CN104762321A - 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件 - Google Patents
基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件 Download PDFInfo
- Publication number
- CN104762321A CN104762321A CN201510194406.2A CN201510194406A CN104762321A CN 104762321 A CN104762321 A CN 104762321A CN 201510194406 A CN201510194406 A CN 201510194406A CN 104762321 A CN104762321 A CN 104762321A
- Authority
- CN
- China
- Prior art keywords
- puro
- khv
- crrna
- crispr
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件,涉及一种敲除载体构建方法及其crRNA原件。是要解决现有方法抑制KHVD不足的问题。方法:一、合成crRNA-TK和crRNA-DP引物,沸水处理,退火,得到两个DNA双链退火产物;二、制备pX330-puro载体;三、对pX330-puro载体进行酶切,进行去磷反应,回收线性化的载体;四、对线性化载体与两个退火产物连接,得连接产物;五、将连接产物转入感受态细胞内,提取重组质粒DNA,命名为pX330-puro TK或pX330-puro DP重组载体。本发明基于定向敲除KHV关键基因,靶向精确性高,胞内病毒抑制效果明显。
Description
技术领域
本发明涉及一种敲除载体构建方法及其crRNA原件。
背景技术
鲤鱼疱疹病(Kai herpesvirus disease,KHVD)是由是鲤鱼疱诊病毒(KHV或CyHV-3)感染引起的鲤鱼及锦鲤的一种急性传染疾病,该病的爆发给我国鱼类养殖业造成了严重的经济损失。该病毒为囊膜包被病毒,直径为170-230nm,含有20面体对称核衣壳,属于疱疹科病毒,其遗传物质属于双链DNA。目前针对疫情爆发的补救手段主要仍采用隔离与大量扑杀,尚无有效救治手段。研究证实,实验条件下鲤鱼脑细胞系CCB和鳍条细胞系KF-1是KHV的敏感细胞。
CRISPR:成簇的、规律间隔的短回文重复序列,是原核生物抵抗外来基因片段—噬菌体、质粒等的免疫防御系统。属于III型CRISPR的CRISPR/Cas9系统由三个必要的部分组成:包括crRNA、tracrRNA及Cas9核酸内切酶。目前常见的px330载体中,是将crRNA与tracrRNA进行连接组成含茎环结构的sgRNA。crRNA的5’端含20bp的特异序列,可以识别特定DNA的互补序列。在发挥识别作用过程中,与靶基因前间区3’邻近的3个(NGG)碱基称为PAM序列。在细胞内转染px-330后,含有crRNA的gRNA将Cas9核酸酶带到基因组上的具体靶点,从而对特定基因位点进行切割导致突变,从而实现基因敲除。pX330-U6-Chimenic_BB-CBh-hSpCas9(pX330-puro)转基因供体质粒关键原件示意图如图2所示,关键元件含有组成gRNA的crRNA片段和tracerRNA片段,Cas9蛋白及Puro抗性基因完整表达盒。
目前,CRISPR系统作为高效DNA编辑工具已被大量应用,有报道称该系统可以在细胞水平通过在病毒基因组DNA中造成特异性的双链断裂从而阻抑相应病毒在胞内的复制如属于cccDNA病毒的HBV和感染过程中存在pre-DNA形式的EBV、HIV,不过尚未有采用该策略成功抑制鱼类DNA病毒的报道。
发明内容
本发明是要解决现有方法抑制KHVD不足的问题,提供一种基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件。
本发明基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,按以下步骤进行:
一、依据KHV基因组TK(GenBank:AB375385.1)和DP(GenBank:AY939862.1)基因设计crRNAs,通过http://crispr.mit.edu/设计优化并分别合成crRNA-TK引物和crRNA-DP引物,于沸水处理15min,而后自然降温过夜退火,分别得到两个带有BbsI酶切粘性末端的DNA双链退火产物;
二、为了便于筛选克隆化细胞系,本发明前期工作对能够携带CRISPR/Cas9的pX330载体(pX330-U6-Chimenic_BB-CBh-hSpCas9;http://www.addgene.org/42230)进行了改造,成功制备了含有puromycin抗性基因的pX330-puro载体,如图1所示;
三、对pX330-puro载体采用BbsI进行单酶切,而后采用SAP磷酸酶进行去磷反应,回收线性化的pX330-puro载体;
四、采用T4连接酶,对步骤三回收得到的线性化的pX330-puro载体与步骤一得到的两个退火产物分别进行连接,得连接产物;
