[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN104762321A - 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件 - Google Patents

基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件 Download PDF

Info

Publication number
CN104762321A
CN104762321A CN201510194406.2A CN201510194406A CN104762321A CN 104762321 A CN104762321 A CN 104762321A CN 201510194406 A CN201510194406 A CN 201510194406A CN 104762321 A CN104762321 A CN 104762321A
Authority
CN
China
Prior art keywords
puro
khv
crrna
crispr
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510194406.2A
Other languages
English (en)
Inventor
赵翊丞
于泽
王鶴鸣
张紫茜
张童童
滕春波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Forestry University
Original Assignee
Northeast Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Forestry University filed Critical Northeast Forestry University
Priority to CN201510194406.2A priority Critical patent/CN104762321A/zh
Publication of CN104762321A publication Critical patent/CN104762321A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件,涉及一种敲除载体构建方法及其crRNA原件。是要解决现有方法抑制KHVD不足的问题。方法:一、合成crRNA-TK和crRNA-DP引物,沸水处理,退火,得到两个DNA双链退火产物;二、制备pX330-puro载体;三、对pX330-puro载体进行酶切,进行去磷反应,回收线性化的载体;四、对线性化载体与两个退火产物连接,得连接产物;五、将连接产物转入感受态细胞内,提取重组质粒DNA,命名为pX330-puro TK或pX330-puro DP重组载体。本发明基于定向敲除KHV关键基因,靶向精确性高,胞内病毒抑制效果明显。

