63 high tech Zone, Xuefu Road, Nanshan District, Guangdong Province, Guangdong. Patentee after: APPOTRONICS Corp.,Ltd. Address before: 518000 20-22, 20-22 headquarters building, 63 high tech Zone, Xuefu Road, Nanshan District, Guangdong Province, Guangdong. Patentee before: SHENZHEN GUANGFENG TECHNOLOGY Co.,Ltd. |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 518000 20-22, 20-22 headquarters building, 63 high tech Zone, Xuefu Road, Nanshan District, Guangdong Province, Guangdong. Patentee after: SHENZHEN GUANGFENG TECHNOLOGY Co.,Ltd. Address before: 518055 Guangdong province Shenzhen Nanshan District Xili town Cha Guang road Shenzhen integrated circuit design application Industrial Park 401 Patentee before: APPOTRONICS Corp.,Ltd. |