五、将步骤四的连接产物转入感受态细胞内,培养后,挑取单菌落进行PCR验证,对PCR验证为阳性的单菌落,提取重组质粒DNA,对重组质粒DNA采用BbsI酶进行单酶切验证,对验证为阳性的重组质粒DNA,命名为pX330-puro TK或pX330-puro DP重组载体。
其中步骤一中crRNA-TK引物序列为:
上游引物:5’-CACCGTGCTCTTGCCCGCGAACAT-3’
下游引物:5’-AAACATGTTCGCGGGCAAGAGCAC-3’
crRNA-DP引物序列为:
上游引物:5’-CACCGCCGTGTTCCTCACGTACTCG-3’
下游引物:5’-AAACCGAGTACGTGAGGAACACGGC-3’
基于CRISPR/Cas9系统靶向敲除KHV基因的特异性crRNA原件为crRNA-TK和crRNA-DP,所述crRNA-TK为双链DNA,其正义链如序列表中的SEQIDNO:1所示,反义链如序列表中的SEQIDNO:2所示;正义链5’-GTGCTCTTGCCCGCGAACAT-3’,反义链5’-ATGTTCGCGGGCAAGAGCAC-3’。
所述crRNA-DP为双链DNA,其正义链如序列表中的SEQ ID NO:3所示,反义链如序列表中的SEQ ID NO:4所示;正义链5’-CCGTGTTCCTCACGTACTCG-3’,反义链5’-CGAGTACGTGAGGAACACGG-3’。
在本发明中,我们应用CRISPR/Cas9系统在鲤鱼鲤鱼鳍条KF-1细胞系中进行了KHV增殖抑制试验。为了有效干扰KHV病毒的复制,我们选取了与病毒复制有关的TK和DP 作为CRISPR/Cas9系统的靶标。为了提高检测的灵敏度,我们根据病毒早期转录的ORF-81基因设计合成了taqman水解探针。结果显示:在鲤鱼鳍条细胞系内,CRISPR/Cas9系统可以在有效的抑制KHV的增殖。TK基因靶向切割示意图如图3所示,Cas9核酸内切酶复合物在gRNA指导下(靶向与crRNA反向互补的双链DNA)可定向在DNA识别区的PAM序列(NGG)前5nt位置造成双链断裂。
本发明的有益效果:
本发明由带有CRISPR/Cas9系统的pX330-puro载体,连接针对KHV基因组TK和DP基因的crRNA确保对其目的DNA片段的特异性破坏。本发明与现有技术相比,具有安全、高效特点,其病毒抑制率能达到80%。本发明具有以下优势:1、靶向精确性高,细胞内病毒抑制效果明显;2、构建简便,实验周期短。
附图说明
图1为含有puromycin抗性基因的pX330-puro载体质粒图谱;图2为转基因供体质粒关键原件示意图;图3为TK基因靶向切割示意图;图4为pX330-puro TK和pX330-puro DP细胞克隆PCR验证结果;图5为KHV病毒拷贝Real-time PCR监测标准曲线;图6为病毒拷贝数监测KHV增殖情况;图7为病毒拷贝数监测KHV增殖情况;图8为连续测定细胞中病毒滴度增减情况。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,按以下步骤进行:
一、依据KHV基因组TK(GenBank:AB375385.1)和DP(GenBank:AY939862.1)基因设计crRNAs,通过http://crispr.mit.edu/设计优化并分别合成crRNA-TK引物和crRNA-DP引物,于沸水处理15min,而后自然降温过夜退火,分别得到两个带有BbsI酶切粘性末端的DNA双链退火产物;
二、为了便于筛选克隆化细胞系,本发明前期工作对能够携带CRISPR/Cas9的pX330载体(pX330-U6-Chimenic_BB-CBh-hSpCas9;http://www.addgene.org/42230)进行了改造,成功制备了含有puromycin抗性基因的pX330-puro载体,如图1所示,重组后的px330puro载体全长10046bp,如序列表中的SEQ ID NO:21所示;
三、对pX330-puro载体采用BbsI进行单酶切,而后采用SAP磷酸酶进行去磷反应, 回收线性化的pX330-puro载体;
四、采用T4连接酶,对步骤三回收得到的线性化的pX330-puro载体与步骤一得到的两个退火产物分别进行连接,得连接产物;
五、将步骤四的连接产物转入感受态细胞内,培养后,挑取单菌落进行PCR验证,对PCR验证为阳性的单菌落,提取重组质粒DNA,对重组质粒DNA采用BbsI酶进行单酶切验证,对验证为阳性的重组质粒DNA,命名为pX330-puro TK或pX330-puro DP重组载体。
其中步骤一中crRNA-TK引物序列为:
上游引物:5’-CACCGTGCTCTTGCCCGCGAACAT-3’
下游引物:5’-AAACATGTTCGCGGGCAAGAGCAC-3’
crRNA-DP引物序列为:
上游引物:5’-CACCGCCGTGTTCCTCACGTACTCG-3’
下游引物:5’-AAACCGAGTACGTGAGGAACACGGC-3’
步骤三中单酶切反应体系如下:
成分 | 用量 |
200ng/μLpX330-puro载体 | 5μL |
Buffer | 3μL |