Description

基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件
技术领域
本发明涉及一种敲除载体构建方法及其crRNA原件。
背景技术
鲤鱼疱疹病(Kai herpesvirus disease,KHVD)是由是鲤鱼疱诊病毒(KHV或CyHV-3)感染引起的鲤鱼及锦鲤的一种急性传染疾病,该病的爆发给我国鱼类养殖业造成了严重的经济损失。该病毒为囊膜包被病毒,直径为170-230nm,含有20面体对称核衣壳,属于疱疹科病毒,其遗传物质属于双链DNA。目前针对疫情爆发的补救手段主要仍采用隔离与大量扑杀,尚无有效救治手段。研究证实,实验条件下鲤鱼脑细胞系CCB和鳍条细胞系KF-1是KHV的敏感细胞。
CRISPR:成簇的、规律间隔的短回文重复序列,是原核生物抵抗外来基因片段—噬菌体、质粒等的免疫防御系统。属于III型CRISPR的CRISPR/Cas9系统由三个必要的部分组成:包括crRNA、tracrRNA及Cas9核酸内切酶。目前常见的px330载体中,是将crRNA与tracrRNA进行连接组成含茎环结构的sgRNA。crRNA的5’端含20bp的特异序列,可以识别特定DNA的互补序列。在发挥识别作用过程中,与靶基因前间区3’邻近的3个(NGG)碱基称为PAM序列。在细胞内转染px-330后,含有crRNA的gRNA将Cas9核酸酶带到基因组上的具体靶点,从而对特定基因位点进行切割导致突变,从而实现基因敲除。pX330-U6-Chimenic_BB-CBh-hSpCas9(pX330-puro)转基因供体质粒关键原件示意图如图2所示,关键元件含有组成gRNA的crRNA片段和tracerRNA片段,Cas9蛋白及Puro抗性基因完整表达盒。
目前,CRISPR系统作为高效DNA编辑工具已被大量应用,有报道称该系统可以在细胞水平通过在病毒基因组DNA中造成特异性的双链断裂从而阻抑相应病毒在胞内的复制如属于cccDNA病毒的HBV和感染过程中存在pre-DNA形式的EBV、HIV,不过尚未有采用该策略成功抑制鱼类DNA病毒的报道。
发明内容
本发明是要解决现有方法抑制KHVD不足的问题,提供一种基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件。
本发明基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,按以下步骤进行:
一、依据KHV基因组TK(GenBank:AB375385.1)和DP(GenBank:AY939862.1)基因设计crRNAs,通过http://crispr.mit.edu/设计优化并分别合成crRNA-TK引物和crRNA-DP引物,于沸水处理15min,而后自然降温过夜退火,分别得到两个带有BbsI酶切粘性末端的DNA双链退火产物;
二、为了便于筛选克隆化细胞系,本发明前期工作对能够携带CRISPR/Cas9的pX330载体(pX330-U6-Chimenic_BB-CBh-hSpCas9;http://www.addgene.org/42230)进行了改造,成功制备了含有puromycin抗性基因的pX330-puro载体,如图1所示;
三、对pX330-puro载体采用BbsI进行单酶切,而后采用SAP磷酸酶进行去磷反应,回收线性化的pX330-puro载体;
四、采用T4连接酶,对步骤三回收得到的线性化的pX330-puro载体与步骤一得到的两个退火产物分别进行连接,得连接产物;
五、将步骤四的连接产物转入感受态细胞内,培养后,挑取单菌落进行PCR验证,对PCR验证为阳性的单菌落,提取重组质粒DNA,对重组质粒DNA采用BbsI酶进行单酶切验证,对验证为阳性的重组质粒DNA,命名为pX330-puro TK或pX330-puro DP重组载体。
其中步骤一中crRNA-TK引物序列为: 
上游引物:5’-CACCGTGCTCTTGCCCGCGAACAT-3’
下游引物:5’-AAACATGTTCGCGGGCAAGAGCAC-3’
crRNA-DP引物序列为: 
上游引物:5’-CACCGCCGTGTTCCTCACGTACTCG-3’
下游引物:5’-AAACCGAGTACGTGAGGAACACGGC-3’
基于CRISPR/Cas9系统靶向敲除KHV基因的特异性crRNA原件为crRNA-TK和crRNA-DP,所述crRNA-TK为双链DNA,其正义链如序列表中的SEQIDNO:1所示,反义链如序列表中的SEQIDNO:2所示;正义链5’-GTGCTCTTGCCCGCGAACAT-3’,反义链5’-ATGTTCGCGGGCAAGAGCAC-3’。
所述crRNA-DP为双链DNA,其正义链如序列表中的SEQ ID NO:3所示,反义链如序列表中的SEQ ID NO:4所示;正义链5’-CCGTGTTCCTCACGTACTCG-3’,反义链5’-CGAGTACGTGAGGAACACGG-3’。
