[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN104677833A - Method for carrying out optical measurement by utilizing full-Mueller matrix ellipsometer - Google Patents

Method for carrying out optical measurement by utilizing full-Mueller matrix ellipsometer Download PDF

Info

Publication number
CN104677833A
CN104677833A CN201310611400.1A CN201310611400A CN104677833A CN 104677833 A CN104677833 A CN 104677833A CN 201310611400 A CN201310611400 A CN 201310611400A CN 104677833 A CN104677833 A CN 104677833A
Authority
CN
China
Prior art keywords
mtd
msub
mrow
mtr
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310611400.1A
Other languages
Chinese (zh)
Inventor
崔高增
刘涛
李国光
温朗枫
熊伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bei Optics Technology Co ltd
Institute of Microelectronics of CAS
Original Assignee
Bei Optics Technology Co ltd
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bei Optics Technology Co ltd, Institute of Microelectronics of CAS filed Critical Bei Optics Technology Co ltd
Priority to CN201310611400.1A priority Critical patent/CN104677833A/en
Publication of CN104677833A publication Critical patent/CN104677833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention discloses a method for carrying out optical measurement by using an all-Mueller matrix ellipsometer, and belongs to the technical field of optical measurement. The optical measurement method includes the steps of setting up an experimental light path of the full-Mueller matrix ellipsometer, carrying out local regression calibration on the full-Mueller matrix ellipsometer, placing a sample to be measured on a sample table to obtain an experimental Fourier coefficient of the sample to be measured, and obtaining information of the sample to be measured according to the experimental Fourier coefficient of the sample to be measured. The calibration method of the full-Mueller matrix ellipsometer is simple in operation process, fully utilizes the same measurement data of the full-Mueller matrix ellipsometer, introduces relatively small errors, obtains more accurate parameters through calibration, and further obtains more accurate measurement results when a sample to be measured is measured. Therefore, the process of the optical measuring method is simplified.