BbsI | 2μL |
ddH2O | 20μL |
酶切反应条件:37℃反应3h。
步骤三中去磷反应条件:线性化的pX330-puro载体30μL,SAP1μL,Buffer5μL,ddH2O14μL,反应30min后,60℃终止SAP作用15min。
步骤四中连接体系如下:
成分 | 用量 |
线性化的pX330-puro载体 | 0.5μL |
退火产物 | 7.5μL |
T4DNA连接酶 | 1μL |
Ligase Buffer | 1μL |
连接反应条件:17℃反应12h。
步骤五中pX330-puro TK阳性质粒鉴定引物序列为:
上游引物:5’-CACCGTAAACTGACAGGTCGTGCAT-3’
下游引物:5’-AAACATGTTCGCGGGCAAGAGCAC-3’;
pX330-puro DP阳性质粒鉴定引物序列为:
上游引物:5’-CACCGTAAACTGACAGGTCGTGCAT-3’
下游引物:5’-AAACCGAGTACGTGAGGAACACGGC-5’;
其中各阳性质粒上游检测引物均采用human U6启动子序列(5’-CACCGTAAACTGACAGGTCGTGCAT-3’),下游引物采用合成各crRNA退火产物的下游引物。检测PCR反应条件如下:94℃预变性10min;94℃变性30s,55℃退火30s,72℃延伸30s,30个循环;循环后72℃延伸10min,于4℃保存。
通过以下实验验证本发明的效果:
实验1:瞬时转染pX330-puro TK和pX330-puro DP抑制KHV的增殖
A、计数KF-1细胞,用含有10%FBS、谷氨酰胺、双抗(100U/ml penicillin;100μg/ml streptomycin)的DMEM营养液以1.0×104/孔传代于24孔培养板,25℃、5%CO2培养24h,使贴壁细胞汇合度达到75%,弃去培养液,用无血清无抗生素DMEM洗涤单层细胞3次,加入450μL无血清无抗生素DMEM备用。
B、接种将含有4.5×102TCID50KHV的DMEM加入每孔,25℃感作2小时后,将培养液换为含有3%FBS,谷氨酰胺,双抗(100U/ml penicillin;100ug/ml streptomycin)的DMEM,培养条件为25℃,5%CO2。
C、染毒后0.5天(0.5dpi),用LTX regent(Invitrogen)将制备好的2μg pX330-puro TK和pX330-puro DP混合质粒转染鳍条细胞系。采用荧光定量Real-time PCR和病毒的半数细胞感染量测定KHV在转染细胞中的增殖。
基于taqman水解探针检测原理的针对KHV病毒ORF81基因的Real-time PCR检测引物如下:
5’-AGAGGTCTATGCGCGACTAT-3’
5’-FAM-AGACACTGAGAGCGTCATCGGTCA-BHQ1-3’
5’-CACATCTTGCCGGTGTACTT-3’
实验2:稳定表达pX330-puro TK和pX330-puro DP的KF-1细胞抑制KHV增殖
A、用ApaLI核酸内切酶线性化pX330-puro TK和pX330-puro DP载体,冷乙醇沉淀回收备用。
B、计数KF-1细胞,用含10%FBS、无抗生素的DMEM培养液以2×105/孔传代于6 孔板,25℃5%CO2培养48h,使细胞汇合率大于80%,用不含Ca2+,Mg2+离子的PBS洗涤细胞2次,而后每孔加入1.5mL无血清optiMEM。
C、采用LTX regent(Invitrogen)将制备好的线性化载体每孔2μg转染KF-1鳍条细胞系。
D、转染一天后,用含有500ng/ml的puromycin(Sigma aldrich)进行筛选,每2-3天更换培养液。2周后采用克隆环挑取克隆,并进行PCR鉴定。鉴定引物如下:
TK克隆:上游引物:5’-GATTCCTTCATATTTGCATATAC-3’
下游引物:5’-ATGTTCGCGGGCAAGAGCAC-3’
DP克隆:上游引物:5’-GATTCCTTCATATTTGCATATAC-3’
下游引物:5’-CGAGTACGTGAGGAACACGG-3’
检测PCR反应条件如下:94℃预变性10min;94℃变性30s,55℃退火30s,72℃延伸30s,30个循环;循环后72℃延伸10min,于4℃保存。而后在含有EB的1%琼脂糖凝胶进行电泳,检测结果反映克隆化细胞均为阳性,结果见图4。
E、计数克隆化KF-1细胞,均匀铺于96孔板。待细胞汇合度达到50%,将含有100TCID50KHV的DMEM加入每孔,25℃感作2小时后,将培养液换为含有3%FBS,谷氨酰胺,双抗(100U/ml penicillin;100μg/ml streptomycin)的DMEM,培养条件为25℃、5%CO2。每3天更换培养液。