在本发明中,我们应用CRISPR/Cas9系统在鲤鱼鲤鱼鳍条KF-1细胞系中进行了KHV增殖抑制试验。为了有效干扰KHV病毒的复制,我们选取了与病毒复制有关的TK和DP 作为CRISPR/Cas9系统的靶标。为了提高检测的灵敏度,我们根据病毒早期转录的ORF-81基因设计合成了taqman水解探针。结果显示:在鲤鱼鳍条细胞系内,CRISPR/Cas9系统可以在有效的抑制KHV的增殖。TK基因靶向切割示意图如图3所示,Cas9核酸内切酶复合物在gRNA指导下(靶向与crRNA反向互补的双链DNA)可定向在DNA识别区的PAM序列(NGG)前5nt位置造成双链断裂。
本发明的有益效果:
本发明由带有CRISPR/Cas9系统的pX330-puro载体,连接针对KHV基因组TK和DP基因的crRNA确保对其目的DNA片段的特异性破坏。本发明与现有技术相比,具有安全、高效特点,其病毒抑制率能达到80%。本发明具有以下优势:1、靶向精确性高,细胞内病毒抑制效果明显;2、构建简便,实验周期短。
附图说明
图1为含有puromycin抗性基因的pX330-puro载体质粒图谱;图2为转基因供体质粒关键原件示意图;图3为TK基因靶向切割示意图;图4为pX330-puro TK和pX330-puro DP细胞克隆PCR验证结果;图5为KHV病毒拷贝Real-time PCR监测标准曲线;图6为病毒拷贝数监测KHV增殖情况;图7为病毒拷贝数监测KHV增殖情况;图8为连续测定细胞中病毒滴度增减情况。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,按以下步骤进行:
一、依据KHV基因组TK(GenBank:AB375385.1)和DP(GenBank:AY939862.1)基因设计crRNAs,通过http://crispr.mit.edu/设计优化并分别合成crRNA-TK引物和crRNA-DP引物,于沸水处理15min,而后自然降温过夜退火,分别得到两个带有BbsI酶切粘性末端的DNA双链退火产物;
二、为了便于筛选克隆化细胞系,本发明前期工作对能够携带CRISPR/Cas9的pX330载体(pX330-U6-Chimenic_BB-CBh-hSpCas9;http://www.addgene.org/42230)进行了改造,成功制备了含有puromycin抗性基因的pX330-puro载体,如图1所示,重组后的px330puro载体全长10046bp,如序列表中的SEQ ID NO:21所示;
三、对pX330-puro载体采用BbsI进行单酶切,而后采用SAP磷酸酶进行去磷反应, 回收线性化的pX330-puro载体;
四、采用T4连接酶,对步骤三回收得到的线性化的pX330-puro载体与步骤一得到的两个退火产物分别进行连接,得连接产物;
五、将步骤四的连接产物转入感受态细胞内,培养后,挑取单菌落进行PCR验证,对PCR验证为阳性的单菌落,提取重组质粒DNA,对重组质粒DNA采用BbsI酶进行单酶切验证,对验证为阳性的重组质粒DNA,命名为pX330-puro TK或pX330-puro DP重组载体。
其中步骤一中crRNA-TK引物序列为: 
上游引物:5’-CACCGTGCTCTTGCCCGCGAACAT-3’
下游引物:5’-AAACATGTTCGCGGGCAAGAGCAC-3’
crRNA-DP引物序列为: 
上游引物:5’-CACCGCCGTGTTCCTCACGTACTCG-3’
下游引物:5’-AAACCGAGTACGTGAGGAACACGGC-3’
步骤三中单酶切反应体系如下:
成分 用量
200ng/μLpX330-puro载体 5μL
Buffer 3μL
BbsI 2μL
ddH2O 20μL
酶切反应条件:37℃反应3h。
步骤三中去磷反应条件:线性化的pX330-puro载体30μL,SAP1μL,Buffer5μL,ddH2O14μL,反应30min后,60℃终止SAP作用15min。
步骤四中连接体系如下:
成分 用量
线性化的pX330-puro载体 0.5μL
退火产物 7.5μL
T4DNA连接酶 1μL
Ligase Buffer 1μL
连接反应条件:17℃反应12h。
步骤五中pX330-puro TK阳性质粒鉴定引物序列为:
上游引物:5’-CACCGTAAACTGACAGGTCGTGCAT-3’
下游引物:5’-AAACATGTTCGCGGGCAAGAGCAC-3’;
pX330-puro DP阳性质粒鉴定引物序列为:
上游引物:5’-CACCGTAAACTGACAGGTCGTGCAT-3’
下游引物:5’-AAACCGAGTACGTGAGGAACACGGC-5’;
其中各阳性质粒上游检测引物均采用human U6启动子序列(5’-CACCGTAAACTGACAGGTCGTGCAT-3’),下游引物采用合成各crRNA退火产物的下游引物。检测PCR反应条件如下:94℃预变性10min;94℃变性30s,55℃退火30s,72℃延伸30s,30个循环;循环后72℃延伸10min,于4℃保存。
通过以下实验验证本发明的效果:
实验1:瞬时转染pX330-puro TK和pX330-puro DP抑制KHV的增殖
