CH713544A2 - Watch movement provided with a device for positioning a mobile element in a plurality of discrete positions. - Google Patents
Watch movement provided with a device for positioning a mobile element in a plurality of discrete positions. Download PDFInfo
- Publication number
- CH713544A2 CH713544A2 CH00269/17A CH2692017A CH713544A2 CH 713544 A2 CH713544 A2 CH 713544A2 CH 00269/17 A CH00269/17 A CH 00269/17A CH 2692017 A CH2692017 A CH 2692017A CH 713544 A2 CH713544 A2 CH 713544A2
- Authority
- CH
- Switzerland
- Prior art keywords
- magnetic
- rocker
- magnet
- movable element
- stable
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B11/00—Click devices; Stop clicks; Clutches
- G04B11/001—Clutch mechanism between two rotating members with transfer of movement in both directions, possibly with limitation on the transfer of power
- G04B11/005—Clutch mechanism between two rotating members with transfer of movement in both directions, possibly with limitation on the transfer of power with magnetic elements
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B11/00—Click devices; Stop clicks; Clutches
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B19/00—Indicating the time by visual means
- G04B19/24—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars
- G04B19/243—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator
- G04B19/247—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator disc-shaped
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Le mouvement horloger selon l’invention est muni d’un élément mobile (22A), susceptible d’être immobilisé momentanément dans une quelconque position stable parmi N positions stables discrètes, et d’un dispositif (44) de positionnement de cet élément mobile comprenant une bascule (26A) et un système magnétique (28) formé d’un premier aimant (30) solidaire de la bascule, de N deuxièmes aimants (32) solidaires de l’élément mobile et agencés le long d’un axe de déplacement, et d’un élément à haute perméabilité magnétique (34) agencé devant une extrémité polaire du premier aimant située du côté de l’élément mobile. La polarité du premier aimant est inversée relativement à celles des deuxièmes aimants. Un premier couple magnétique, exercé sur la bascule portant le premier aimant, présente un premier sens sur un premier tronçon et un deuxième sens, opposé au premier sens, sur un deuxième tronçon de la distance entre deux positions stables successives, le premier sens définissant un couple de rappel en direction de l’élément mobile pour une partie de contact (46) de la bascule. Pour chacune des N positions stables discrètes, le premier couple magnétique est appliqué dans ledit premier sens. En particulier, l’élément mobile est un anneau des quantièmes et les positions stables sont des positions d’affichage du quantième.The watch movement according to the invention is provided with a movable element (22A), capable of being immobilized momentarily in any stable position among N discrete stable positions, and a device (44) for positioning this mobile element comprising a rocker (26A) and a magnetic system (28) formed of a first magnet (30) integral with the rocker, N second magnets (32) integral with the movable element and arranged along an axis of displacement, and a high magnetic permeability element (34) arranged in front of a pole end of the first magnet on the side of the movable member. The polarity of the first magnet is reversed relative to those of the second magnets. A first magnetic torque, exerted on the rocker carrying the first magnet, has a first direction on a first section and a second direction, opposite to the first direction, on a second section of the distance between two successive stable positions, the first direction defining a return torque towards the movable member for a contact portion (46) of the rocker. For each of the N discrete stable positions, the first magnetic torque is applied in said first direction. In particular, the movable element is a date ring and the stable positions are date display positions.
Description
DescriptionDescription
Domaine technique [0001] La présente invention concerne une pièce d’horlogerie munie d’un dispositif de positionnement d’un élément mobile dans une pluralité de positions discrètes. En particulier, l’invention concerne un dispositif de positionnement d’un anneau des quantièmes dans une pluralité de positions d’affichage.Technical Field [0001] The present invention relates to a timepiece provided with a device for positioning a mobile element in a plurality of discrete positions. In particular, the invention relates to a device for positioning a date ring in a plurality of display positions.
Arrière-plan technologique [0002] De manière classique, les disques ou anneaux servant à l’affichage d’une donnée de calendrier (quantième, jour de la semaine, mois, etc.) sont maintenus dans l’une quelconque position de la pluralité de positions d’affichage par un sautoir (aussi nommé ressort-sautoir). Ce sautoir presse continûment contre une denture du disque ou de l’anneau en question. Lors du passage d’une position d’affichage à une autre, le sautoir s’écarte de la denture en subissant un mouvement de rotation dans un sens opposé à la force de rappel exercée par le ressort du sautoir. Ainsi, la denture est configurée de sorte que le couple exercé sur le sautoir par son ressort soit minimal dans les positions d’affichage et que, lors de l’entraînement du disque ou de l’anneau, le sautoir passe par un pic de couple. Si on veut assurer le positionnement en cas de choc, il faut dimensionner la denture et le sautoir, en particulier la rigidité du ressort, de manière que le pic de couple susmentionné (couple maximal à vaincre pour changer l’affichage) soit relativement important. Ainsi, le dimensionnement des disques ou anneaux de calendrier, en particulier des anneaux des quantièmes, dans les mouvements horlogers est difficile à cause du compromis à trouver entre garantir la fonction de positionnement et minimiser la consommation énergétique du système lors du passage d’une position d’affichage à une autre. En effet, le ressort ne peut pas être trop flexible parce qu’il faut assurer l’immobilisation du disque ou de l’anneau, mais il ne peut pas être excessivement rigide parce qu’il engendrerait alors un couple très important à fournir par un mécanisme du mouvement horloger. Dans ce dernier cas, le mécanisme d’entrainement du disque ou de l’anneau peut être encombrant et on a une perte d’énergie importante pour la source d’énergie incorporée dans le mouvement horloger lors de l’entraînement de ce disque ou de cet anneau. Résumé de l’invention [0003] La présente invention concerne un mouvement horloger comprenant un élément mobile, susceptible d’être entraîné selon un axe de déplacement et d’être immobilisé momentanément dans une quelconque position stable parmi N positions stables discrètes, et un dispositif de positionnement de cet élément mobile dans chacune de ces N positions stables, N étant un nombre supérieur à un (N > 1). Il est prévu de fournir un dispositif de positionnement efficace, à savoir qui assure le positionnement dans les positions stables, et qui consomme relativement peu d’énergie pour passer d’une position stable à une position stable suivante.BACKGROUND [0002] Conventionally, the disks or rings used for displaying calendar data (calendar, day of the week, month, etc.) are maintained in any one of the plurality of positions. display positions by a jumper (also called spring-jumper). This jumper continuously press against a toothing of the disc or the ring in question. When passing from one display position to another, the jumper deviates from the toothing by being rotated in a direction opposite to the restoring force exerted by the spring of the jumper. Thus, the toothing is configured so that the torque exerted on the jumper by its spring is minimal in the display positions and that when driving the disc or the ring, the jumper passes through a peak torque . If one wants to ensure the positioning in case of impact, it is necessary to size the teeth and the jumper, in particular the rigidity of the spring, so that the torque peak mentioned above (maximum torque to overcome to change the display) is relatively important. Thus, the dimensioning of the disks or calendar rings, in particular date rings, in watch movements is difficult because of the compromise to be found between guaranteeing the positioning function and minimizing the energy consumption of the system during the passage of a position. from one display to another. Indeed, the spring can not be too flexible because it is necessary to ensure the immobilization of the disk or the ring, but it can not be excessively rigid because it would generate then a very important couple to provide by a mechanism of the watch movement. In the latter case, the drive mechanism of the disk or the ring can be bulky and there is a significant loss of energy for the energy source incorporated in the watch movement during the drive of this disc or this ring. SUMMARY OF THE INVENTION [0003] The present invention relates to a watch movement comprising a movable element, capable of being driven along an axis of displacement and of being immobilized momentarily in any stable position among N discrete stable positions, and a device positioning said movable element in each of these N stable positions, N being a number greater than one (N> 1). It is intended to provide an effective positioning device, namely which ensures positioning in stable positions, and which consumes relatively little energy to move from a stable position to a next stable position.
