CA2348603A1 - Speckle particles and compositions containing the speckle particles - Google Patents
Speckle particles and compositions containing the speckle particles Download PDFInfo
- Publication number
- CA2348603A1 CA2348603A1 CA002348603A CA2348603A CA2348603A1 CA 2348603 A1 CA2348603 A1 CA 2348603A1 CA 002348603 A CA002348603 A CA 002348603A CA 2348603 A CA2348603 A CA 2348603A CA 2348603 A1 CA2348603 A1 CA 2348603A1
- Authority
- CA
- Canada
- Prior art keywords
- speckle
- particle
- acid
- crystalline
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002245 particle Substances 0.000 title claims abstract description 187
- 239000000203 mixture Substances 0.000 title claims abstract description 179
- 238000004140 cleaning Methods 0.000 claims abstract description 25
- 239000002178 crystalline material Substances 0.000 claims abstract description 17
- 239000000049 pigment Substances 0.000 claims abstract description 5
- 238000004851 dishwashing Methods 0.000 claims abstract description 4
- 238000010412 laundry washing Methods 0.000 claims abstract description 3
- 239000004094 surface-active agent Substances 0.000 claims description 66
- 239000002253 acid Substances 0.000 claims description 52
- 239000007844 bleaching agent Substances 0.000 claims description 39
- 239000003599 detergent Substances 0.000 claims description 38
- 150000003839 salts Chemical class 0.000 claims description 31
- 239000004615 ingredient Substances 0.000 claims description 28
- 102000004190 Enzymes Human genes 0.000 claims description 22
- 108090000790 Enzymes Proteins 0.000 claims description 22
- 150000007513 acids Chemical class 0.000 claims description 22
- 239000003086 colorant Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 239000011230 binding agent Substances 0.000 claims description 13
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 10
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 9
- 239000012190 activator Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 6
- 150000001720 carbohydrates Chemical class 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims description 5
- 150000005323 carbonate salts Chemical class 0.000 claims description 4
- 238000004040 coloring Methods 0.000 claims description 4
- 229960000999 sodium citrate dihydrate Drugs 0.000 claims description 4
- 239000011343 solid material Substances 0.000 claims description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 159000000003 magnesium salts Chemical class 0.000 claims description 2
- 125000002467 phosphate group Chemical class [H]OP(=O)(O[H])O[*] 0.000 claims 1
- 239000007916 tablet composition Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 33
- -1 organic acid salt Chemical class 0.000 description 85
- 150000001875 compounds Chemical class 0.000 description 56
- 125000000217 alkyl group Chemical group 0.000 description 45
- 125000004432 carbon atom Chemical group C* 0.000 description 43
- 239000000975 dye Substances 0.000 description 37
- 239000002243 precursor Substances 0.000 description 30
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 29
- 239000000047 product Substances 0.000 description 26
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 24
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 23
- 239000011734 sodium Substances 0.000 description 23
- 229910052708 sodium Inorganic materials 0.000 description 22
- 229940088598 enzyme Drugs 0.000 description 21
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 20
- 150000004965 peroxy acids Chemical class 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 229910001868 water Inorganic materials 0.000 description 20
- 239000002518 antifoaming agent Substances 0.000 description 19
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 18
- 239000003945 anionic surfactant Substances 0.000 description 15
- 229920001296 polysiloxane Polymers 0.000 description 15
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 14
- 125000000129 anionic group Chemical group 0.000 description 14
- 229920001577 copolymer Polymers 0.000 description 14
- 150000002148 esters Chemical class 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- 229910000323 aluminium silicate Inorganic materials 0.000 description 13
- 150000001412 amines Chemical class 0.000 description 13
- 235000014113 dietary fatty acids Nutrition 0.000 description 13
- 239000000194 fatty acid Substances 0.000 description 13
- 229930195729 fatty acid Natural products 0.000 description 13
- 239000010457 zeolite Substances 0.000 description 13
- 125000002091 cationic group Chemical group 0.000 description 12
- 239000008187 granular material Substances 0.000 description 12
- 239000003352 sequestering agent Substances 0.000 description 12
- 229910021536 Zeolite Inorganic materials 0.000 description 11
- 150000008051 alkyl sulfates Chemical group 0.000 description 11
- 150000004665 fatty acids Chemical class 0.000 description 11
- 229920005646 polycarboxylate Polymers 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 108090001060 Lipase Proteins 0.000 description 10
- 102000004882 Lipase Human genes 0.000 description 10
- 239000004367 Lipase Substances 0.000 description 10
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 10
- 229910052783 alkali metal Inorganic materials 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 125000001183 hydrocarbyl group Chemical group 0.000 description 10