A、计数KF-1细胞,用含有10%FBS、谷氨酰胺、双抗(100U/ml penicillin;100μg/ml streptomycin)的DMEM营养液以1.0×104/孔传代于24孔培养板,25℃、5%CO2培养24h,使贴壁细胞汇合度达到75%,弃去培养液,用无血清无抗生素DMEM洗涤单层细胞3次,加入450μL无血清无抗生素DMEM备用。
B、接种将含有4.5×102TCID50KHV的DMEM加入每孔,25℃感作2小时后,将培养液换为含有3%FBS,谷氨酰胺,双抗(100U/ml penicillin;100ug/ml streptomycin)的DMEM,培养条件为25℃,5%CO2
C、染毒后0.5天(0.5dpi),用LTX regent(Invitrogen)将制备好的2μg pX330-puro TK和pX330-puro DP混合质粒转染鳍条细胞系。采用荧光定量Real-time PCR和病毒的半数细胞感染量测定KHV在转染细胞中的增殖。
基于taqman水解探针检测原理的针对KHV病毒ORF81基因的Real-time PCR检测引物如下:
5’-AGAGGTCTATGCGCGACTAT-3’
5’-FAM-AGACACTGAGAGCGTCATCGGTCA-BHQ1-3’
5’-CACATCTTGCCGGTGTACTT-3’
实验2:稳定表达pX330-puro TK和pX330-puro DP的KF-1细胞抑制KHV增殖
A、用ApaLI核酸内切酶线性化pX330-puro TK和pX330-puro DP载体,冷乙醇沉淀回收备用。
B、计数KF-1细胞,用含10%FBS、无抗生素的DMEM培养液以2×105/孔传代于6 孔板,25℃5%CO2培养48h,使细胞汇合率大于80%,用不含Ca2+,Mg2+离子的PBS洗涤细胞2次,而后每孔加入1.5mL无血清optiMEM。
C、采用LTX regent(Invitrogen)将制备好的线性化载体每孔2μg转染KF-1鳍条细胞系。
D、转染一天后,用含有500ng/ml的puromycin(Sigma aldrich)进行筛选,每2-3天更换培养液。2周后采用克隆环挑取克隆,并进行PCR鉴定。鉴定引物如下:
TK克隆:上游引物:5’-GATTCCTTCATATTTGCATATAC-3’
下游引物:5’-ATGTTCGCGGGCAAGAGCAC-3’
DP克隆:上游引物:5’-GATTCCTTCATATTTGCATATAC-3’
下游引物:5’-CGAGTACGTGAGGAACACGG-3’
检测PCR反应条件如下:94℃预变性10min;94℃变性30s,55℃退火30s,72℃延伸30s,30个循环;循环后72℃延伸10min,于4℃保存。而后在含有EB的1%琼脂糖凝胶进行电泳,检测结果反映克隆化细胞均为阳性,结果见图4。
E、计数克隆化KF-1细胞,均匀铺于96孔板。待细胞汇合度达到50%,将含有100TCID50KHV的DMEM加入每孔,25℃感作2小时后,将培养液换为含有3%FBS,谷氨酰胺,双抗(100U/ml penicillin;100μg/ml streptomycin)的DMEM,培养条件为25℃、5%CO2。每3天更换培养液。
F、接毒7天后采用DNA提取试剂盒(天根)分别提取上清及细胞DNA,同时使用前述taqman水解探针Real-time PCR检测病毒基因组拷贝数。每个反应中加入400nM引物,80nM taqman探针,各样品设三个重复,结果见图5-7;KHV病毒拷贝Real-time PCR监测标准曲线如图5所示,为检测KHV病毒基因组拷贝数,将T-ORF81标准载体连续稀释,应用taqman探针水解法得到相应曲线,图5用于绝对定量病毒拷贝数。病毒拷贝数监测KHV增殖情况如图6,通过Real-time PCR检测方法,以细胞内DNA为模板,7dpi的病毒含量为对照细胞中的1/3,且差异明显,表明导入细胞的瞬转载体有效地抑制了病毒在感染细胞中的增殖。病毒拷贝数监测KHV增殖情况如图7,通过Real-time PCR检测方法,分别采用细胞上清和细胞内DNA为模板,7dpi胞内外的病毒拷贝数都明显的被稳定表达的Cas9和特异gRNA明显抑制。
另外按照Reed–Muench法统计病毒滴度以测定检查KHV在转染细胞及对照细胞中的增殖,分析抗毒原件对KHV感染增殖过程的抑制作用。结果见图8和表1,图8中-○-表示对照,-■-表示TK,-▲-表示DP,-▼-表示TK&DP。图8为连续测定 细胞中病毒滴度增减情况,通过连续统计7-11dpi细胞上清病毒滴度,结果表明:和对照相比,DP和TK&DP克隆细胞上清在10dpi已经不能产生致细胞病变效应,TK克隆上清的病毒亦维持在低水平。
表1测定细胞中病毒的半数细胞感染量TCID50增减情况
  TCID50(8dpi) TCID50(9dpi)
对照 103.86 105.18
CRISPR/Cas9 102.52 103.44
和对照比值 1/22 1/55
对照细胞感染KHV后,病毒能有效地在细胞中增殖,显示出较高的感染滴度。