[0004] A cet effet, le dispositif de positionnement comprend une bascule, susceptible de venir en contact avec l’élément mobile, et un système magnétique formé d’un premier aimant solidaire de la bascule et agencé à la périphérie de l’élément mobile, de N deuxièmes aimants solidaires de cet élément mobile et agencés le long d’un axe de déplacement de manière à définir des périodes magnétiques correspondant respectivement aux distances entre les N positions stables discrètes, et d’un élément à haute perméabilité magnétique agencé devant une extrémité polaire du premier aimant située du côté de l’élément mobile. Le système magnétique est agencé de manière que, lorsque l’élément mobile est entraîné le long de son axe de déplacement d’une quelconque position stable à une position stable suivante, un premier couple magnétique, exercé sur la bascule portant le premier aimant par le système magnétique, présente un premier sens sur un premier tronçon et un deuxième sens, opposé au premier sens, sur un deuxième tronçon de la distance correspondante, le premier sens correspondant à un couple qui presse la bascule contre l’élément mobile alors que le deuxième sens tend à écarter la bascule de cet élément mobile. Finalement, le système magnétique est agencé de manière que, pour chacune des N positions stables discrètes, le premier couple magnétique est appliqué dans le premier sens.For this purpose, the positioning device comprises a rocker, capable of coming into contact with the movable element, and a magnetic system formed of a first magnet secured to the rocker and arranged at the periphery of the movable element. , N second magnets secured to this movable element and arranged along a displacement axis so as to define magnetic periods respectively corresponding to the distances between the N discrete stable positions, and a high magnetic permeability element arranged in front of a polar end of the first magnet located on the side of the movable element. The magnetic system is arranged such that, when the movable member is driven along its axis of movement from any stable position to a next stable position, a first magnetic torque, exerted on the rocker carrying the first magnet by the magnetic system, has a first direction on a first section and a second direction, opposite the first direction, on a second section of the corresponding distance, the first direction corresponding to a pair that presses the rocker against the movable element while the second direction sense tends to remove the rocker of this mobile element. Finally, the magnetic system is arranged such that, for each of the N discrete stable positions, the first magnetic torque is applied in the first direction.
[0005] Selon un mode de réalisation principal, le premier aimant et les deuxièmes aimants sont agencés obliquement relativement à l’axe de déplacement de l’élément mobile. La polarité du premier aimant est sensiblement opposée à celles des deuxièmes aimants lorsqu’ils se présentent successivement en regard du premier aimant. De préférence, les axes magnétiques respectifs du premier aimant et des deuxièmes aimants présentent chacun sensiblement un même angle avec l’axe de déplacement.According to a main embodiment, the first magnet and the second magnets are arranged obliquely relative to the axis of movement of the movable member. The polarity of the first magnet is substantially opposite to that of the second magnets when they are successively opposite the first magnet. Preferably, the respective magnetic axes of the first magnet and the second magnets each have substantially the same angle with the axis of displacement.
Brève description des figures [0006] L’invention sera décrite ci-après de manière plus détaillée à l’aide des dessins annexés, donnés à titre d’exemples nullement limitatifs, dans lesquels:BRIEF DESCRIPTION OF THE DRAWINGS [0006] The invention will be described below in more detail with the aid of the accompanying drawings, given as non-limiting examples, in which:
La fig. 1 montre schématiquement un système magnétique dont le fonctionnement particulier est utilisé avec profit dans l’invention; la fig. 2 représente un graphe de la force magnétique subie par un aimant mobile du système magnétique de la fig. 1 en fonction de sa distance d’éloignement relativement à un élément à haute perméabilité magnétique formant une partie du système magnétique; les fig. 3A à 3D montrent un premier mode de réalisation d’un dispositif de positionnement d’un élément mobile selon l’invention et une séquence d’entraînement de cet élément mobile d’une position stable à une position stable suivante; les fig. 4A et 4B montrent un deuxième mode de réalisation d’un dispositif de positionnement d’un élément mobile selon l’invention et respectivement deux états de ce dispositif de positionnement; les fig. 5A à 5C montrent un troisième mode de réalisation d’un dispositif de positionnement d’un élément mobile selon l’invention et respectivement trois états successifs du dispositif de positionnement lors d’un entraînement de l’anneau des quantièmes; la fig. 6 donne un graphe d’un premier couple magnétique de positionnement exercé sur la bascule du système de positionnement en fonction de l’angle de rotation de l’anneau que ce système positionne; etFig. 1 schematically shows a magnetic system whose particular operation is used with advantage in the invention; fig. 2 represents a graph of the magnetic force experienced by a moving magnet of the magnetic system of FIG. 1 as a function of its distance away from a high magnetic permeability element forming part of the magnetic system; figs. 3A to 3D show a first embodiment of a device for positioning a mobile element according to the invention and a drive sequence of this movable element from a stable position to a next stable position; figs. 4A and 4B show a second embodiment of a device for positioning a mobile element according to the invention and respectively two states of this positioning device; figs. 5A to 5C show a third embodiment of a device for positioning a movable element according to the invention and respectively three successive states of the positioning device during a drive of the date ring; fig. 6 gives a graph of a first magnetic positioning torque exerted on the latch of the positioning system as a function of the rotation angle of the ring that this system positions; and
La fig. 7 donne un graphe d’un deuxième couple magnétique de positionnement exercé directement sur l’anneau, via les aimants qu’il porte, en fonction de l’angle de rotation de cet anneau.Fig. 7 gives a graph of a second magnetic positioning torque exerted directly on the ring, via the magnets it carries, depending on the rotation angle of this ring.
Description détaillée de l’invention [0007] On commencera par décrire à l’aide des fig. 1 et 2 un système magnétique dont tire ingénieusement profit la présente invention pour réaliser un dispositif de positionnement d’un élément mobile dans une pluralité de positions stables discrètes.DETAILED DESCRIPTION OF THE INVENTION [0007] The following will first be described with the aid of FIGS. 1 and 2 a magnetic system which draws advantageously the present invention to provide a device for positioning a movable member in a plurality of discrete stable positions.
[0008] Le système magnétique 2 comprend un premier aimant fixe 4, un élément à haute perméabilité magnétique 6 et un deuxième aimant 8 qui est mobile, selon un axe de déplacement confondu ici à l’axe d’alignement 10 de ces trois éléments magnétiques, relativement à l’ensemble formé par le premier aimant 4 et l’élément 6. L’élément 6 est agencé entre le premier aimant et le deuxième aimant, proche du premier aimant et dans une position déterminée relativement à celui-ci. Dans une variante particulière, la distance entre l’élément 6 et l’aimant 4 est inférieure ou sensiblement égale à un dixième de la longueur de cet aimant selon son axe d’aimantation. L’élément 6 est constitué par exemples d’un acier au carbone, de carbure tungstène, de nickel, de FeSi ou FeNi, ou d’autres alliages avec du cobalt comme le Vacozet® (CoFeNi) ou le Vacoflux® (CoFe). Dans une variante avantageuse, cet élément à haute perméabilité magnétique est constitué d’un verre métallique à base de fer ou cobalt. L’élément 6 est caractérisé par un champ de saturation Bs et une perméabilité u.. Les aimants 4 et 8 sont par exemples en ferrite, en FeCo ou PtCo, en terres rares comme NdFeB ou SmCo. Ces aimants sont caractérisés par leur champ rémanent Br1 et Br2.The magnetic system 2 comprises a first fixed magnet 4, a high magnetic permeability element 6 and a second magnet 8 which is movable, along an axis of displacement here confused with the alignment axis 10 of these three magnetic elements. , relative to the assembly formed by the first magnet 4 and the element 6. The element 6 is arranged between the first magnet and the second magnet, close to the first magnet and in a specific position relative thereto. In a particular variant, the distance between the element 6 and the magnet 4 is less than or substantially equal to one-tenth of the length of this magnet along its axis of magnetization. The element 6 consists for example of a carbon steel, tungsten carbide, nickel, FeSi or FeNi, or other alloys with cobalt such as Vacozet® (CoFeNi) or Vacoflux® (CoFe). In an advantageous variant, this element with high magnetic permeability consists of a metal glass based on iron or cobalt. The element 6 is characterized by a saturation field Bs and a permeability u .. The magnets 4 and 8 are for example ferrite, FeCo or PtCo, in rare earths such as NdFeB or SmCo. These magnets are characterized by their remanent field Br1 and Br2.