Description

Method for carrying out optical measurement by utilizing full-Mueller matrix ellipsometer
Technical Field
The invention relates to the technical field of optical measurement, in particular to a method for performing optical measurement by using an all-Mueller matrix ellipsometer.
Background
An ellipsometer (ellipsometer for short) is an optical measuring instrument that obtains information of a sample to be measured by using polarization characteristics of light. The corresponding working principle is that the surface of a sample to be measured, which is incident through polarizer light, is measured by the change (amplitude ratio and phase difference) of the front and back polarization states of the incident light and the reflected light on the surface of the sample, so that the information of the sample to be measured is obtained. The ellipsometer rotating the polarizer and rotating the single compensator obtains 12 parameters of the sample in one measurement at most; with the progress of integrated circuit technology and the complexity of device structure, the unknown quantity to be measured is increasing, so that the traditional ellipsometer has certain limitations on the film thickness measurement of ultrathin films, the measurement of anisotropic material optical constants, the depolarization analysis of surface features, the measurement of critical dimensions and morphological features in integrated circuits, and the like. The full-Mueller matrix ellipsometer (generalized ellipsometer) can obtain 16 parameters of a 4 x 4-order Mueller matrix in one measurement, and the information of a sample is richer than that obtained by a traditional ellipsometer. The ellipsometer breaks through the technical limitation of the traditional ellipsometer, and can realize the rapid and nondestructive accurate measurement of the thickness, the optical constant, the critical dimension, the three-dimensional morphology and the like of the thin film in a wide spectral range.
The key link of the elliptical polarization spectrometer for ensuring the measurement accuracy and maintaining the equipment state is the calibration of the instrument. As the ellipsometer is used and time goes on, system deviation can be generated gradually, and especially the thickness of the wave plate is susceptible to temperature and pressure changes and environmental deliquescence; therefore, the calibration method capable of quickly and accurately correcting the ellipsometer is a key technology for ensuring the effectiveness of equipment and the production efficiency. In the calibration process of the conventional ellipsometer (as shown in fig. 1), as shown in chinese patent 201210375771.X, when the polarization direction of the polarizer is calibrated, the polarizer is generally fixed at a position P1 near 0 °, the analyzer a is rotated, and the light intensity I is measured1Obtaining I in this state1(t) curve; then changing the angle of the polarizer P to make the polarizer P at the position P2, measuring the light intensity I2To obtain I2(t) curve; and repeating the steps, and respectively measuring the light intensity when the polarizer P is at different angles to obtain the I (t) curve when the polarizer P is at different angles. Respectively carrying out Fourier expansion on the curves I (t) to obtain Fourier coefficients of the polarizer P at different angles; constructing a function that is related to the Fourier coefficient and has a minimum value when the polarization angle of the polarizer P is 0; by data analysis, the position of the polarizer P that minimizes this function is found, and the angle of the polarizer P can be considered to be 0 (see in particular Spectroscopic Ellipsometry Principles and Applications, Hiroyuki Fujiwara,2007). Then, the value of the polarization direction As of the initial position of the analyzer is calculated through Fourier coefficients. In this calibration method, not only the rotation of the analyzer but also the electric or manual rotation of the polarizer P and the manual or electric adjustment of the angle of the polarizer after the polarization direction of the polarizer is determined are required, in which case, due to the instability of the mechanical structure and/or the error of manual operation, an error between the actual angle and the angle to be set is caused, which easily results in the inaccuracy of the measurement of the reference sample. Therefore, the angular calibration accuracy of the polarizer is low when this method is used, and the measurement accuracy of the ellipsometer is limited. The light incident angle in the ellipsometer can be obtained by a manual measurement method, but because the manual measurement precision is limited, and some measurements need to measure the reference sample at different incident angles to obtain more information of the reference sample, the manual measurement is prone to cause error in the result of data analysis due to manual adjustment error or reading error, chinese patent 201010137774.0 discloses an apparatus for automatically detecting the incident angle in the ellipsometer, which can achieve automatic detection of the incident angle, but the apparatus needs to install position detection devices at multiple places in the system, which makes the system structure of the apparatus complex, and the calibration of the position detection device itself is a relatively complex process, thereby limiting the application of the automatic detection device in the ellipsometer.
In the calibration of the conventional full-muller matrix ellipsometer system, for example, in US patent US005956147, a photoelastic modulator (PEM) is used as a phase compensator, when the PEM is calibrated for phase delay, the PEM is set up in a through ellipsometer for measurement, the PEM needs to be taken down from the original equipment for measuring the corresponding phase delay, and the PEM is re-installed on the equipment after calibration is completed, and cannot be guaranteed to be the same as the previously-installed position in the mechanical loading and unloading process, so that the system error is increased, and the through ellipsometer is re-set up to increase the workload. In the literature (Harland G. Tompkins, Eugene A. Irene, Handbook of ellipsometry,7.3.3.4 Calibration)7) In the Mueller ellipsometer, a wave plate is used as a phase compensator, a straight-through type measuring platform is built on an experimental platform, Fourier coefficients obtained in the experiment are measured, and the Fourier coefficients are utilized <math> <mrow> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mrow> <mn>2</mn> <mi>tan</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msqrt> <mfrac> <mrow> <mo>|</mo> <msubsup> <mi>B</mi> <mn>8</mn> <mo>&prime;</mo> </msubsup> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <msubsup> <mi>B</mi> <mn>12</mn> <mo>&prime;</mo> </msubsup> <mo>|</mo> </mrow> </mfrac> </msqrt> </mrow> </math> And <math> <mrow> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mrow> <mn>2</mn> <mi>tan</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msqrt> <mfrac> <mrow> <mo>|</mo> <msubsup> <mi>B</mi> <mn>8</mn> <mo>&prime;</mo> </msubsup> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <msubsup> <mi>B</mi> <mn>20</mn> <mo>&prime;</mo> </msubsup> <mo>|</mo> </mrow> </mfrac> </msqrt> </mrow> </math> whereinWhen the calibration is performed, the two phase compensators need to be removed and then put back, so that the system error is increased. If not removed for calibration, the oblique incidence measurement arms on both sides of the sample must be rotated to a horizontal position (e.g., Woo)llam, fig. 3, with the entrance arm rotated from position 1 to position 3 and the exit arm rotated from position 2 to position 4) during calibration, adding to the complexity of the system.
In summary, the current technology must test the retardation line of the phase compensator used before the equipment is assembled, and the phase retardation of the phase compensator must be calibrated using a straight-through ellipsometric system. The systems are required to have a design in which the adjustable incident angle is straight-through, and there is a process of changing the incident angle in the calibration process, which increases the complexity of the system, and the calibration process is also more complicated.