- 235000019421 lipase Nutrition 0.000 description 10
- 229910052700 potassium Inorganic materials 0.000 description 10
- 239000011591 potassium Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 9
- 229960004106 citric acid Drugs 0.000 description 9
- 229910001385 heavy metal Inorganic materials 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 8
- 108010065511 Amylases Proteins 0.000 description 8
- 102000013142 Amylases Human genes 0.000 description 8
- 108091005804 Peptidases Proteins 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 8
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 8
- 239000002736 nonionic surfactant Substances 0.000 description 8
- 229920000620 organic polymer Polymers 0.000 description 8
- 239000000344 soap Substances 0.000 description 8
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 8
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical compound CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- 150000001408 amides Chemical class 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 150000001768 cations Chemical class 0.000 description 7
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 7
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 7
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- 125000003342 alkenyl group Chemical group 0.000 description 6
- 125000002877 alkyl aryl group Chemical group 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- 235000019418 amylase Nutrition 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000003093 cationic surfactant Substances 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- RKCAIXNGYQCCAL-UHFFFAOYSA-N porphin Chemical compound N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 RKCAIXNGYQCCAL-UHFFFAOYSA-N 0.000 description 6
- YNJSNEKCXVFDKW-UHFFFAOYSA-N 3-(5-amino-1h-indol-3-yl)-2-azaniumylpropanoate Chemical compound C1=C(N)C=C2C(CC(N)C(O)=O)=CNC2=C1 YNJSNEKCXVFDKW-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 5
- 239000004115 Sodium Silicate Substances 0.000 description 5
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical class OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 238000004061 bleaching Methods 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000011872 intimate mixture Substances 0.000 description 5
- 230000000873 masking effect Effects 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 150000004967 organic peroxy acids Chemical class 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 5
- 150000004032 porphyrins Chemical group 0.000 description 5
- 239000001509 sodium citrate Substances 0.000 description 5
- 235000011083 sodium citrates Nutrition 0.000 description 5
- 159000000000 sodium salts Chemical class 0.000 description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- 229910052911 sodium silicate Inorganic materials 0.000 description 5
- 235000019832 sodium triphosphate Nutrition 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- VKZRWSNIWNFCIQ-UHFFFAOYSA-N 2-[2-(1,2-dicarboxyethylamino)ethylamino]butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NCCNC(C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-UHFFFAOYSA-N 0.000 description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 108010059892 Cellulase Proteins 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- TTZMPOZCBFTTPR-UHFFFAOYSA-N O=P1OCO1 Chemical compound O=P1OCO1 TTZMPOZCBFTTPR-UHFFFAOYSA-N 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 229940025131 amylases Drugs 0.000 description 4
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000007942 carboxylates Chemical class 0.000 description 4
- 239000012876 carrier material Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 4
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 4
- 230000002366 lipolytic effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 230000003381 solubilizing effect Effects 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 239000003760 tallow Substances 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- 239000002888 zwitterionic surfactant Substances 0.000 description 4
- 239000004382 Amylase Substances 0.000 description 3
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 108010056079 Subtilisins Proteins 0.000 description 3
- 102000005158 Subtilisins Human genes 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229940106157 cellulase Drugs 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 150000001860 citric acid derivatives Chemical class 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 150000003949 imides Chemical class 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 238000006384 oligomerization reaction Methods 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 235000012736 patent blue V Nutrition 0.000 description 3
- 235000012752 quinoline yellow Nutrition 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- UIIMBOGNXHQVGW-UHFFFAOYSA-M sodium bicarbonate Substances [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 3
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 3
- 238000005809 transesterification reaction Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 3
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 3
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 2
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 2