F、接毒7天后采用DNA提取试剂盒(天根)分别提取上清及细胞DNA,同时使用前述taqman水解探针Real-time PCR检测病毒基因组拷贝数。每个反应中加入400nM引物,80nM taqman探针,各样品设三个重复,结果见图5-7;KHV病毒拷贝Real-time PCR监测标准曲线如图5所示,为检测KHV病毒基因组拷贝数,将T-ORF81标准载体连续稀释,应用taqman探针水解法得到相应曲线,图5用于绝对定量病毒拷贝数。病毒拷贝数监测KHV增殖情况如图6,通过Real-time PCR检测方法,以细胞内DNA为模板,7dpi的病毒含量为对照细胞中的1/3,且差异明显,表明导入细胞的瞬转载体有效地抑制了病毒在感染细胞中的增殖。病毒拷贝数监测KHV增殖情况如图7,通过Real-time PCR检测方法,分别采用细胞上清和细胞内DNA为模板,7dpi胞内外的病毒拷贝数都明显的被稳定表达的Cas9和特异gRNA明显抑制。
另外按照Reed–Muench法统计病毒滴度以测定检查KHV在转染细胞及对照细胞中的增殖,分析抗毒原件对KHV感染增殖过程的抑制作用。结果见图8和表1,图8中-○-表示对照,-■-表示TK,-▲-表示DP,-▼-表示TK&DP。图8为连续测定 细胞中病毒滴度增减情况,通过连续统计7-11dpi细胞上清病毒滴度,结果表明:和对照相比,DP和TK&DP克隆细胞上清在10dpi已经不能产生致细胞病变效应,TK克隆上清的病毒亦维持在低水平。
表1测定细胞中病毒的半数细胞感染量TCID50增减情况
TCID50(8dpi) | TCID50(9dpi) | |
对照 | 103.86 | 105.18 |
CRISPR/Cas9 | 102.52 | 103.44 |
和对照比值 | 1/22 | 1/55 |
对照细胞感染KHV后,病毒能有效地在细胞中增殖,显示出较高的感染滴度。
Claims (5)
1.基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,其特征在于该方法按以下步骤进行:
一、依据KHV基因组TK和DP基因设计crRNAs,分别合成crRNA-TK引物和crRNA-DP引物,于沸水处理15min,而后自然降温过夜退火,分别得到两个带有BbsI酶切粘性末端的DNA双链退火产物;
二、对能够携带CRISPR/Cas9的pX330载体进行了改造,成功制备了含有puromycin抗性基因的pX330-puro载体;
三、对pX330-puro载体采用BbsI进行单酶切,而后采用SAP磷酸酶进行去磷反应,回收线性化的pX330-puro载体;
四、采用T4连接酶,对步骤三回收得到的线性化的pX330-puro载体与步骤一得到的两个退火产物分别进行连接,得连接产物;
五、将步骤四的连接产物转入感受态细胞内,培养后,挑取单菌落进行PCR验证,对PCR验证为阳性的单菌落,提取重组质粒DNA,对重组质粒DNA采用BbsI酶进行单酶切验证,对验证为阳性的重组质粒DNA,命名为pX330-puro TK或pX330-puro DP重组载体。
2.根据权利要求1所述的基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,其特征在于步骤三中单酶切反应体系如下:
酶切反应条件:37℃反应3h。
3.根据权利要求1所述的基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,其特征在于步骤三中去磷反应条件:线性化的pX330-puro载体30μL,SAP 1μL,Buffer 5μL,ddH2O 14μL,反应30min后,60℃终止SAP作用15min。
4.根据权利要求1所述的基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,其特征在于步骤四中连接体系如下:
连接反应条件:17℃反应12h。
5.基于CRISPR/Cas9系统靶向敲除KHV基因的crRNA原件,其特征在于crRNA原件为crRNA-TK和crRNA-DP,所述crRNA-TK为双链DNA,其正义链如序列表中的SEQID NO:1所示,反义链如序列表中的SEQ ID NO:2所示;所述crRNA-DP为双链DNA,其正义链如序列表中的SEQ ID NO:3所示,反义链如序列表中的SEQ ID NO:4所示。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510194406.2A CN104762321A (zh) | 2015-04-22 | 2015-04-22 | 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510194406.2A CN104762321A (zh) | 2015-04-22 | 2015-04-22 | 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104762321A true CN104762321A (zh) | 2015-07-08 |
Family
ID=53644412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510194406.2A Pending CN104762321A (zh) | 2015-04-22 | 2015-04-22 | 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104762321A (zh) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