Claims (5)

1.基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,其特征在于该方法按以下步骤进行:
一、依据KHV基因组TK和DP基因设计crRNAs,分别合成crRNA-TK引物和crRNA-DP引物,于沸水处理15min,而后自然降温过夜退火,分别得到两个带有BbsI酶切粘性末端的DNA双链退火产物;
二、对能够携带CRISPR/Cas9的pX330载体进行了改造,成功制备了含有puromycin抗性基因的pX330-puro载体;
三、对pX330-puro载体采用BbsI进行单酶切,而后采用SAP磷酸酶进行去磷反应,回收线性化的pX330-puro载体;
四、采用T4连接酶,对步骤三回收得到的线性化的pX330-puro载体与步骤一得到的两个退火产物分别进行连接,得连接产物;
五、将步骤四的连接产物转入感受态细胞内,培养后,挑取单菌落进行PCR验证,对PCR验证为阳性的单菌落,提取重组质粒DNA,对重组质粒DNA采用BbsI酶进行单酶切验证,对验证为阳性的重组质粒DNA,命名为pX330-puro TK或pX330-puro DP重组载体。
2.根据权利要求1所述的基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,其特征在于步骤三中单酶切反应体系如下:
酶切反应条件:37℃反应3h。
3.根据权利要求1所述的基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,其特征在于步骤三中去磷反应条件:线性化的pX330-puro载体30μL,SAP 1μL,Buffer 5μL,ddH2O 14μL,反应30min后,60℃终止SAP作用15min。
4.根据权利要求1所述的基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法,其特征在于步骤四中连接体系如下:
连接反应条件:17℃反应12h。
5.基于CRISPR/Cas9系统靶向敲除KHV基因的crRNA原件,其特征在于crRNA原件为crRNA-TK和crRNA-DP,所述crRNA-TK为双链DNA,其正义链如序列表中的SEQID NO:1所示,反义链如序列表中的SEQ ID NO:2所示;所述crRNA-DP为双链DNA,其正义链如序列表中的SEQ ID NO:3所示,反义链如序列表中的SEQ ID NO:4所示。
CN201510194406.2A 2015-04-22 2015-04-22 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件 Pending CN104762321A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510194406.2A CN104762321A (zh) 2015-04-22 2015-04-22 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510194406.2A CN104762321A (zh) 2015-04-22 2015-04-22 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件

Publications (1)

Publication Number Publication Date
CN104762321A true CN104762321A (zh) 2015-07-08

Family

ID=53644412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510194406.2A Pending CN104762321A (zh) 2015-04-22 2015-04-22 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件

Country Status (1)

Country Link
CN (1) CN104762321A (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
CN105907785A (zh) * 2016-05-05 2016-08-31 苏州吉玛基因股份有限公司 化学合成的crRNA用于CRISPR/Cpf1系统在基因编辑中的应用
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
CN106636199A (zh) * 2016-12-02 2017-05-10 中国人民解放军军事医学科学院野战输血研究所 用CRISPR/Cas9技术易于筛选获得目的基因敲除细胞系的方法及产品
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
WO2019237399A1 (zh) * 2018-06-16 2019-12-19 深圳市博奥康生物科技有限公司 CRISPR-Cas9特异性敲除人C2orf40基因的方法及其特异的sgRNA
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AB375385.1: "Cyprinid herpesvirus 3 (KHV,CyHV-3) TK gene for thymidine kinase,complete cds,genotype/variant:E1,E2,E3", 《GENBANK》 *
AY939862.1: "Koi herpesvirus DNA polymerase gene,complete cds", 《GENBANK》 *
LE CONG ET AL.: "Multiplex Genome Engineering Using CRISPR/Cas Systems", 《SCIENCE》 *
MICHAEL GOTESMAN ET AL.: "In vitro inhibition of Cyprinid herpesvirus-3 replication by RNAi", 《JOURNAL OF VIROLOGICAL METHODS》 *
梁振伟等: "通过CRISPR/Cas9系统敲除人源PDE10A基因", 《基础医学与临床》 *