Since the method for performing optical measurement by using the full-muller matrix ellipsometer is performed after the full-muller matrix ellipsometer is calibrated, the calibration process of the full-muller matrix ellipsometer is complicated, and the method for performing optical measurement by using the full-muller matrix ellipsometer is inevitably complicated.
Disclosure of Invention
In order to solve the above problems, the present invention provides a simplified method for performing optical measurement using an all-muller matrix ellipsometer, which is implemented by simplifying a calibration process of the all-muller matrix ellipsometer.
The method for carrying out optical measurement by using the full-Mueller matrix ellipsometer is characterized by comprising the following steps of:
the method comprises the following steps of building an experimental light path of the full-Mueller matrix ellipsometer, wherein the experimental light path of the full-Mueller matrix ellipsometer comprises a light source, a polarizer, a first phase compensator, an analyzer, a second phase compensator, a spectrometer and a sample table;
performing local regression calibration on the full-Mueller matrix ellipsometer;
placing a sample to be tested on the sample table, and obtaining an experimental Fourier coefficient of the sample to be tested by using the full-Mueller matrix ellipsometer;
obtaining the information of the sample to be detected according to the experimental Fourier coefficient of the sample to be detected;
the method for calibrating the full-Mueller matrix ellipsometer comprises the following steps:
setting the rotational speeds of the first and second phase compensators;
setting the frequency of the light intensity data measured by the spectrograph, so that the spectrograph measures the light intensity data once every T/N time, and collecting N groups of light intensity data in total, wherein N is more than or equal to 25, and T is a measurement period;
collecting light intensity data measured by the spectrometer;
obtaining each experimental Fourier coefficient alpha 'according to the light intensity data acquired by the spectrometer data acquisition module and N light intensity data-experimental Fourier coefficient relational expressions formed by the N times of light intensity data'2n,β′2n
According to the experimental Fourier coefficients, the initial polarization angle C of the calibrated first phase compensators1Initial polarization angle C of the second phase compensators2To obtain each theoretical Fourier coefficient alpha2n,β2n
Based on isotropy and uniformity of the reference sample, the phase delay amount operation module of the first phase compensator calculates the polarization angle P of the calibrated polarizer according to the theoretical Fourier coefficientssPolarization angle A of polarization analyzersObtaining the phase delay amount of the first phase compensator1
Based on the isotropy and uniformity of the reference sample, the second phase compensator phase retardation operation module calculates the polarization angle P of the polarizer according to the theoretical Fourier coefficients and the calibrated polarization angle P of the polarizersPolarization angle A of polarization analyzersObtaining the phase delay amount of the second phase compensator2
Will have been calibrated toAn initial polarization angle C of the phase compensators1Initial polarization angle C of the second phase compensators2Polarizing angle P of polarizersPolarization angle A of polarization analyzersThe phase delay amount of the first phase compensator1And phase delay amount of the second phase compensator2And (3) as an accurate value, obtaining the accurate value of the residual working parameter (d, theta) of the full-Mueller matrix ellipsometer by using a least square fitting method and taking (d, theta) as a variable through a relation between a theoretical Fourier coefficient and the working parameter, wherein d is the thickness of the reference sample, and theta is the angle of light incidence to the reference sample.
The method for performing optical measurement by using the full-Mueller matrix ellipsometer provided by the invention utilizes an isotropic and uniform reference sample, and is based on the light intensity data-experimental Fourier coefficient relation formula acquired by the spectrometer data acquisition module and the polarization angle P of the calibrated polarizersPolarization angle A of polarization analyzersObtaining the phase delay amount of the first phase compensator1And phase delay amount of the second phase compensator2Then, the initial polarization angle C of the first phase compensator obtained by calibration is useds1Initial polarization angle C of the second phase compensators2Polarizing angle P of polarizersPolarization angle A of polarization analyzersThe phase delay amount of the first phase compensator1And phase delay amount of the second phase compensator2And (3) as an accurate value, obtaining the accurate value of the residual working parameters (d, theta) of the full-Mueller matrix ellipsometer by using least square fitting by using (d, theta) as a variable through a relation between a theoretical Fourier coefficient and the working parameters. The full-Mueller matrix ellipsometer can fully utilize the same measurement data, the introduced error is relatively small, the calibrated parameters are more accurate, and further, when the method provided by the invention is applied to measurement of a sample to be measured, the measurement result is more accurate.
Drawings
Fig. 1 is an experimental light path diagram of an all-muller matrix ellipsometer constructed in the method for performing optical measurement by using the all-muller matrix ellipsometer according to the embodiment of the present invention;
fig. 2 is a logic block diagram of a method for performing an optical measurement by using a full-muller matrix ellipsometer according to an embodiment of the present invention;
fig. 3 is a logic block diagram of a method for performing an optical measurement by using a full-muller matrix ellipsometer according to a second embodiment of the present invention.
Detailed Description
For a better understanding of the present invention, reference will now be made in detail to the present embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Example one
The method for performing optical measurement by using the full-Mueller matrix ellipsometer provided by the embodiment of the invention comprises the following steps of:
step 1: referring to the attached drawing 1, an experimental light path for constructing an all-muller matrix ellipsometer comprises a light source 1, an annular mirror 2, a pinhole 3, a first off-axis parabolic mirror 4, a polarizer 5, a first phase compensator 6, a first plane mirror 7, a sample stage 8, a second off-axis parabolic mirror 9, a third off-axis parabolic mirror 10, a second plane mirror 11, a second phase compensator 12, an analyzer 13, a fourth off-axis parabolic mirror 14, a spectrometer 15 and a terminal 16, wherein an isotropic and uniform reference sample is loaded on the sample stage 8; the optical process of the experimental light path of the full-Mueller matrix ellipsometer capable of local regression and self calibration comprises
Sout=MAR(A′)R(-C′2)Mc2(2)R(C′2)×Ms×R(-C′1)Mc1(1)R(C′1)R(-P′)MpR(P)Sin
Namely:
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>S</mi> <mi>A</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>S</mi> <mi>B</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>cos</mi> <mn>2</mn> <mi>A</mi> </mtd> <mtd> <mi>sin</mi> <mn>2</mn> <mi>A</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mn>2</mn> <mi>A</mi> </mtd> <mtd> <mi>cos</mi> <mn>2</mn> <mi>A</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mrow> <mi>cos</mi> <mi>C</mi> </mrow> <mn>2</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msubsup> <mi>C</mi> <mn>2</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mrow> <mi>sin</mi> <mi>C</mi> </mrow> <mn>2</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mi>cos</mi> <msubsup> <mrow> <mn>2</mn> <mi>C</mi> </mrow> <mn>2</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&delta;</mi> </mrow> <mn>2</mn> </msub> </mtd> <mtd> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> <mtr> <mtd> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mrow> <mi>cos</mi> <mi>C</mi> </mrow> <mn>2</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mi>sin</mi> <msubsup> <mi>C</mi> <mn>2</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msubsup> <mrow> <mi>sin</mi> <mi>C</mi> </mrow> <mn>2</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mi>cos</mi> <msubsup> <mrow> <mn>2</mn> <mi>C</mi> </mrow> <mn>2</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>M</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>13</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>14</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>M</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>23</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>24</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>M</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>33</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>34</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>M</mi> <mn>41</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>42</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>43</mn> </msub> </mtd> <mtd> <msub> <mi>M</mi> <mn>44</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mrow> <mi>cos</mi> <mi>C</mi> </mrow> <mn>1</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <msubsup> <mrow> <mo>-</mo> <mi>sin</mi> <mi>C</mi> </mrow> <mn>1</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mrow> <mi>sin</mi> <mi>C</mi> </mrow> <mn>1</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mi>cos</mi> <msubsup> <mrow> <mn>2</mn> <mi>C</mi> </mrow> <mn>1</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
<math> <mfenced open='' close='1'> <mtable> <mtr> <mtd> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&delta;</mi> </mrow> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mrow> <mi>sin</mi> <mi>&delta;</mi> </mrow> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&delta;</mi> </mrow> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&delta;</mi> </mrow> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mrow> <mi>cos</mi> <mi>C</mi> </mrow> <mn>1</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <msubsup> <mrow> <mi>sin</mi> <mi>C</mi> </mrow> <mn>1</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mrow> <mo>-</mo> <mi>sin</mi> <mi>C</mi> </mrow> <mn>1</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <msubsup> <mrow> <mi>cos</mi> <mn>2</mn> <mi>C</mi> </mrow> <mn>1</mn> <mo>&prime;</mo> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>cos</mi> <mn>2</mn> <mi>P</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mn>2</mn> <mi>P</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>sin</mi> <mn>2</mn> <mi>P</mi> </mtd> <mtd> <mi>cos</mi> <mn>2</mn> <mi>P</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> <mtr> <mtd> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>cos</mi> <mn>2</mn> <mi>P</mi> </mtd> <mtd> <mi>sin</mi> <mn>2</mn> <mi>P</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mn>2</mn> <mi>P</mi> </mtd> <mtd> <mi>cos</mi> <mn>2</mn> <mi>P</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mn>2.0</mn> </mtd> </mtr> </mtable> </mfenced> </math>
step 2: performing local regression calibration on the full-Mueller matrix ellipsometer;
and 3, step 3: placing a sample to be tested on a sample table, and obtaining an experimental Fourier coefficient of the sample to be tested by using a full Mueller matrix ellipsometer;
and 4, step 4: obtaining the information of the sample to be detected according to the experimental Fourier coefficient of the sample to be detected;
experimental fourier coefficient and azimuth P of mueller element and polarizer of samplesAzimuth angle A of the analyzersAzimuth angle C of two phase compensatorss1And Cs2And amount of phase delay1And2there is a relationship (refer to Harland G. Tompkins, Eugene A. Irene, Handbook of ellipsometry,7.3.3DualRotating Compensator 7). And the Mueller element of the sample is related to the optical constants n and k and the thickness d of the sample material, the incident angle theta and the wavelength lambda of the light beam to the sample. Therefore, after the experimental fourier coefficient of the sample is measured, the mueller element of the sample can be obtained according to the above relationship, and further the information of the sample can be obtained.
The method for carrying out local regression calibration on the full-Mueller matrix ellipsometer comprises the following steps of;
step 21: setting the rotation speed of the first phase compensator and the second phase compensator;
step 22: setting the frequency of light intensity data measured by a spectrometer, so that the spectrometer measures the light intensity data once every T/N time, and collecting N groups of light intensity data in total, wherein N is more than or equal to 25, and T is a measurement period;
step 23: collecting light intensity data measured by a spectrometer;
step 24: obtaining each experimental Fourier coefficient alpha 'according to the light intensity data acquired by the spectrometer data acquisition module and N light intensity data-experimental Fourier coefficient relational expressions formed by the N times of light intensity data'2n,β′2n
Step 25: according to each experimental Fourier coefficient, the initial polarization angle C of the calibrated first phase compensators1Initial polarization angle C of the second phase compensators2To obtain each theoretical Fourier coefficient alpha2n,β2n
Step 26: based on isotropy and uniformity of a reference sample, the phase delay amount operation module of the first phase compensator calculates the polarization angle P of the polarizer according to each theoretical Fourier coefficient and the calibrated polarization angle P of the polarizersPolarization angle A of polarization analyzersObtaining the phase delay amount of the first phase compensator1
Based on isotropy and uniformity of the reference sample, the second phase compensator phase retardation operation module calculates the polarization angle P of the polarizer according to each theoretical Fourier coefficient and the calibrated polarization anglesPolarization angle A of polarization analyzersObtaining the phase delay amount of the second phase compensator2
Step 27: the initial polarization angle C of the first phase compensator obtained by calibrations1Initial polarization angle C of the second phase compensators2Polarizing angle P of polarizersPolarization angle A of polarization analyzersThe phase delay amount of the first phase compensator1And phase delay amount of the second phase compensator2And (3) as an accurate value, obtaining the accurate value of the residual working parameter (d, theta) of the full-Mueller matrix ellipsometer by using a least square fitting method and taking (d, theta) as a variable through a relation between a theoretical Fourier coefficient and the working parameter, wherein d is the thickness of the reference sample, and theta is the angle of light incidence to the reference sample.
The corresponding Mueller matrix for the isotropic and uniform reference sample is:
M s = M 11 M 12 0 0 M 21 M 22 0 0 0 0 M 33 M 34 0 0 M 43 M 44
taking N =36, and the rotation speed of the first phase compensator 6 and the rotation speed of the second phase compensator 12 = 5: 3 as an example, at this time, the first phase compensator 6 and the second phase compensator 12 are in a rotating state, and the rotation speed of the first phase compensator 6 and the rotation speed of the second phase compensator 12 = 5: 3, and at this time, C'1=5(C-Cs1),C′2=3(C-Cs2) The time for the first phase compensator 6 to turn 5 turns or the second phase compensator 12 to turn 3 turns is a period T,
wherein,
cs1, t = the angle of the fast axis of the first phase compensator 5 at time instant 0,
cs2, the angle of the fast axis of the second phase compensator 12 at time t =0,
c = ω t, the angle by which the first compensator 5 and the second compensator 12 rotate at the fundamental physical frequency ω.