[0009] L’élément à haute perméabilité magnétique 6 présente un axe central qui est de préférence sensiblement confondu avec l’axe d’aimantation du premier aimant 4 et également avec l’axe d’aimantation du deuxième aimant 8, cet axe central étant ici confondu avec l’axe d’alignement 10. Les sens d’aimantation respectifs des aimants 4 et 8 sont opposés. Ces premier et deuxième aimants ont donc des polarités opposées et ils sont susceptibles de subir entre eux un mouvement relatif sur une certaine distance relative. La distance D entre l’élément 6 et l’aimant mobile 8 indique l’éloignement de cet aimant mobile relativement à l’ensemble formé des deux autres éléments du système magnétique. On notera que l’axe 10 est prévu ici linéaire, mais ceci est une variante non limitative. En effet, l’axe de déplacement peut aussi être courbe, comme dans les réalisations qui seront décrits par la suite. Dans ce dernier cas, l’axe central de l’élément 6 est de préférence approximativement tangent à l’axe de déplacement courbe de l’aimant mobile et ainsi le comportement d’un tel système magnétique est, en première approximation, semblable à celui du système magnétique décrit ici. Ceci est d’autant plus vrai que le rayon de courbure est grand relativement à la distance maximale possible entre l’élément 6 et l’aimant mobile 8. Dans une variante préférée, comme représentée à la fig. 1, l’élément 6 présente des dimensions dans un plan orthogonal à l’axe central 10 qui sont supérieures à celles du premier aimant 4 et à celles du deuxième aimant 8 en projection dans ce plan orthogonal. On notera que, dans le cas où le deuxième aimant mobile vient buter en fin de course contre l’élément à haute perméabilité magnétique, ce deuxième aimant comprend avantageusement une surface durcie ou une fine couche en matériau dur à sa surface.The high magnetic permeability element 6 has a central axis which is preferably substantially coincident with the magnetization axis of the first magnet 4 and also with the magnetization axis of the second magnet 8, this central axis being here coincides with the alignment axis 10. The respective magnetization directions of the magnets 4 and 8 are opposite. These first and second magnets therefore have opposite polarities and they are likely to undergo relative movement between them over a certain relative distance. The distance D between the element 6 and the movable magnet 8 indicates the distance of this movable magnet relative to the assembly formed by the two other elements of the magnetic system. Note that the axis 10 is provided here linear, but this is a non-limiting variant. Indeed, the axis of displacement can also be curved, as in the embodiments that will be described later. In the latter case, the central axis of the element 6 is preferably approximately tangent to the curved displacement axis of the moving magnet and thus the behavior of such a magnetic system is, in a first approximation, similar to that of the magnetic system described here. This is all the more true that the radius of curvature is large relative to the maximum possible distance between the element 6 and the movable magnet 8. In a preferred variant, as shown in FIG. 1, the element 6 has dimensions in a plane orthogonal to the central axis 10 which are greater than those of the first magnet 4 and those of the second magnet 8 in projection in this orthogonal plane. Note that, in the case where the second movable magnet abuts end of stroke against the high magnetic permeability element, the second magnet advantageously comprises a cured surface or a thin layer of hard material on its surface.
[0010] Les deux aimants 4 et 8 sont agencés en répulsion magnétique de sorte que, en l’absence de l’élément à haute perméabilité magnétique 6, une force de répulsion magnétique tend à éloigner ces deux aimants l’un de l’autre. Cependant, de manière surprenante, l’agencement entre ces deux aimants de l’élément 6 inverse le sens de la force magnétique exercée sur l’aimant mobile lorsque la distance entre cet aimant mobile et l’élément 6 est suffisamment petite, de sorte que l’aimant mobile subit alors une force d’attraction magnétique. La courbe 12 de la fig. 2 représente la force magnétique exercée sur l’aimant mobile 8 par le système magnétique 2 en fonction de la distance D entre l’aimant mobile et l’élément à haute perméabilité magnétique. On remarque que l’aimant mobile subit, sur une première plage D1 de la distance D, globalement une force d’attraction magnétique qui tend à maintenir l’aimant mobile contre l’élément 6 ou à le ramener vers celui-ci en cas d’éloignement, cette force d’attraction globale résultant de la présence de l’élément à haute perméabilité magnétique (notamment ferromagnétique) entre les deux aimants, ce qui permet une inversion de la force magnétique entre deux aimants agencés en répulsion magnétique, alors que cet aimant mobile subit, sur une deuxième plage D2 de la distance D, globalement une force de répulsion magnétique. Cette deuxième plage correspond à des distances entre l’élément 6 et l’aimant 8 qui sont supérieures aux distances correspondant à la première plage de la distance D. La deuxième plage est pratiquement limitée à une distance maximale Dmax qui est définie généralement par une butée limitant l’éloignement de l’aimant mobile.The two magnets 4 and 8 are arranged in magnetic repulsion so that, in the absence of the element with high magnetic permeability 6, a magnetic repulsion force tends to move these two magnets away from each other . Surprisingly, however, the arrangement between these two magnets of the element 6 reverses the direction of the magnetic force exerted on the moving magnet when the distance between this movable magnet and the element 6 is sufficiently small, so that the moving magnet then undergoes a magnetic attraction force. Curve 12 of FIG. 2 represents the magnetic force exerted on the moving magnet 8 by the magnetic system 2 as a function of the distance D between the movable magnet and the element with high magnetic permeability. Note that the moving magnet undergoes, on a first range D1 of the distance D, generally a magnetic attraction force which tends to keep the movable magnet against the element 6 or to bring it back to it in case of distance, this global force of attraction resulting from the presence of the element with high magnetic permeability (in particular ferromagnetic) between the two magnets, which allows a reversal of the magnetic force between two magnets arranged in magnetic repulsion, whereas this mobile magnet undergoes, on a second range D2 of the distance D, globally a magnetic repulsion force. This second range corresponds to distances between the element 6 and the magnet 8 which are greater than the distances corresponding to the first range of the distance D. The second range is practically limited to a maximum distance Dmax which is generally defined by a stop limiting the distance of the moving magnet.
[0011] La force magnétique exercée sur l’aimant mobile est une fonction continue de la distance D et elle a donc une valeur nulle à la distance Dinv pour laquelle il y a inversion de cette force magnétique (fig. 2). Ceci est un fonctionnement remarquable du système magnétique 2. La distance d’inversion Dinv est déterminée par la géométrie des trois pièces magnétiques formant le système magnétique et par leurs propriétés magnétiques. Cette distance d’inversion peut donc être sélectionnée, dans une certaine mesure, par les paramètres physiques des trois éléments magnétiques du système magnétique 2 et par la distance séparant l’aimant fixe de l’élément ferromagnétique 6. Il en va de même pour l’évolution de la pente de la courbe 12, la variation de cette pente et en particulier l’intensité de la force d’attraction lorsque l’aimant mobile se rapproche de l’élément ferromagnétique pouvant ainsi être ajustées.The magnetic force exerted on the moving magnet is a continuous function of the distance D and therefore has a zero value at the distance Dinv for which there is inversion of this magnetic force (Figure 2). This is a remarkable operation of the magnetic system 2. The inversion distance Dinv is determined by the geometry of the three magnetic parts forming the magnetic system and by their magnetic properties. This inversion distance can therefore be selected, to a certain extent, by the physical parameters of the three magnetic elements of the magnetic system 2 and by the distance separating the fixed magnet from the ferromagnetic element 6. The same applies to the evolution of the slope of the curve 12, the variation of this slope and in particular the intensity of the attraction force when the moving magnet approaches the ferromagnetic element can thus be adjusted.
[0012] En référence aux fig. 3A à 3D, on décrira ci-après un premier mode de réalisation de l’invention, en particulier le fonctionnement du dispositif de positionnement d’un élément mobile agencé dans un mouvement horloger. A noter que pour des raisons de clarté des dessins, seules une partie de l’élément mobile et le dispositif de positionnement (partiellement pour la pluralité de deuxièmes aimants portés par l’élément mobile) ont été représentés sur les figures.[0012] Referring to FIGS. 3A to 3D, will be described hereinafter a first embodiment of the invention, in particular the operation of the positioning device of a movable element arranged in a watch movement. Note that for the sake of clarity of the drawings, only a portion of the movable member and the positioning device (partially for the plurality of second magnets carried by the movable member) have been shown in the figures.