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US10190137B2 (en) 2013-11-07 2019-01-29 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US11390887B2 (en) 2013-11-07 2022-07-19 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US10640788B2 (en) 2013-11-07 2020-05-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAs
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
CN105907785A (zh) * 2016-05-05 2016-08-31 苏州吉玛基因股份有限公司 化学合成的crRNA用于CRISPR/Cpf1系统在基因编辑中的应用
CN105907785B (zh) * 2016-05-05 2020-02-07 苏州吉玛基因股份有限公司 化学合成的crRNA用于CRISPR/Cpf1系统在基因编辑中的应用
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
CN106636199A (zh) * 2016-12-02 2017-05-10 中国人民解放军军事医学科学院野战输血研究所 用CRISPR/Cas9技术易于筛选获得目的基因敲除细胞系的方法及产品
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
WO2019237399A1 (zh) * 2018-06-16 2019-12-19 深圳市博奥康生物科技有限公司 CRISPR-Cas9特异性敲除人C2orf40基因的方法及其特异的sgRNA
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Similar Documents

Publication Publication Date Title
CN104762321A (zh) 基于CRISPR/Cas9系统靶向敲除KHV基因的敲除载体构建方法及其crRNA原件
Yan et al. Towards better understanding of KSHV life cycle: from transcription and posttranscriptional regulations to pathogenesis
Humphries et al. Requirement for cell division for initiation of transcription of Rous sarcoma virus RNA
CN104726449A (zh) 一种用于预防和/或治疗HIV的CRISPR-Cas9系统及其制备方法和用途
CN101935637B (zh) 鸡传染性法氏囊病病毒重组弱毒疫苗株及其应用
Diebel et al. Gammaherpesvirus small noncoding RNAs are bifunctional elements that regulate infection and contribute to virulence in vivo
CN105420261A (zh) 一种新城疫病毒耐热改造方法及应用
BeltCappellino et al. CRISPR/Cas9-mediated knockout and in situ inversion of the ORF57 gene from all copies of the Kaposi's sarcoma-associated herpesvirus genome in BCBL-1 cells
Amen et al. Identification and expression analysis of herpes B virus-encoded small RNAs
CN103087996A (zh) 重组猪繁殖与呼吸综合征病毒及其制备方法与应用
CN105132460A (zh) Cas9介导的家蚕基因编辑载体和应用
CN112353939B (zh) Gtpbp4蛋白作为免疫抑制剂的应用及敲低或过表达gtpbp4细胞系的构建
CN102776156A (zh) 基因Ⅵb亚型新城疫病毒致弱株ⅥbI4及其构建方法
Su et al. A recombinant field strain of Marek's disease (MD) virus with reticuloendotheliosis virus long terminal repeat insert lacking the meq gene as a vaccine against MD
Tang et al. Characterization of herpes simplex virus 2 primary microRNA transcript regulation
CN101353670B (zh) 牛传染性鼻气管炎病毒重组毒株、其构建方法及应用
CN108434447B (zh) 缺失ompdc和ldh1基因的弓形虫减毒活疫苗
WO2020034584A1 (zh) 先天性免疫系统重构的bhk21细胞群及其细胞克隆增毒应用
CN111793721B (zh) eEF1D蛋白在制备预防或治疗口蹄疫病毒感染药物中的应用
CN113416768A (zh) Prkra基因作为靶点在抑制小反刍兽疫病毒复制中的应用
CN104419686A (zh) 重组PRRS病毒HV-nsp9及其应用
CN111690669A (zh) Sva 3c蛋白在促进猪源病毒复制中的应用
CN103849637A (zh) O型口蹄疫病毒耐酸突变株、其携带的衣壳蛋白及其编码基因和应用
CN111485004B (zh) 猪繁殖与呼吸障碍综合征病毒超易感细胞系及其应用
Wilusz et al. Interactions of plus and minus strand leader RNAs of the New Jersey serotype of vesicular stomatitis virus with the cellular La protein

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150708