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>S</mi> <mi>j</mi> </msub> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>T</mi> </mrow> <mn>36</mn> </mfrac> <mfrac> <mi>jT</mi> <mn>36</mn> </mfrac> </msubsup> <msubsup> <mi>I</mi> <mn>0</mn> <mo>&prime;</mo> </msubsup> <mo>[</mo> <mn>1</mn> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>16</mn> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>&alpha;</mi> <mrow> <mn>2</mn> <mi>n</mi> </mrow> <mo>&prime;</mo> </msubsup> <mi>cos</mi> <mn>2</mn> <mi>n&omega;t</mi> <mo>+</mo> <msubsup> <mi>&beta;</mi> <mrow> <mn>2</mn> <mi>n</mi> </mrow> <mo>&prime;</mo> </msubsup> <mi>sin</mi> <mn>2</mn> <mi>n&omega;t</mi> <mo>)</mo> </mrow> <mo>]</mo> <mi>dt</mi> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mfrac> <msubsup> <mi>&pi;I</mi> <mn>0</mn> <mo>&prime;</mo> </msubsup> <mrow> <mn>36</mn> <mi>&omega;</mi> </mrow> </mfrac> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>16</mn> </munderover> <mfrac> <msubsup> <mi>I</mi> <mn>0</mn> <mo>&prime;</mo> </msubsup> <mi>n&omega;</mi> </mfrac> <mrow> <mo>(</mo> <mi>sin</mi> <mfrac> <mi>n&pi;</mi> <mn>36</mn> </mfrac> <mo>)</mo> </mrow> <mo>[</mo> <msubsup> <mi>&alpha;</mi> <mrow> <mn>2</mn> <mi>n</mi> </mrow> <mo>&prime;</mo> </msubsup> <mi>cos</mi> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>2</mn> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>n&pi;</mi> </mrow> <mn>36</mn> </mfrac> <mo>+</mo> <msubsup> <mi>&beta;</mi> <mrow> <mn>2</mn> <mi>n</mi> </mrow> <mo>&prime;</mo> </msubsup> <mi>sin</mi> <mfrac> <mrow> <mrow> <mo>(</mo> <mn>2</mn> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>n&pi;</mi> </mrow> <mn>36</mn> </mfrac> <mo>]</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>j</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mn>36</mn> <mo></mo> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.1</mn> </mtd> </mtr> </mtable> </mfenced> </math>
Where ω = π/T. Using the collected S1, S2, S3.. S36, 36 equations (n =9, 12, 14, 15 with a prime fourier coefficient α ') including 25 unknowns can be obtained from the above equation'2n=0 and β'2n= 0), the fourier coefficient with a prime α 'can be solved by a nonlinear least squares method'2nAnd beta'2nAnd 24 in total.
Theoretical fourier coefficient α2nAnd beta2nAnd Fourier coefficient alpha 'obtained by experiment'2nAnd beta'2nConversion relation (equations 2.7 and 2.8)
α2n=α′2ncosφ2n+β′2nsinφ2n…2.7
β2n=-α′2nsinφ2n+β′2ncosφ2n…2.8
Wherein:
φ2=12Cs2-10Cs1; φ4=10Cs1-6Cs2;
φ6=6Cs2; φ8=20Cs1-12Cs2;
φ10=10Cs1; φ12=12Cs2;
φ14=20Cs1-6Cs2; φ16=10Cs1+6Cs2;
φ20=20Cs1; φ22=10Cs1+12Cs2;
φ26=20Cs1+6Cs2; φ32=20Cs1+12Cs2
the theoretical fourier coefficient α can be obtained from the equations (equations 2.7 and 2.8)2nAnd beta2n
Due to the isotropic and homogeneous sample, M13=M31=M14=M41=M23=M32=M24=M42=0, and the theoretical fourier coefficient α can be known from the theoretical principle of the Mueller ellipsometer2、β2、α10、β10、α6、β6、α14、β14、α22、β22、α26、β26The theoretical expression of (1):
<math> <mrow> <msub> <mi>&alpha;</mi> <mn>6</mn> </msub> <mo>=</mo> <msub> <mi>M</mi> <mn>43</mn> </msub> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mi>sin</mi> <mn>2</mn> <msub> <mi>P</mi> <mi>s</mi> </msub> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.9</mn> </mrow> </math>
<math> <mrow> <msub> <mi>&beta;</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>M</mi> <mn>43</mn> </msub> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mi>sin</mi> <mn>2</mn> <msub> <mi>P</mi> <mi>s</mi> </msub> <mi>cos</mi> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.10</mn> </mrow> </math>
<math> <mrow> <msub> <mi>&alpha;</mi> <mn>14</mn> </msub> <mo>=</mo> <mo>-</mo> <mn>0.5</mn> <msub> <mi>M</mi> <mn>43</mn> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mi>cos</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.11</mn> </mrow> </math>
<math> <mrow> <msub> <mi>&beta;</mi> <mn>14</mn> </msub> <mo>=</mo> <mo>-</mo> <mn>0.5</mn> <msub> <mi>M</mi> <mn>43</mn> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mi>sin</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.12</mn> </mrow> </math>
<math> <mrow> <msub> <mi>&alpha;</mi> <mn>26</mn> </msub> <mo>=</mo> <mn>0.5</mn> <msub> <mi>M</mi> <mn>43</mn> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mi>cos</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.13</mn> </mrow> </math>
<math> <mrow> <msub> <mi>&beta;</mi> <mn>26</mn> </msub> <mo>=</mo> <mn>0.5</mn> <msub> <mi>M</mi> <mn>43</mn> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mi>cos</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.14</mn> </mrow> </math>
from the equations 2.10 and 2.12
<math> <mrow> <mfrac> <msub> <mi>&beta;</mi> <mn>14</mn> </msub> <msub> <mi>&beta;</mi> <mn>6</mn> </msub> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>0.5</mn> <mi>sin</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>P</mi> </mrow> <mi>s</mi> </msub> <mi>cos</mi> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>s</mi> </msub> </mrow> </mfrac> <mo>&times;</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mn>2</mn> </mfrac> </mrow> </math>
<math> <mrow> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mi>cos</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>[</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mrow> <mn>2</mn> <mi>&beta;</mi> </mrow> <mn>14</mn> </msub> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>P</mi> </mrow> <mi>s</mi> </msub> <mi>cos</mi> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mtext>s</mtext> </msub> </mrow> <mrow> <msub> <mi>&beta;</mi> <mn>6</mn> </msub> <mi>sin</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <msub> <mrow> <mn>2</mn> <mi>&beta;</mi> </mrow> <mn>14</mn> </msub> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>P</mi> </mrow> <mi>s</mi> </msub> <mi>cos</mi> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>s</mi> </msub> </mrow> <mrow> <msub> <mi>&beta;</mi> <mn>6</mn> </msub> <mi>sin</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mfrac> <mo>]</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.15</mn> </mrow> </math>
Wherein <math> <mrow> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>&NotEqual;</mo> <mfrac> <mi>n&pi;</mi> <mn>2</mn> </mfrac> </mrow> </math> And is <math> <mrow> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>&NotEqual;</mo> <mfrac> <mi>n&pi;</mi> <mn>2</mn> </mfrac> </mrow> </math> And is <math> <mrow> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>&NotEqual;</mo> <mfrac> <mi>&pi;</mi> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mi>n&pi;</mi> <mn>2</mn> </mfrac> </mrow> </math> (n is an integer) (it must be ensured that the Fourier coefficient is not zero)
Similarly, the phase delay amount of the compensator can be calculated by equations 2.9 and 2.12, equations 2.9 and 2.11, equations 2.10 and 2.11, equations 2.9 and 2.13, 2.9 and 2.14, equations 2.10 and 2.13, and equations 2.10 and 2.141
The amount of phase delay of the second compensator is calibrated2
<math> <mrow> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.5</mn> <msub> <mi>M</mi> <mn>34</mn> </msub> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mi>cos</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.16</mn> </mrow> </math>
<math> <mrow> <msub> <mi>&beta;</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <mn>0.5</mn> <msub> <mi>M</mi> <mn>34</mn> </msub> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mi>sin</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.17</mn> </mrow> </math>
<math> <mrow> <msub> <mi>&alpha;</mi> <mn>10</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>M</mi> <mn>34</mn> </msub> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>P</mi> </mrow> <mi>s</mi> </msub> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.18</mn> </mrow> </math>
<math> <mrow> <msub> <mi>&beta;</mi> <mn>10</mn> </msub> <mo>=</mo> <msub> <mi>M</mi> <mn>34</mn> </msub> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <msup> <mi>cos</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mi>sin</mi> <mn>2</mn> <msub> <mi>P</mi> <mi>s</mi> </msub> <mi>cos</mi> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.19</mn> </mrow> </math>
<math> <mrow> <msub> <mi>&alpha;</mi> <mn>22</mn> </msub> <mo>=</mo> <mo>-</mo> <mn>0.5</mn> <msub> <mi>M</mi> <mn>34</mn> </msub> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mi>cos</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.20</mn> </mrow> </math>
<math> <mrow> <msub> <mi>&beta;</mi> <mn>22</mn> </msub> <mo>=</mo> <mo>-</mo> <mn>0.5</mn> <msub> <mi>M</mi> <mn>34</mn> </msub> <mi>sin</mi> <msub> <mi>&delta;</mi> <mn>1</mn> </msub> <msup> <mi>sin</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> <mi>sin</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.21</mn> </mrow> </math>
From equations 2.16 and 2.18:
<math> <mrow> <mfrac> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <msub> <mi>&alpha;</mi> <mn>10</mn> </msub> </mfrac> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mn>0.5</mn> <mi>cos</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>P</mi> </mrow> <mi>s</mi> </msub> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>s</mi> </msub> </mrow> </mfrac> <mo>&times;</mo> <msup> <mi>tan</mi> <mn>2</mn> </msup> <mfrac> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mn>2</mn> </mfrac> </mrow> </math>
<math> <mrow> <mrow> <msub> <mi>&delta;</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mi>cos</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>[</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <msub> <mrow> <mn>2</mn> <mi>&alpha;</mi> </mrow> <mn>2</mn> </msub> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>P</mi> </mrow> <mi>s</mi> </msub> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>s</mi> </msub> </mrow> <mrow> <msub> <mi>&alpha;</mi> <mn>10</mn> </msub> <mi>cos</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mrow> <mn>2</mn> <mi>&alpha;</mi> </mrow> <mn>2</mn> </msub> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>P</mi> </mrow> <mi>s</mi> </msub> <mi>sin</mi> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>s</mi> </msub> </mrow> <mrow> <msub> <mi>&alpha;</mi> <mn>10</mn> </msub> <mi>cos</mi> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mfrac> <mo>]</mo> </mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.22</mn> </mrow> </math>
wherein <math> <mrow> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>&NotEqual;</mo> <mfrac> <mi>&pi;</mi> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mi>n&pi;</mi> <mn>2</mn> </mfrac> </mrow> </math> And is <math> <mrow> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>&NotEqual;</mo> <mfrac> <mi>n&pi;</mi> <mn>2</mn> </mfrac> </mrow> </math> And is <math> <mrow> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>&NotEqual;</mo> <mfrac> <mi>n&pi;</mi> <mn>2</mn> </mfrac> </mrow> </math> (n is an integer) (it must be ensured that the Fourier coefficient is not zero)
Similarly, the phase delay amount of the compensator can be calibrated by equations 2.16 and 2.19, equations 2.17 and 2.18, equations 2.17 and 2.19, equations 2.18 and 2.20, 2.18 and 2.21, equations 2.19 and 2.20, and equations 2.19 and 2.212
The transformation of the experimental Fourier coefficient and the theoretical Fourier coefficient can be realized by the formulas 2.7 and 2.8, and the theoretical Fourier coefficient, the Mueller element of the sample and the azimuth angle P of the polarizersAzimuth angle A of the analyzersAzimuth angle C of two phase compensatorss1And Cs2And amount of phase delay1And2(see Harland g. tompkins, Eugene a. irene, Handbook of ellipsometry,7.3.3dual rolling comparator 7). And the Mueller element of the sample is related to the optical constants n and k and the thickness d of the sample material, the incident angle theta and the wavelength lambda of the light beam to the sample. Experimental Fourier coefficient alpha'2nAnd beta'2nAnd (n, k, d, θ, λ, P)s,As,Cs1,Cs212) In this regard, the angle at which the beam is incident on the sample. Alpha 'obtained in the experiment for a reference sample with known optical constants n, k at one wavelength'2nAnd beta'2n24, a total, 24 corresponding equations can be obtained,only with (d, theta, lambda, P)s,As,Cs1,Cs212) It is related. P from the above calibrations,As,Cs1,Cs212As initial values, and the corresponding wavelengths measured experimentally are known, 24 equations from experimental fourier coefficients are derived, with (d, θ, P)s,As,Cs1,Cs212) And (4) performing correlation, namely fitting the residual working parameters (d, theta, P) of the muller ellipsometer by using a least square methods,As,Cs1,Cs212). The reference sample may be a silicon dioxide thin film sample with silicon as a substrate, and optical constants n and k of the silicon dioxide thin film sample can be referred to from the literature, and the optical constants of the silicon dioxide thin film sample are n =1.457 and k =0, taking a wavelength of 632.8nm as an example.
When N =25, the experimental Fourier coefficient calculation module directly obtains each experimental Fourier coefficient alpha 'according to N light intensity data-experimental Fourier coefficient relational expressions formed by the N times of light intensity data'2n,β′2n
When N is more than 25, the experimental Fourier coefficient calculation module obtains each experimental Fourier coefficient alpha 'through a least square method according to an N light intensity data-experimental Fourier coefficient relation formed by the N times of light intensity data'2n,β′2n
The light source may be a broad spectrum light source, the number of wavelengths of light that the light source is capable of producing is N ', and the number of relations between theoretical fourier coefficients and operating parameters is 24 × N'.
The number of isotropic and homogeneous reference samples may be m, the number of relations between theoretical fourier coefficients and operating parameters being 24 × N' × m.
Example two
Referring to fig. 3, a difference between the local regression self-calibrated full-muller matrix ellipsometer according to the second embodiment of the present invention and the local regression self-calibrated full-muller matrix ellipsometer according to the first embodiment of the present invention is that the local regression self-calibrated method for a local regression self-calibrated full-muller matrix ellipsometer according to the second embodiment of the present invention further includes the following steps:
according to each experimental Fourier coefficient alpha'2n,β′2nTo obtain each theta2nHere, θ2nAre intermediate parameters defined for ease of operation;
according to each theta2nObtaining an initial polarization angle C of the first phase compensators1
According to each theta2nObtaining an initial polarization angle C of the second phase compensators2
According to each theta2nObtaining the polarization angle P of the polarizers
According to each theta2nObtaining the polarization angle A of the analyzers
Wherein,
θ2n=tan-1(β′2n/α′2n)…2.2
using the method already known in the literature (R.W.Collins and Joohyun Koh Dual rotating-lubricating tubular analyzer: instrument design for real-time Mueller matrix spectroscopy of surfaces andvol.16, No.8/August 1999/J.Opt.Soc.am.A1997-2006), corresponding to equations 2.3-2.6, the initial polarization angle C of the compensator can be calibrateds1And Cs2And the polarization angle P of the polarizer and analyzersAnd As
<math> <mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&theta;</mi> <mn>14</mn> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mn>4</mn> </msub> </mrow> <mn>10</mn> </mfrac> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.3</mn> </mrow> </math>
<math> <mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&theta;</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&theta;</mi> <mn>4</mn> </msub> </mrow> <mn>6</mn> </mfrac> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.4</mn> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&theta;</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>&theta;</mi> <mn>6</mn> </msub> </mrow> <mn>4</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mrow> <mn>5</mn> <mi>C</mi> </mrow> <mrow> <mi>s</mi> <mn>1</mn> </mrow> </msub> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mn>2.5</mn> </mrow> </math>
<math> <mrow> <mi>As</mi> <mo>=</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&theta;</mi> <mn>16</mn> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mn>4</mn> </msub> </mrow> <mn>4</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mrow> <mn>3</mn> <mi>C</mi> </mrow> <mrow> <mi>s</mi> <mn>2</mn> </mrow> </msub> <mtext>&CenterDot;&CenterDot;&CenterDot;2.6</mtext> </mrow> </math>
After P is calibrateds、As、Cs1And Cs2On the basis, under the condition that the compensators are not detached from an experiment table or equipment for independent measurement, a method is provided, the phase delay amounts of the two compensators under different wavelengths can be completely calibrated through one-time experiment, and the calibration process is accurate and simple.
The above embodiments are provided to further explain the objects, technical solutions and advantages of the present invention in detail, it should be understood that the above embodiments are merely exemplary and not restrictive, and any modifications, equivalents, improvements and the like made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (7)