[0013] Le mouvement horloger est muni d’un élément mobile 22 susceptible d’être entraîné selon un axe de déplacement 24 et d’être immobilisé momentanément dans une quelconque position stable Pn parmi une pluralité de positions stables discrètes, dont le nombre N est supérieur à un (N > 1), et d’un dispositif de positionnement 20 de cet élément mobile dans chacune de ces N positions stables. Le dispositif de positionnement comprend une bascule 26, susceptible de venir en contact avec l’élément mobile, et il comprend en outre un système magnétique 28 formé par: - un premier aimant 30 solidaire de la bascule et agencé à la périphérie de l’élément mobile, - N deuxièmes aimants 32 solidaires de l’élément mobile et agencés le long de l’axe de déplacement 24 de manière à définir des périodes magnétiques Pm correspondant respectivement aux distances entre les N positions stables discrètes Pn, n = 1 à N (sur les figures, les positions stables discrètes sont notées Pn-i, Pn, Pn + i, n étant un nombre naturel quelconque entre «2» et «N - 1»), et - un élément à haute perméabilité magnétique 34 agencé devant une extrémité polaire 36 du premier aimant située du côté de l’élément mobile 22.The watch movement is provided with a movable element 22 capable of being driven along an axis of displacement 24 and of being immobilized momentarily in any stable position Pn among a plurality of discrete stable positions, the number N of which is greater than one (N> 1), and a positioning device 20 of this movable element in each of these N stable positions. The positioning device comprises a rocker 26, capable of coming into contact with the movable element, and it further comprises a magnetic system 28 formed by: a first magnet 30 integral with the rocker and arranged at the periphery of the element mobile, - N second magnets 32 integral with the movable element and arranged along the axis of displacement 24 so as to define magnetic periods Pm respectively corresponding to the distances between the N discrete stable positions Pn, n = 1 to N ( in the figures, the discrete stable positions are denoted Pn-i, Pn, Pn + 1, n being any natural number between "2" and "N-1"), and - a high magnetic permeability element 34 arranged in front of a polar end 36 of the first magnet located on the side of the movable element 22.
[0014] Dans le premier mode de réalisation, l’élément à haute perméabilité magnétique 34 est porté par la bascule 26 et il est donc solidaire du premier aimant 30 devant lequel il est agencé. Cet élément 34 est aligné sur la direction de l’axe magnétique 31 du premier aimant 30. Il peut être collé contre la surface d’extrémité 36 de ce premier aimant. Cet élément est par exemple constitué d’un matériau ferromagnétique. Ensuite, le premier aimant et les deuxièmes aimants 32 sont agencés obliquement relativement à l’axe de déplacement 24. Les axes magnétiques respectifs 31 et 33 du premier aimant et des deuxièmes aimants sont parallèles à un axe oblique 38. Ils présentent ainsi chacun sensiblement un même angle avec l’axe de déplacement. Le premier aimant présente une polarité opposée à celle de chacun des deuxièmes aimants qui se présente en regard de lui dans une position stable discrète différente. Dans le cas d’un axe de déplacement linéaire, cette dernière caractéristique signifie de manière générale que, en projection sur l’axe oblique 38, la polarité du premier aimant est inversée relativement aux polarités des deuxièmes aimants.In the first embodiment, the high magnetic permeability element 34 is carried by the flip-flop 26 and is therefore integral with the first magnet 30 in front of which it is arranged. This element 34 is aligned with the direction of the magnetic axis 31 of the first magnet 30. It can be glued against the end surface 36 of this first magnet. This element is for example made of a ferromagnetic material. Then, the first magnet and the second magnets 32 are arranged obliquely relative to the axis of displacement 24. The respective magnetic axes 31 and 33 of the first magnet and the second magnets are parallel to an oblique axis 38. They thus each have substantially one same angle with the axis of displacement. The first magnet has a polarity opposite to that of each of the second magnets which presents itself opposite it in a different discrete stable position. In the case of a linear displacement axis, the latter characteristic generally means that, in projection on the oblique axis 38, the polarity of the first magnet is reversed relative to the polarities of the second magnets.
[0015] Pour limiter la rotation de l’élément magnétique 34, lequel forme ici une partie de contact de la bascule 26 avec les aimants 32 de l’élément mobile 20, le mouvement horloger comprend une première butée fixe 40. De plus, il comprend une deuxième butée fixe 42 qui limite la rotation de la partie de contact de la bascule, plus globalement de l’ensemble magnétique formé du premier aimant et de l’élément à haute perméabilité magnétique, dans une direction d’éloignement de celle-ci relativement à l’élément mobile.To limit the rotation of the magnetic element 34, which here forms a contact portion of the rocker 26 with the magnets 32 of the movable member 20, the watch movement comprises a first fixed stop 40. In addition, it comprises a second fixed stop 42 which limits the rotation of the contact part of the rocker, more generally of the magnetic assembly formed of the first magnet and the high magnetic permeability element, in a direction away from it relative to the movable element.
[0016] Le système magnétique 28 tire profit du phénomène physique décrit précédemment en relation avec les fig. 1 et 2. Son fonctionnement est montré par la séquence des fig. 3A à 3D. A la fig. 3A, l’élément mobile 22 est dans une position stable Ρη_Ί. Chaque position stable est définie notamment par les aimants 32 portés fixement par l’élément mobile, en particulier par l’agencement périodique de ces aimants 32 qui définissent la période magnétique Pm, laquelle correspond à la distance de déplacement de l’élément mobile pour passer d’une position stable quelconque à une position stable suivante. Dans un espace géométrique lié à l’élément mobile, on peut définir la succession des positions stables par une graduation, le long de l’axe de déplacement, qui se déplace avec l’élément mobile, cette graduation étant formée d’une suite de repères Pn-i, Pn, Pn +1, Qui viennent successivement s’aligner sur un axe de référence AREF, lequel est fixe relativement au mouvement horloger, lorsque l’élément mobile est entraîné par un mécanisme prévu à cet effet successivement dans la pluralité de positions stables discrètes. Cet axe de référence AREE est perpendiculaire à l’axe de déplacement (ici un axe linéaire 24) et il passe par le centre de la première goupille 40 (cette dernière définissant la position fermée de la bascule). Dans la variante représentée, la deuxième goupille 42 est également alignée avec l’axe de référence.The magnetic system 28 takes advantage of the physical phenomenon described above in relation to FIGS. 1 and 2. Its operation is shown by the sequence of FIGS. 3A to 3D. In fig. 3A, the movable element 22 is in a stable position Ρη_Ί. Each stable position is defined in particular by the magnets 32 fixedly supported by the movable element, in particular by the periodic arrangement of these magnets 32 which define the magnetic period Pm, which corresponds to the moving distance of the movable element to pass from any stable position to a next stable position. In a geometrical space connected to the movable element, it is possible to define the succession of stable positions by a graduation, along the axis of displacement, which moves with the movable element, this graduation being formed of a sequence of markers Pn-i, Pn, Pn +1, Which successively align with a reference axis AREF, which is fixed relative to the watch movement, when the movable element is driven by a mechanism provided for this purpose successively in the plurality discrete stable positions. This reference axis AREE is perpendicular to the axis of displacement (here a linear axis 24) and it passes through the center of the first pin 40 (the latter defining the closed position of the rocker). In the variant shown, the second pin 42 is also aligned with the reference axis.
[0017] Par «position fermée» de la bascule, on comprend une position de la bascule en appui contre la goupille 40. Cette position fermée résulte d’un couple magnétique appliqué à la bascule en direction de l’élément mobile 22, ce qui a pour effet de plaquer la bascule contre la goupille 40. On remarquera que dans chaque position stable, la force magnétique globale, exercée par le système magnétique 28 sur l’ensemble magnétique formé de l’aimant 30 et de l’élément magnétique 34, est une force d’attraction magnétique, l’élément magnétique 34 étant alors à très faible distance d’un deuxième aimant 32 qui présente pourtant une polarité opposée à celle du premier aimant 30. Dans la variante représentée, il est même prévu que l’élément magnétique 34 soit en contact avec l’aimant 32 qui est situé en face selon la direction oblique, cet aimant étant en appui contre l’élément magnétique car il est pressé contre la surface externe de cet élément magnétique par une force magnétique de réaction qui présente une même intensité et une même direction que la force d’attraction magnétique qui s’exerce sur l’ensemble magnétique porté par la bascule, mais de sens contraire. En résumé, chaque position stable de l’élément mobile est donnée par une configuration dans laquelle la bascule est dans sa position fermée et un deuxième aimant différent en appui contre l’élément magnétique 34. On remarquera qu’un bras de la bascule passe entre les deux goupilles, de sorte que le mouvement de rotation autour de son axe de rotation 27 est limité dans les deux sens respectivement par ces deux goupilles. La position ouverte de la bascule correspond à une configuration où cette bascule est en appui contre la deuxième goupille 42. Elle sera décrite plus en détails par la suite.By "closed position" of the rocker, it comprises a position of the rocker bearing against the pin 40. This closed position results from a magnetic torque applied to the rocker towards the movable member 22, which has the effect of pressing the rocker against the pin 40. It will be noted that in each stable position, the overall magnetic force exerted by the magnetic system 28 on the magnet assembly formed by the magnet 30 and the magnetic element 34, is a magnetic attraction force, the magnetic element 34 then being at a very short distance from a second magnet 32 which nevertheless has a polarity opposite to that of the first magnet 30. In the variant shown, it is even provided that the magnetic element 34 is in contact with the magnet 32 which is located opposite in the oblique direction, this magnet being in abutment against the magnetic element because it is pressed against the outer surface of this magnetic element by a magnetic reaction force which has the same intensity and the same direction as the magnetic attraction force which is exerted on the magnetic assembly carried by the rocker, but in the opposite direction. In summary, each stable position of the movable element is given by a configuration in which the rocker is in its closed position and a second different magnet bearing against the magnetic element 34. It will be noted that an arm of the rocker passes between the two pins, so that the rotational movement about its axis of rotation 27 is limited in both directions respectively by these two pins. The open position of the rocker corresponds to a configuration where the rocker bears against the second pin 42. It will be described in more detail later.