CN105907785A (zh) * | 2016-05-05 | 2016-08-31 | 苏州吉玛基因股份有限公司 | 化学合成的crRNA用于CRISPR/Cpf1系统在基因编辑中的应用 |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
CN106636199A (zh) * | 2016-12-02 | 2017-05-10 | 中国人民解放军军事医学科学院野战输血研究所 | 用CRISPR/Cas9技术易于筛选获得目的基因敲除细胞系的方法及产品 |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
WO2019237399A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | CRISPR-Cas9特异性敲除人C2orf40基因的方法及其特异的sgRNA |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
-
2015
- 2015-04-22 CN CN201510194406.2A patent/CN104762321A/zh active Pending
Non-Patent Citations (5)
Title |
---|
AB375385.1: "Cyprinid herpesvirus 3 (KHV,CyHV-3) TK gene for thymidine kinase,complete cds,genotype/variant:E1,E2,E3", 《GENBANK》 * |
AY939862.1: "Koi herpesvirus DNA polymerase gene,complete cds", 《GENBANK》 * |
LE CONG ET AL.: "Multiplex Genome Engineering Using CRISPR/Cas Systems", 《SCIENCE》 * |
MICHAEL GOTESMAN ET AL.: "In vitro inhibition of Cyprinid herpesvirus-3 replication by RNAi", 《JOURNAL OF VIROLOGICAL METHODS》 * |
梁振伟等: "通过CRISPR/Cas9系统敲除人源PDE10A基因", 《基础医学与临床》 * |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US9388430B2 (en) | 2013-09-06 | 2016-07-12 | President And Fellows Of Harvard College | Cas9-recombinase fusion proteins and uses thereof |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10190137B2 (en) | 2013-11-07 | 2019-01-29 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US11390887B2 (en) | 2013-11-07 | 2022-07-19 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US10640788B2 (en) | 2013-11-07 | 2020-05-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAs |
US9834791B2 (en) | 2013-11-07 | 2017-12-05 | Editas Medicine, Inc. | CRISPR-related methods and compositions with governing gRNAS |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
CN105907785A (zh) * | 2016-05-05 | 2016-08-31 | 苏州吉玛基因股份有限公司 | 化学合成的crRNA用于CRISPR/Cpf1系统在基因编辑中的应用 |
CN105907785B (zh) * | 2016-05-05 | 2020-02-07 | 苏州吉玛基因股份有限公司 | 化学合成的crRNA用于CRISPR/Cpf1系统在基因编辑中的应用 |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
CN106636199A (zh) * | 2016-12-02 | 2017-05-10 | 中国人民解放军军事医学科学院野战输血研究所 | 用CRISPR/Cas9技术易于筛选获得目的基因敲除细胞系的方法及产品 |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