1. A method for optical measurement by using an all-Mueller matrix ellipsometer is characterized by comprising the following steps:
the method comprises the following steps of building an experimental light path of the full-Mueller matrix ellipsometer, wherein the experimental light path of the full-Mueller matrix ellipsometer comprises a light source, a polarizer, a first phase compensator, an analyzer, a second phase compensator, a spectrometer and a sample table;
performing local regression calibration on the full-Mueller matrix ellipsometer;
placing a sample to be tested on the sample table, and obtaining an experimental Fourier coefficient of the sample to be tested by using the full-Mueller matrix ellipsometer;
obtaining the information of the sample to be detected according to the experimental Fourier coefficient of the sample to be detected;
the method for calibrating the full-Mueller matrix ellipsometer comprises the following steps:
setting the rotational speeds of the first and second phase compensators;
setting the frequency of the light intensity data measured by the spectrograph, so that the spectrograph measures the light intensity data once every T/N time, and collecting N groups of light intensity data in total, wherein N is more than or equal to 25, and T is a measurement period;
collecting light intensity data measured by the spectrometer;
obtaining each experimental Fourier coefficient alpha 'according to the light intensity data acquired by the spectrometer data acquisition module and N light intensity data-experimental Fourier coefficient relational expressions formed by the N times of light intensity data'2n,β′2n
According to the experimental Fourier coefficients, the initial polarization angle C of the calibrated first phase compensators1Initial polarization angle C of the second phase compensators2To obtain each theoretical Fourier coefficient alpha2n,β2n
Based on isotropy and uniformity of the reference sample, the phase delay amount operation module of the first phase compensator calculates the polarization angle P of the calibrated polarizer according to the theoretical Fourier coefficientssPolarization angle A of polarization analyzersObtaining the phase delay amount of the first phase compensator1
Based on the isotropy and uniformity of the reference sample, the second phase compensator phase retardation operation module calculates the polarization angle P of the polarizer according to the theoretical Fourier coefficients and the calibrated polarization angle P of the polarizersPolarization angle A of polarization analyzersObtaining the phase delay amount of the second phase compensator2
The initial polarization angle C of the first phase compensator obtained by calibrations1Initial bias of the second phase compensatorVibration angle Cs2Polarizing angle P of polarizersPolarization angle A of polarization analyzersThe phase delay amount of the first phase compensator1And phase delay amount of the second phase compensator2And (d, theta) is used as a variable, and a least square method is used for fitting to obtain the accurate value of the residual working parameter (d, theta) of the full-Mueller matrix ellipsometer by using a relation between the theoretical Fourier coefficient and the working parameter (d, theta), wherein d is the thickness of the reference sample, and theta is the angle of light incidence to the reference sample.
2. The method of claim 1, further comprising the steps of:
according to the experimental Fourier coefficients alpha'2n,β′2nTo obtain each theta2n=tan-1(β′2n/α′2n);
According to each theta2nObtaining an initial polarization angle C of the first phase compensators1
According to each theta2nObtaining an initial polarization angle C of the second phase compensators2
Each theta2nObtaining the polarization angle P of the polarizers
According to each theta2nObtaining the polarization angle A of the analyzers
3. The method according to claim 1, wherein N =25, and the experimental Fourier coefficient calculation module directly obtains each experimental Fourier coefficient α 'from N intensity data-experimental Fourier coefficient relations formed by the N intensity data'2n,β′2n
4. The method according to claim 1, wherein N > 25, and the experimental Fourier coefficient calculation module forms an N intensity data-experimental Fourier coefficient relation from the N intensity data by least squaresObtaining the Fourier coefficient alpha 'of each experiment'2n,β′2n
5. The method of claim 1, wherein the light source is a broad spectrum light source, the number of wavelengths of light that the light source is capable of producing is N ', and the number of relationships between the theoretical fourier coefficients and the operating parameters is 24 x N'.
6. The method according to claim 5, characterized in that the number of isotropic and homogeneous reference samples is m and the number of relations between theoretical Fourier coefficients and operating parameters is 24 XN' x m.
7. The method of claim 1, wherein the reference sample is a silicon dioxide thin film of a silicon substrate.
CN201310611400.1A 2013-11-26 2013-11-26 Method for carrying out optical measurement by utilizing full-Mueller matrix ellipsometer Pending CN104677833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310611400.1A CN104677833A (en) 2013-11-26 2013-11-26 Method for carrying out optical measurement by utilizing full-Mueller matrix ellipsometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310611400.1A CN104677833A (en) 2013-11-26 2013-11-26 Method for carrying out optical measurement by utilizing full-Mueller matrix ellipsometer