[0018] En partant de la position stable P„-i de lafig. 3A, les fig. 3B à 3D montrent, pour le premier mode de réalisation, le fonctionnement du dispositif magnétique de positionnement de l’élément mobile 22 lorsque ce dernier est entraîné par un mécanisme d’entraînement (connu de l’homme du métier) d’une position stable quelconque (position Pn-i) à une position stable suivante (position Pn). La fig. 3B montre un état du système magnétique 28 pour lequel la force magnétique qui s’exerce sur la bascule a diminué et son orientation a changé relativement à la force magnétique de positionnement de la fig. 3A. Sur cette fig. 3B, on voit que le couple magnétique qui s’exerce sur la bascule vient de changer de sens, passant d’un sens horaire à un sens antihoraire. Ainsi, la bascule n’est plus en appui contre la goupille 40 et elle commence à subir une rotation d’ouverture (rotation autour de l’axe 27 dans le sens antihoraire). L’ouverture est effectuée rapidement, c’est-à-dire sur une courte distance de déplacement de l’élément mobile et la bascule passe alors à sa position ouverte représentée à la fig. 3C. Dans la configuration de cette fig. 3C, on voit que la force magnétique s’exerçant sur l’ensemble magnétique porté par la bascule est une force magnétique de répulsion. On observe donc que la force magnétique qui s’exerce sur cet ensemble magnétique est un vecteur qui tourne en fonction de la position de l’élément mobile entre deux positions stables. On passe ainsi d’une force magnétique en attraction, pour les positions stables discrètes dans lesquelles l’élément mobile est positionné grâce à cette force d’attraction magnétique, à une force magnétique en répulsion sur un tronçon intermédiaire entre les positions stables discrètes. Ce phénomène est rendu possible par la présence de l’élément magnétique 34 entre le premier aimant 30 et un deuxième aimant 32 situé en regard de l’élément magnétique, comme exposé précédemment à l’aide des fig. 1 et 2.Starting from the stable position P "-i lafig. 3A, figs. 3B to 3D show, for the first embodiment, the operation of the magnetic positioning device of the movable member 22 when the latter is driven by a drive mechanism (known to those skilled in the art) of a stable position any (position Pn-i) at a next stable position (position Pn). Fig. 3B shows a state of the magnetic system 28 for which the magnetic force exerted on the rocker has decreased and its orientation has changed relative to the magnetic positioning force of FIG. 3A. In this fig. 3B, we see that the magnetic torque exerted on the rocker has just changed direction, moving from a clockwise to a counterclockwise direction. Thus, the rocker is no longer supported against the pin 40 and it begins to undergo an opening rotation (rotation about the axis 27 in the counterclockwise direction). The opening is performed rapidly, that is to say on a short distance of movement of the movable element and the rocker then passes to its open position shown in FIG. 3C. In the configuration of this fig. 3C, it can be seen that the magnetic force exerted on the magnetic assembly carried by the rocker is a magnetic repulsion force. It is therefore observed that the magnetic force exerted on this magnetic assembly is a vector which rotates as a function of the position of the movable element between two stable positions. A magnetic force is thus obtained in attraction, for the discrete stable positions in which the mobile element is positioned by virtue of this magnetic attraction force, with a magnetic force in repulsion on an intermediate section between the discrete stable positions. This phenomenon is made possible by the presence of the magnetic element 34 between the first magnet 30 and a second magnet 32 located opposite the magnetic element, as explained previously with the aid of FIGS. 1 and 2.
[0019] L’agencement oblique des deuxièmes aimants 32 et du premier aimant 30, relativement à la direction de déplacement de l’élément mobile 22, favorise ce phénomène puisque l’entraînement de l’élément mobile depuis une position stable a pour conséquence d’augmenter la distance séparant le deuxième aimant, en regard de l’ensemble magnétique porté par la bascule dans cette position stable, de cet ensemble magnétique. Ainsi, en dimensionnant de manière appropriée les divers éléments du système magnétique et la rotation possible pour la bascule, on peut engendrer une inversion de la force magnétique globale qui s’exerce entre l’ensemble magnétique porté par la bascule et les aimants portés par l’élément mobile, ce qui présente un avantage important au niveau de l’énergie mécanique à fournir pour entraîner l’élément mobile d’une position stable à une position stable suivante.The oblique arrangement of the second magnets 32 and the first magnet 30, relative to the direction of movement of the movable member 22, promotes this phenomenon since the driving of the movable member from a stable position has the consequence of increase the distance separating the second magnet, opposite the magnetic assembly carried by the rocker in this stable position, of this magnetic assembly. Thus, by appropriately sizing the various elements of the magnetic system and the possible rotation for the rocker, it is possible to generate an inversion of the overall magnetic force exerted between the magnetic assembly carried by the rocker and the magnets carried by the magnet. movable element, which has a significant advantage in terms of the mechanical energy to be provided to drive the movable element from a stable position to a next stable position.
[0020] Le dispositif magnétique de positionnement est remarquable par le fait que non seulement il assure le positionnement de l’élément mobile dans chacune de ses positions stables, mais en plus il ouvre la bascule lors de l’entraînement et ainsi enlève momentanément toute pression de cette bascule contre l’élément mobile, ce dernier étant alors libre et peut être déplacé sur un certain tronçon sans contrainte mécanique de la part de la bascule. De plus, l’ouverture automatique de la bascule permet à l’ensemble magnétique de venir ensuite en regard d’un deuxième aimant adjacent pour passer à une position stable suivante, comme représenté à la fig. 3D. Cette fig. 3D représente un état, lors de l’entrainement de l’élément mobile, pour lequel la force magnétique globale qui s’exerce sur la bascule a diminué à nouveau et son orientation engendre à nouveau un couple magnétique sur la bascule qui la ramène vers sa position fermée. Suite à l’état représenté à la fig. 3D, le système magnétique revient rapidement à un état correspondant à celui de la fig. 3A et pour lequel l’élément mobile se trouve à nouveau dans une position stable avec un deuxième aimant en contact avec l’élément magnétique et la bascule en appui contre la goupille 40.The magnetic positioning device is remarkable in that it not only ensures the positioning of the movable element in each of its stable positions, but in addition it opens the latch during training and thus removes momentarily any pressure this flip-flop against the movable element, the latter then being free and can be moved on a certain section without mechanical stress from the flip-flop. In addition, the automatic opening of the rocker allows the magnetic assembly to then come opposite a second adjacent magnet to move to a next stable position, as shown in FIG. 3D. This fig. 3D represents a state, during the training of the mobile element, for which the global magnetic force exerted on the rocker has decreased again and its orientation generates again a magnetic couple on the rocker which brings back to its closed position. Following the state shown in FIG. 3D, the magnetic system quickly returns to a state corresponding to that of FIG. 3A and for which the mobile element is again in a stable position with a second magnet in contact with the magnetic element and the rocker bearing against the pin 40.
[0021] En résumé, le dispositif de positionnement selon l’invention est agencé de manière que, lorsque l’élément mobile est entraîné le long de son axe de déplacement d’une quelconque position stable à une position stable suivante, un premier couple magnétique exercé sur la bascule portant le premier aimant présente un premier sens sur un premier tronçon et un deuxième sens, opposé au premier sens, sur un deuxième tronçon de la distance correspondante, le premier sens définissant un couple de rappel en direction de l’élément mobile pour une partie de contact de la bascule. Ensuite, le système magnétique est agencé de manière que, pour chacune des N positions stables discrètes, le premier couple magnétique susmentionné est appliqué dans ledit premier sens. Ces caractéristiques seront encore présentées par la suite dans le cadre de l’exposé du troisième mode de réalisation, notamment en référence aux fig. 6 et 7.In summary, the positioning device according to the invention is arranged so that, when the movable member is driven along its axis of movement from any stable position to a next stable position, a first magnetic torque exerted on the rocker carrying the first magnet has a first direction on a first section and a second direction, opposite to the first direction, on a second section of the corresponding distance, the first direction defining a return torque towards the moving element for a contact part of the rocker. Then, the magnetic system is arranged such that, for each of the N discrete stable positions, the first aforementioned magnetic torque is applied in said first direction. These characteristics will be further presented later in the context of the presentation of the third embodiment, in particular with reference to FIGS. 6 and 7.