WO2019237399A1 (zh) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | CRISPR-Cas9特异性敲除人C2orf40基因的方法及其特异的sgRNA |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104762321A (zh) | 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件 | |
Yan et al. | Towards better understanding of KSHV life cycle: from transcription and posttranscriptional regulations to pathogenesis | |
Humphries et al. | Requirement for cell division for initiation of transcription of Rous sarcoma virus RNA | |
CN104726449A (zh) | 一种用于预防和/或治疗HIV的CRISPR-Cas9系统及其制备方法和用途 | |
CN101935637B (zh) | 鸡传染性法氏囊病病毒重组弱毒疫苗株及其应用 | |
Diebel et al. | Gammaherpesvirus small noncoding RNAs are bifunctional elements that regulate infection and contribute to virulence in vivo | |
CN105420261A (zh) | 一种新城疫病毒耐热改造方法及应用 | |
BeltCappellino et al. | CRISPR/Cas9-mediated knockout and in situ inversion of the ORF57 gene from all copies of the Kaposi's sarcoma-associated herpesvirus genome in BCBL-1 cells | |
Amen et al. | Identification and expression analysis of herpes B virus-encoded small RNAs | |
CN103087996A (zh) | 重组猪繁殖与呼吸综合征病毒及其制备方法与应用 | |
CN105132460A (zh) | Cas9介导的家蚕基因编辑载体和应用 | |
CN112353939B (zh) | Gtpbp4蛋白作为免疫抑制剂的应用及敲低或过表达gtpbp4细胞系的构建 | |
CN102776156A (zh) | 基因Ⅵb亚型新城疫病毒致弱株ⅥbI4及其构建方法 | |
Su et al. | A recombinant field strain of Marek's disease (MD) virus with reticuloendotheliosis virus long terminal repeat insert lacking the meq gene as a vaccine against MD | |
Tang et al. | Characterization of herpes simplex virus 2 primary microRNA transcript regulation | |
CN101353670B (zh) | 牛传染性鼻气管炎病毒重组毒株、其构建方法及应用 | |
CN108434447B (zh) | 缺失ompdc和ldh1基因的弓形虫减毒活疫苗 | |
WO2020034584A1 (zh) | 先天性免疫系统重构的bhk21细胞群及其细胞克隆增毒应用 | |
CN111793721B (zh) | eEF1D蛋白在制备预防或治疗口蹄疫病毒感染药物中的应用 | |
CN113416768A (zh) | Prkra基因作为靶点在抑制小反刍兽疫病毒复制中的应用 | |
CN104419686A (zh) | 重组PRRS病毒HV-nsp9及其应用 | |
CN111690669A (zh) | Sva 3c蛋白在促进猪源病毒复制中的应用 | |
CN103849637A (zh) | O型口蹄疫病毒耐酸突变株、其携带的衣壳蛋白及其编码基因和应用 | |
CN111485004B (zh) | 猪繁殖与呼吸障碍综合征病毒超易感细胞系及其应用 | |
Wilusz et al. | Interactions of plus and minus strand leader RNAs of the New Jersey serotype of vesicular stomatitis virus with the cellular La protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150708 |