Publications (1)

Publication Number Publication Date
CN104677833A true CN104677833A (en) 2015-06-03

Family

ID=53313183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310611400.1A Pending CN104677833A (en) 2013-11-26 2013-11-26 Method for carrying out optical measurement by utilizing full-Mueller matrix ellipsometer

Country Status (1)

Country Link
CN (1) CN104677833A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115695A (en) * 2018-08-07 2019-01-01 华中科技大学 A kind of extracting method of anisotropic body materials optical constant and Eulerian angles
CN109580551A (en) * 2018-11-30 2019-04-05 武汉颐光科技有限公司 A kind of Fourier transform infrared Muller matrix ellipsometer and its measurement method
CN111142587A (en) * 2019-12-26 2020-05-12 武汉颐光科技有限公司 Control method of dual-rotation compensator Mueller matrix ellipsometer system
CN111413282A (en) * 2020-04-11 2020-07-14 华中科技大学 Photoelastic high-speed Mueller matrix ellipsometer and in-situ calibration and measurement method thereof
CN113302471A (en) * 2019-01-23 2021-08-24 欧库睿因有限公司 Method for ellipsometry determination of sample properties
CN116930093A (en) * 2023-04-01 2023-10-24 中国人民解放军国防科技大学 Error calibration method of double-vortex wave plate Mueller matrix ellipsometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956147A (en) * 1997-06-13 1999-09-21 Lockheed Martin Energy Research Corporation Two modulator generalized ellipsometer for complete mueller matrix measurement
CN101846616A (en) * 2010-03-30 2010-09-29 北京量拓科技有限公司 Device and method for automatically detecting incident angle in elliptical polarization measuring system
CN102878940A (en) * 2012-09-29 2013-01-16 中国科学院微电子研究所 Calibration method of ellipsometer with phase compensator
CN103134592A (en) * 2013-01-31 2013-06-05 华中科技大学 Transmission type Mueller matrix spectrum ellipsometer and measuring method thereof
CN104677834A (en) * 2013-11-26 2015-06-03 北京智朗芯光科技有限公司 Method for carrying out optical measurement by using full-Mueller matrix ellipsometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956147A (en) * 1997-06-13 1999-09-21 Lockheed Martin Energy Research Corporation Two modulator generalized ellipsometer for complete mueller matrix measurement
CN101846616A (en) * 2010-03-30 2010-09-29 北京量拓科技有限公司 Device and method for automatically detecting incident angle in elliptical polarization measuring system
CN102878940A (en) * 2012-09-29 2013-01-16 中国科学院微电子研究所 Calibration method of ellipsometer with phase compensator
CN103134592A (en) * 2013-01-31 2013-06-05 华中科技大学 Transmission type Mueller matrix spectrum ellipsometer and measuring method thereof
CN104677834A (en) * 2013-11-26 2015-06-03 北京智朗芯光科技有限公司 Method for carrying out optical measurement by using full-Mueller matrix ellipsometer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUOZHI SONG ET.AL: "DUV broadband spectroscopic ellipsometer based on all-reflective focusing optical system", 《INTERNATIONAL CONFERENCE ON INSTRUMENTATION , MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL》 *
R.W.COLLINS ET.AL: "Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films", 《JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115695A (en) * 2018-08-07 2019-01-01 华中科技大学 A kind of extracting method of anisotropic body materials optical constant and Eulerian angles
CN109115695B (en) * 2018-08-07 2020-05-19 华中科技大学 Method for extracting optical constants and Euler angles of anisotropic body materials
CN109580551A (en) * 2018-11-30 2019-04-05 武汉颐光科技有限公司 A kind of Fourier transform infrared Muller matrix ellipsometer and its measurement method
CN113302471A (en) * 2019-01-23 2021-08-24 欧库睿因有限公司 Method for ellipsometry determination of sample properties
CN111142587A (en) * 2019-12-26 2020-05-12 武汉颐光科技有限公司 Control method of dual-rotation compensator Mueller matrix ellipsometer system
CN111142587B (en) * 2019-12-26 2022-05-03 武汉颐光科技有限公司 Control method of dual-rotation compensator Mueller matrix ellipsometer system
CN111413282A (en) * 2020-04-11 2020-07-14 华中科技大学 Photoelastic high-speed Mueller matrix ellipsometer and in-situ calibration and measurement method thereof
CN116930093A (en) * 2023-04-01 2023-10-24 中国人民解放军国防科技大学 Error calibration method of double-vortex wave plate Mueller matrix ellipsometer
CN116930093B (en) * 2023-04-01 2024-01-26 中国人民解放军国防科技大学 Error calibration method of double-vortex wave plate Mueller matrix ellipsometer

Similar Documents

Publication Publication Date Title
CN104677834A (en) Method for carrying out optical measurement by using full-Mueller matrix ellipsometer
CN103163077B (en) Rotary device type spectroscopic ellipsometers systematic parameter calibration steps
CN104677838A (en) Self-calibration full-Mueller matrix ellipsometer measuring system
CN102879337B (en) Calibration method of ellipsometer
CN102878940B (en) Calibration method of ellipsometer with phase compensator
CN111122460B (en) Single-rotation compensator type spectroscopic ellipsometer parameter calibration method and device
CN104677833A (en) Method for carrying out optical measurement by utilizing full-Mueller matrix ellipsometer
CN103743349B (en) Method and device for measuring nano film
CN104677837A (en) Calibration method of full-Mueller matrix ellipsometer
CN104677835A (en) Calibration method of full-Mueller matrix ellipsometer
CN104864815A (en) Method of calibrating error influence brought by stress element in ellipsometry
CN111207677B (en) Method for measuring thickness and refractive index of dielectric film
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
CN115391726A (en) Fitting optimization method for ellipsometry system and related device
CN111207678B (en) Non-rotating film thickness and refractive index measuring method
CN104677836A (en) Self-calibration full-Mueller matrix ellipsometer measurement system
Naciri et al. Fixed polarizer, rotating-polarizer and fixed analyzer spectroscopic ellipsometer: accurate calibration method, effect of errors and testing
CN115060658B (en) Double-vortex wave plate Mueller matrix ellipsometer and measuring method thereof
Lo et al. An approach for measuring the ellipsometric parameters of isotropic and anisotropic thin films using the Stokes parameter method
CN103968783B (en) Method for measuring optical axis deviation angle in double-plate wave plate compensator
CN115752265A (en) Calibration method of non-ideal ellipsometry system
JP3537732B2 (en) Ellipsometer using voltage controlled liquid crystal retarder
Watkins A phase-stepped spectroscopic ellipsometer
Xue et al. Wide-Spectrum Ellipsometry Measurement Based on Two Parallel Channels
Li et al. Research on spectroscopic ellipsometry in China with future challenges

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150603

RJ01 Rejection of invention patent application after publication