[0022] En référence aux fig. 4A et 4B, on décrira un deuxième mode de réalisation de l’invention. Les éléments déjà décrits précédemment et le fonctionnement du système magnétique, qui reste essentiellement semblable à celui du premier mode de réalisation, ne seront pas décrits à nouveau en détails. Le mouvement horloger du deuxième mode de réalisation se distingue du premier mode de réalisation premièrement par le fait que l’élément mobile comprend, en lieu et place de la première goupille, une denture 48 contre laquelle vient s’appuyer une partie de contact 46 de la bascule 26A au moins lorsque le couple magnétique est appliqué dans le sens horaire à cette bascule, et deuxièmement par le fait que la bascule 26A est associée à un ressort 52 qui exerce, au moins sur un tronçon intermédiaire entre deux postions stables de l’élément mobile 22A, une force élastique sur la bascule de manière à engendrer un couple mécanique de rappel qui pousse la partie de contact 46 de cette bascule en direction de l’élément mobile.With reference to FIGS. 4A and 4B, a second embodiment of the invention will be described. The elements already described above and the operation of the magnetic system, which remains essentially similar to that of the first embodiment, will not be described again in detail. The watch movement of the second embodiment is distinguished from the first embodiment firstly by the fact that the movable element comprises, in place of the first pin, a toothing 48 against which a contact portion 46 of the flip-flop 26A at least when the magnetic torque is applied clockwise to this flip-flop, and secondly by the fact that the flip-flop 26A is associated with a spring 52 which exerts, at least on an intermediate section between two stable positions of the mobile element 22A, an elastic force on the rocker so as to generate a mechanical return torque which pushes the contact portion 46 of the rocker towards the movable member.
[0023] Le dispositif de positionnement 44 est agencé de manière que la force magnétique globale 50 qui s’exerce sur l’ensemble magnétique porté par la bascule présente une orientation sensiblement perpendiculaire à la direction de déplacement de l’élément mobile lorsque la partie de contact (partie d’extrémité) de la bascule est située au fond de la denture, c’est-à-dire dans un creux entre deux dents adjacentes, comme représenté à la fig. 4A. Le couple magnétique dans cet état définit un couple de rappel en direction de l’élément mobile, la force magnétique globale qui s’applique à la bascule étant alors une force d’attraction magnétique. Ainsi, la denture et la bascule sont agencées de manière que la partie de contact 46 de la bascule est située au fond de la denture pour chacune des N positions stables discrètes de l’élément mobile.The positioning device 44 is arranged so that the overall magnetic force 50 which is exerted on the magnetic assembly carried by the rocker has an orientation substantially perpendicular to the direction of movement of the movable member when the portion of contact (end portion) of the rocker is located at the bottom of the toothing, that is to say in a hollow between two adjacent teeth, as shown in FIG. 4A. The magnetic torque in this state defines a return torque in the direction of the movable element, the overall magnetic force that applies to the rocker then being a magnetic attraction force. Thus, the toothing and the rocker are arranged so that the contact portion 46 of the rocker is located at the bottom of the toothing for each of the N discrete stable positions of the movable member.
[0024] La fig. 4B montre un état intermédiaire du dispositif de positionnement 44 lors du passage d’une position stable à une position stable suivante. La denture 48, en plus de retenir la bascule dans sa position fermée représentée à la fig. 4A pour positionner l’élément mobile, éloigne sa partie d’extrémité 46 de l’élément mobile lorsque cet élément mobile est entraîné depuis une position stable. En effet, la bascule doit se retirer pour passer par-dessus une dent de la denture, la partie de contact 46 gravissant à cet effet un flanc de la dent adjacente. Ainsi, la distance entre l’ensemble magnétique porté par la bascule et l’aimant 32, assurant le positionnement dans la position stable, augmente plus rapidement que dans le cas du premier mode de réalisation, ce qui a pour conséquence que le vecteur force magnétique tourne rapidement et la distance sur laquelle un couple magnétique est appliqué à la bascule dans le sens horaire (premier sens) diminue et devient relativement court. Par contre, la force élastique exercée par le ressort 52 augmente lors du passage de la partie de contact par-dessus la dent. De préférence, il est prévu que la force élastique du ressort soit relativement faible, voire quasi nulle dans les positions stables. Par contre, la rigidité du ressort est choisie de sorte que la bascule ne s’éloigne que faiblement de la denture lorsque le couple magnétique appliqué à la bascule change de sens (deuxième sens) ou de sorte que la bascule reste continûment en contact avec la denture lors d’un passage d’une position stable à une position stable suivante. On peut optimiser le système magnétique, le profil de la denture et la rigidité du ressort de manière à minimiser les contraintes mécaniques sur la partie de contact de la bascule, en faisant de sorte que le couple magnétique exercé dans le sens antihoraire (deuxième sens) soit sensiblement compensé par le couple mécanique du ressort qui s’exerce dans le sens contraire, à savoir dans le sens horaire. La denture présente aussi l’avantage d’assurer un passage correct et sans risque de blocage d’une position stable à l’autre. En effet, la partie de contact ne peut pas être bloquée par un aimant 32, car les aimants 32 sont agencés de manière à ne pas faire saillie hors du profil de la denture.FIG. 4B shows an intermediate state of the positioning device 44 during the transition from a stable position to a next stable position. The toothing 48, in addition to holding the rocker in its closed position shown in FIG. 4A to position the movable member, moves its end portion 46 away from the movable member when the movable member is driven from a stable position. Indeed, the rocker must withdraw to pass over a tooth of the toothing, the contact portion 46 climbing for this purpose a flank of the adjacent tooth. Thus, the distance between the magnetic assembly carried by the rocker and the magnet 32, ensuring the positioning in the stable position, increases more rapidly than in the case of the first embodiment, which has the consequence that the magnetic force vector turns quickly and the distance over which a magnetic torque is applied to the rocker clockwise (first direction) decreases and becomes relatively short. By against the elastic force exerted by the spring 52 increases during the passage of the contact portion over the tooth. Preferably, it is expected that the elastic force of the spring is relatively low, or almost zero in the stable positions. On the other hand, the rigidity of the spring is chosen so that the rocker moves only slightly away from the toothing when the magnetic torque applied to the rocker changes direction (second direction) or so that the rocker remains continuously in contact with the teeth during a transition from a stable position to a next stable position. The magnetic system, the tooth profile and the spring stiffness can be optimized so as to minimize the mechanical stresses on the contact part of the rocker, so that the magnetic torque exerted counterclockwise (second direction) is substantially compensated by the mechanical torque of the spring which is exercised in the opposite direction, namely in the clockwise direction. The toothing also has the advantage of ensuring a correct passage and without risk of blocking from one stable position to another. Indeed, the contact portion can not be blocked by a magnet 32, because the magnets 32 are arranged so as not to project out of the profile of the toothing.
[0025] A l’aide des fig. 5A à 5C et des fig. 6 et 7, on décrira ci-après un troisième mode de réalisation de l’invention. Les fig. 5A à 5C concernent une première variante similaire au deuxième mode de revendication. On notera qu’une deuxième variante sans ressort et sans denture est également prévue, laquelle est ainsi similaire au premier mode de réalisation. Ce troisième mode de réalisation se distingue principalement des deux modes de réalisation précédents en ce que l’élément mobile présente une forme annulaire, cet élément mobile étant agencé pour tourner sur lui-même de sorte que l’axe de déplacement est un axe circulaire. L’élément mobile est ici un anneau des quantièmes. De manière plus générale, l’élément mobile forme un support d’affichage d’une donnée de calendrier. Les références déjà décrites ne seront pas à nouveau décrites ici et les références correspondant à des éléments déjà décrits ne seront pas décrites ici en détails. On se référera aux figures précédentes.With the aid of FIGS. 5A to 5C and FIGS. 6 and 7, will be described hereinafter a third embodiment of the invention. Figs. 5A to 5C relate to a first variant similar to the second mode of claim. Note that a second variant without spring and without teeth is also provided, which is similar to the first embodiment. This third embodiment differs mainly from the two previous embodiments in that the movable element has an annular shape, this movable element being arranged to rotate on itself so that the axis of displacement is a circular axis. The moving element is here a ring of dates. More generally, the mobile element forms a display medium for a calendar data item. The references already described will not be described again here and the references corresponding to elements already described will not be described here in detail. Reference is made to the preceding figures.
[0026] La fig. 5A montre l’anneau des quantièmes 22B et le dispositif de positionnement dans un état correspondant à une position d’affichage stable de cet anneau. Le système magnétique et la denture 48B sont agencés pour que, dans cette position d’affichage, la partie de contact 46B soit insérée dans une encoche 56 de la denture 48B, et pour que la force magnétique globale qui s’exerce sur l’ensemble magnétique porté par la bascule 26B soit radiale, c’est-à-dire perpendiculaire à l’axe de déplacement circulaire 24B de l’anneau. La denture présente ici un profil globalement circulaire avec une pluralité d’encoches définissant les positions d’affichage. Le premier aimant présente une polarité sensiblement opposée à celle de chacun des deuxièmes aimants qui se présente en regard de lui dans une position stable discrète différente. On remarquera que le système magnétique exerce, en réaction à la force magnétique qui s’exerce sur la bascule, une force magnétique sur l’anneau par l’intermédiaire des aimants 32 qui sont fixés à cet anneau. La force magnétique agissant sur les aimants 32 engendre un deuxième couple magnétique qui s’applique directement à l’anneau. Premièrement, il est prévu que ce deuxième couple magnétique a une valeur sensiblement nulle, correspondant à une position d’équilibre magnétique stable pour l’élément mobile, alors que le premier couple magnétique appliqué à la bascule est dans le premier sens, c’est-à-dire dans un sens qui pousse la partie de contact 46B en direction de l’anneau et en particulier de sa denture 48B. Ensuite, de préférence, l’anneau et la bascule sont agencés de manière que chacune des N positions stables discrètes de l’anneau correspond sensiblement à une position magnétique stable, comme c’est le cas à la fig. 5A.Fig. 3 5A shows the date ring 22B and the positioning device in a state corresponding to a stable display position of this ring. The magnetic system and the toothing 48B are arranged so that, in this display position, the contact portion 46B is inserted into a notch 56 of the toothing 48B, and for the overall magnetic force to be exerted on the assembly. magnetic carried by the flip-flop 26B is radial, that is to say perpendicular to the circular displacement axis 24B of the ring. The toothing here has a generally circular profile with a plurality of notches defining the display positions. The first magnet has a polarity substantially opposite to that of each of the second magnets which presents itself opposite it in a different discrete stable position. It will be noted that the magnetic system exerts, in response to the magnetic force exerted on the rocker, a magnetic force on the ring by means of the magnets 32 which are fixed to this ring. The magnetic force acting on the magnets 32 generates a second magnetic torque which applies directly to the ring. First, it is expected that this second magnetic torque has a substantially zero value, corresponding to a stable magnetic equilibrium position for the movable element, while the first magnetic torque applied to the rocker is in the first direction, it is that is to say in a direction that pushes the contact portion 46B towards the ring and in particular of its teeth 48B. Then, preferably, the ring and the rocker are arranged so that each of the N discrete stable positions of the ring substantially corresponds to a stable magnetic position, as is the case in FIG. 5A.
[0027] Lors de l’entraînement de l’anneau d’une position d’affichage à une position d’affichage suivante, le dispositif de positionnement passe par une configuration représentée à la fig. 5B, laquelle montre un état où la bascule 26B est dans une position ouverte. Le premier couple magnétique appliqué à la bascule est ici dans le sens horaire (qui équivaut dans le troisième mode de réalisation au deuxième sens) et il est prévu supérieur au couple mécanique engendré par le ressort 52. Ce couple mécanique définit un couple de rappel en direction de la denture 48B. On remarquera que ce couple de rappel est prévu de faible valeur, son rôle étant d’assurer que la bascule puisse revenir dans une position où l’ensemble magnétique qu’elle porte subit à nouveau une force d’attraction magnétique et puisse ainsi revenir à une position fermée lorsque la partie d’extrémité 46B arrive devant une nouvelle encoche 56 lors du passage à une nouvelle position d’affichage stable. Dans une première variante, la force du ressort est dimensionnée pour assurer que la partie de contact de la bascule revienne en appui contre un segment circulaire du profil de la denture. Dans une deuxième variante, aucun ressort n’est associé à la bascule.When driving the ring from a display position to a next display position, the positioning device passes through a configuration shown in FIG. 5B, which shows a state where the flip-flop 26B is in an open position. The first magnetic torque applied to the rocker is here in the clockwise direction (which is equivalent in the third embodiment in the second direction) and is greater than the mechanical torque generated by the spring 52. This mechanical torque defines a return torque in direction of the teeth 48B. It will be noted that this return torque is of low value, its role being to ensure that the latch can return to a position where the magnetic assembly that it carries undergoes again a magnetic attraction force and can thus return to a closed position when the end portion 46B arrives in front of a new notch 56 when moving to a new stable display position. In a first variant, the force of the spring is dimensioned to ensure that the contact portion of the rocker rests against a circular segment of the profile of the toothing. In a second variant, no spring is associated with the rocker.
[0028] Pour éviter un problème de rebond de la bascule lorsqu’elle tourne en sens horaire et vient en butée contre la goupille 42B, cette dernière peut avantageusement être constituée d’un matériau ferromagnétique. L’aimant 30 est alors attiré par la goupille lorsqu’il s’en approche.To avoid a rebound problem of the latch when it rotates clockwise and abuts against the pin 42B, the latter may advantageously be made of a ferromagnetic material. The magnet 30 is then attracted by the pin when it approaches.
[0029] La fig. 5C correspond à un état proche de l’inversion de la force magnétique qui s’applique à l’ensemble magnétique porté par la bascule. Le premier couple magnétique commence alors à s’exercer à nouveau dans le premier sens et à rappeler la partie d’extrémité de la bascule en direction de l’anneau. Dans la variante avec une goupille magnétique et un ressort, ce dernier permet de compenser la force d’attraction magnétique de la goupille sur l’aimant 30. Suite au passage de l’anneau par la position angulaire représentée à la fig. 5C, la bascule revient s’appuyer contre la denture 48B et finalement sa partie d’extrémité pénètre l’encoche suivante pour positionner l’anneau des quantièmes dans une position d’affichage suivante (on se retrouve alors dans une situation correspondant à la fig. 5A).Fig. 5C corresponds to a state close to the inversion of the magnetic force which applies to the magnetic assembly carried by the rocker. The first magnetic torque then begins to exercise again in the first direction and to recall the end portion of the rocker towards the ring. In the variant with a magnetic pin and a spring, the latter makes it possible to compensate for the magnetic attraction force of the pin on the magnet 30. Following the passage of the ring by the angular position shown in FIG. 5C, the rocker returns to rest against the toothing 48B and finally its end portion penetrates the next notch to position the date ring in a next display position (one finds oneself then in a situation corresponding to the fig. 5A).
[0030] Les fig. 6 et 7 concernent les couples magnétiques appliqués respectivement à la bascule et à l’anneau des quantièmes du troisième mode de réalisation, dans une variante sans denture et sans ressort pour la courbe du couple magnétique fonctionnel agissant sur la bascule. On notera que des courbes similaires sont observées pour la bascule et l’élément mobile du premier mode de réalisation. Pour les diverses courbes de couple magnétique simulées, le champ rémanent des aimants (Néodyme Fer Bore) a une valeur de 1.35 T et le champ de saturation de l’élément en matériau ferromagnétique (Vacoflux®) vaut 2.2 T.Figs. 6 and 7 relate to the magnetic torques respectively applied to the rocker and to the date ring of the third embodiment, in a variant without toothing and without spring for the curve of the functional magnetic torque acting on the rocker. Note that similar curves are observed for the flip-flop and the movable element of the first embodiment. For the various simulated magnetic torque curves, the remanent field of the magnets (Neodymium Iron Boron) has a value of 1.35 T and the saturation field of the ferromagnetic material element (Vacoflux®) is 2.2 T.
[0031] Sur le graphe de la fig. 6 ont été représentées: - une première courbe 60 donnant le couple magnétique exercé sur la bascule lorsque cette dernière est dans sa position ouverte et que l’anneau est entraîné sur une distance un peu supérieure à une période angulaire; - une deuxième courbe 62 donnant le couple magnétique exercé sur la bascule lorsque cette dernière est dans sa position fermée, pour un parcours angulaire identique à celui de la courbe 60; et - une troisième courbe 64 représentant approximativement le couple magnétique fonctionnel appliqué à la bascule sur chaque période angulaire, ce couple magnétique fonctionnel définissant le premier couple magnétique. On notera que la courbe 62 est théorique puisque la bascule ne peut pas être maintenue dans une position fermée lors d’un déplacement angulaire de l’anneau sur une période angulaire en présence de l’anneau avec ses aimants 32. La courbe 64 du couple fonctionnel est une approximation du comportement réel puisque la position de la bascule ne dépend pas seulement du premier couple magnétique mais aussi du profil de la denture 48B, du profil de la partie d’extrémité 46B de cette bascule et du couple mécanique engendré par le ressort 52 (on notera que le couple fonctionnel représenté correspond de fait à une réalisation sans ressort et sans denture). On remarque que les encoches 56 présentent un profil prévu pour positionner mécaniquement l’anneau avec un faible jeu et le maintenir correctement dans les positions d’affichage. Ainsi, dans ce cas, la courbe 64 ne rejoint la courbe 62 que dans les zones angulaires proches des positions d’affichage stables Pn. Quoiqu’il en soit, le couple magnétique fonctionnel correspond sensiblement à celui de la courbe 62 pour chacune des positions d’affichage Pn.On the graph of FIG. 6 are shown: - a first curve 60 giving the magnetic torque exerted on the rocker when the latter is in its open position and the ring is driven over a distance slightly greater than an angular period; a second curve 62 giving the magnetic torque exerted on the rocker when the latter is in its closed position, for an angular path identical to that of the curve 60; and a third curve 64 representing approximately the functional magnetic torque applied to the rocker over each angular period, this functional magnetic pair defining the first magnetic torque. Note that the curve 62 is theoretical since the latch can not be maintained in a closed position during an angular displacement of the ring over an angular period in the presence of the ring with its magnets 32. The curve 64 of the couple functional is an approximation of the actual behavior since the position of the rocker does not only depend on the first magnetic torque but also the profile of the toothing 48B, the profile of the end portion 46B of this rocker and the mechanical torque generated by the spring 52 (it will be noted that the functional torque represented corresponds in fact to an embodiment without spring and without toothing). Note that the notches 56 have a profile designed to mechanically position the ring with a small clearance and hold it correctly in the display positions. Thus, in this case, the curve 64 joins the curve 62 only in the angular areas close to the stable display positions Pn. Whatever the case, the functional magnetic torque substantially corresponds to that of the curve 62 for each of the display positions Pn.
[0032] Le premier couple magnétique exercé par les deuxièmes aimants 32 de l’anneau sur la bascule 30, portant son ensemble magnétique, en fonction de la position angulaire de l’anneau 22B, sur une période angulaire entre deux positions d’affichage de l’anneau (correspondant à la période magnétique Pm du premier mode de réalisation), présente un premier sens (défini comme sens négatif à la fig. 6) sur un premier tronçon TR1 (formé de deux parties TR1a, TR1b pour une période angulaire correspondant à un déplacement angulaire de l’anneau dans le sens antihoraire entre deux positions magnétiques stables) et un deuxième sens, opposé au premier sens, sur un deuxième tronçon TR2 de cette période angulaire. Le premier sens correspond à un couple de rappel en direction de l’anneau mobile pour la partie de contact de la bascule, alors que le deuxième sens tend à écarter cette partie de contact de l’anneau et en particulier de sa denture 48B. Le système magnétique est agencé de manière que, pour chaque position Pn des N positions stables discrètes (positions d’affichage), le premier couple magnétique est exercé dans le premier sens susmentionné.The first magnetic torque exerted by the second magnets 32 of the ring on the latch 30, carrying its magnetic assembly, depending on the angular position of the ring 22B, over an angular period between two display positions of the ring (corresponding to the magnetic period Pm of the first embodiment) has a first direction (defined as a negative direction in FIG. 6) on a first section TR1 (formed by two parts TR1a, TR1b for a corresponding angular period to an angular displacement of the ring in the counterclockwise direction between two stable magnetic positions) and a second direction, opposite to the first direction, on a second section TR2 of this angular period. The first direction corresponds to a restoring torque in the direction of the mobile ring for the contact part of the rocker, while the second direction tends to move this contact part away from the ring and in particular from its toothing 48B. The magnetic system is arranged such that, for each position Pn of the N discrete stable positions (display positions), the first magnetic torque is exerted in the aforementioned first sense.
[0033] De préférence, le premier couple magnétique (couple fonctionnel 64) présente une valeur négative maximale (en valeur absolue) pour une position angulaire proche de chaque position stable discrète Pn. Dans une variante avantageuse, cette valeur négative maximale est atteinte sensiblement à chaque position stable discrète P„.Preferably, the first magnetic torque (functional torque 64) has a maximum negative value (in absolute value) for an angular position close to each discrete stable position Pn. In an advantageous variant, this maximum negative value is reached substantially at each discrete stable position P ".
[0034] Sur le graphe de la fig. 7 ont été représentées: - une première courbe 66 donnant le couple magnétique appliqué directement à l’anneau mobile lorsque la bascule est dans une position ouverte et que cet anneau est entraîné sur la même distance angulaire qu’à la fig. 6; - une deuxième courbe 68 donnant le couple magnétique appliqué directement àOn the graph of FIG. 7 are shown: a first curve 66 giving the magnetic torque applied directly to the mobile ring when the rocker is in an open position and this ring is driven at the same angular distance as in FIG. 6; a second curve 68 giving the magnetic torque applied directly to
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH00269/17A CH713544A2 (en) | 2017-03-06 | 2017-03-06 | Watch movement provided with a device for positioning a mobile element in a plurality of discrete positions. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH00269/17A CH713544A2 (en) | 2017-03-06 | 2017-03-06 | Watch movement provided with a device for positioning a mobile element in a plurality of discrete positions. |
Publications (1)
Publication Number | Publication Date |
---|---|
CH713544A2 true CH713544A2 (en) | 2018-09-14 |
Family
ID=63489994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH00269/17A CH713544A2 (en) | 2017-03-06 | 2017-03-06 | Watch movement provided with a device for positioning a mobile element in a plurality of discrete positions. |
Country Status (1)
Country | Link |
---|---|
CH (1) | CH713544A2 (en) |
-
2017
- 2017-03-06 CH CH00269/17A patent/CH713544A2/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3327518B1 (en) | Timepiece comprising a switching device of a clockwork mechanism | |
EP3106933B1 (en) | Magnetic pivoting device for an arbour in a clock movement | |
EP1805565A2 (en) | Wristwatch regulating member and mechanical movement comprising one such regulating member | |
WO2014166719A2 (en) | Device for winding up a watch with self-winding mechanism | |
CH709508A2 (en) | Watch movement with a drive mechanism of an analogue indicator with periodic or intermittent movement. | |
EP3109712B1 (en) | Magnetic device for pivoting an arbor in a clock movement | |
EP3246764B1 (en) | Shock-absorber device for a clock movement | |
EP3182225B1 (en) | Timepiece sequencer mecanism with recess wheel having a reduced mechanical friction | |
EP3373081B1 (en) | Clock movement provided with a device for positioning a mobile member in a plurality of discrete positions | |
EP3373080B1 (en) | Clock movement provided with a device for positioning a mobile member in a plurality of discrete positions | |
EP3489768B1 (en) | Magnetic device for centring an arbour in a clock movement | |
CH713544A2 (en) | Watch movement provided with a device for positioning a mobile element in a plurality of discrete positions. | |
EP3707565B1 (en) | Device for guiding the rotation of a mobile component | |
EP2650735B1 (en) | Winding device of a self-winding watch | |
EP2887153B1 (en) | Magnetic centring device | |
EP3185082B1 (en) | Clock movement comprising an element for positioning a movable portion of said clock movement | |
CH713543A2 (en) | Watch movement provided with a device for positioning a mobile element in a plurality of discrete positions. | |
CH714370A2 (en) | Device for magnetic centering of a shaft in a watch movement. | |
CH711889A2 (en) | Clock mechanism comprising a device exerting a switchable magnetic force on a moving part. | |
EP3707563A1 (en) | Driving member of a timepiece | |
EP3619579A1 (en) | Clock device having a positioning member | |
CH713160A2 (en) | Timepiece comprising a switching device of a watch mechanism, such as a chronograph mechanism. | |
CH710128A2 (en) | Clockwork mechanism comprising a contactless notch between two components. | |
CH714318A2 (en) | Clockwork motor member delivering a substantially constant force. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AZW | Rejection (application) |