- YGUMVDWOQQJBGA-VAWYXSNFSA-N 5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 YGUMVDWOQQJBGA-VAWYXSNFSA-N 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical class NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- 150000001204 N-oxides Chemical class 0.000 description 2
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 241000589630 Pseudomonas pseudoalcaligenes Species 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- 125000005037 alkyl phenyl group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229940077388 benzenesulfonate Drugs 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 208000034158 bleeding Diseases 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 239000001045 blue dye Substances 0.000 description 2
- 235000012745 brilliant blue FCF Nutrition 0.000 description 2
- 239000004161 brilliant blue FCF Substances 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 2
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000007046 ethoxylation reaction Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- JPZROSNLRWHSQQ-UHFFFAOYSA-N furan-2,5-dione;prop-2-enoic acid Chemical compound OC(=O)C=C.O=C1OC(=O)C=C1 JPZROSNLRWHSQQ-UHFFFAOYSA-N 0.000 description 2
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001046 green dye Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical class CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 2
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 2
- 108010020132 microbial serine proteinases Proteins 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 2
- 239000003605 opacifier Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000004177 patent blue V Substances 0.000 description 2
- DMCJFWXGXUEHFD-UHFFFAOYSA-N pentatriacontan-18-one Chemical compound CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCC DMCJFWXGXUEHFD-UHFFFAOYSA-N 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 239000004172 quinoline yellow Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229940071089 sarcosinate Drugs 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 229940045872 sodium percarbonate Drugs 0.000 description 2
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical class [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 235000012751 sunset yellow FCF Nutrition 0.000 description 2
- 239000004173 sunset yellow FCF Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 108010075550 termamyl Proteins 0.000 description 2
- VKFFEYLSKIYTSJ-UHFFFAOYSA-N tetraazanium;phosphonato phosphate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])(=O)OP([O-])([O-])=O VKFFEYLSKIYTSJ-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- BQJAOYFZRGTLGB-VIFPVBQESA-N (2s)-1-benzoyl-5-oxopyrrolidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCC(=O)N1C(=O)C1=CC=CC=C1 BQJAOYFZRGTLGB-VIFPVBQESA-N 0.000 description 1
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical class OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 1
- GHPCICSQWQDZLM-UHFFFAOYSA-N 1-(4-chlorophenyl)sulfonyl-1-methyl-3-propylurea Chemical compound CCCNC(=O)N(C)S(=O)(=O)C1=CC=C(Cl)C=C1 GHPCICSQWQDZLM-UHFFFAOYSA-N 0.000 description 1
- VYXRTZYURDKMLT-UHFFFAOYSA-N 1-benzoylpyrrolidin-2-one Chemical compound C=1C=CC=CC=1C(=O)N1CCCC1=O VYXRTZYURDKMLT-UHFFFAOYSA-N 0.000 description 1
- CLFHABXQJQAYEF-UHFFFAOYSA-N 1-benzoylpyrrolidine-2,5-dione Chemical compound C=1C=CC=CC=1C(=O)N1C(=O)CCC1=O CLFHABXQJQAYEF-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- FNJPVNIUVIVZEV-UHFFFAOYSA-N 2,3-dibenzoyl-1,4-diphenylbut-2-ene-1,4-dione Chemical group C=1C=CC=CC=1C(=O)C(=C(C(=O)C=1C=CC=CC=1)C(=O)C=1C=CC=CC=1)C(=O)C1=CC=CC=C1 FNJPVNIUVIVZEV-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- PQHYOGIRXOKOEJ-UHFFFAOYSA-N 2-(1,2-dicarboxyethylamino)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NC(C(O)=O)CC(O)=O PQHYOGIRXOKOEJ-UHFFFAOYSA-N 0.000 description 1
- UURYKQHCLJWXEU-UHFFFAOYSA-N 2-(2-hydroxypropanoyloxy)butanedioic acid Chemical class CC(O)C(=O)OC(C(O)=O)CC(O)=O UURYKQHCLJWXEU-UHFFFAOYSA-N 0.000 description 1
- LVVZBNKWTVZSIU-UHFFFAOYSA-N 2-(carboxymethoxy)propanedioic acid Chemical class OC(=O)COC(C(O)=O)C(O)=O LVVZBNKWTVZSIU-UHFFFAOYSA-N 0.000 description 1
- HWQVXNFIYABVIW-UHFFFAOYSA-N 2-(carboxymethylamino)-4,5-dihydroxypentanoic acid Chemical compound OCC(O)CC(C(O)=O)NCC(O)=O HWQVXNFIYABVIW-UHFFFAOYSA-N 0.000 description 1
- NSMMFSKPGXCMOE-UHFFFAOYSA-N 2-[2-(2-sulfophenyl)ethenyl]benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C=CC1=CC=CC=C1S(O)(=O)=O NSMMFSKPGXCMOE-UHFFFAOYSA-N 0.000 description 1
- CQWXKASOCUAEOW-UHFFFAOYSA-N 2-[2-(carboxymethoxy)ethoxy]acetic acid Chemical compound OC(=O)COCCOCC(O)=O CQWXKASOCUAEOW-UHFFFAOYSA-N 0.000 description 1
- JKZLOWDYIRTRJZ-UHFFFAOYSA-N 2-[6-(octanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O JKZLOWDYIRTRJZ-UHFFFAOYSA-N 0.000 description 1
- OARDBPIZDHVTCK-UHFFFAOYSA-N 2-butyloctanoic acid Chemical class CCCCCCC(C(O)=O)CCCC OARDBPIZDHVTCK-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- WJZIPMQUKSTHLV-UHFFFAOYSA-N 2-ethyldecanoic acid Chemical class CCCCCCCCC(CC)C(O)=O WJZIPMQUKSTHLV-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- PFFITEZSYJIHHR-UHFFFAOYSA-N 2-methyl-undecanoic acid Chemical class CCCCCCCCCC(C)C(O)=O PFFITEZSYJIHHR-UHFFFAOYSA-N 0.000 description 1
- PLVOWOHSFJLXOR-UHFFFAOYSA-N 2-pentylheptanoic acid Chemical class CCCCCC(C(O)=O)CCCCC PLVOWOHSFJLXOR-UHFFFAOYSA-N 0.000 description 1
- ZYQRJZOMRGLPMK-UHFFFAOYSA-N 2-phosphonooxyethyl dihydrogen phosphate Chemical compound OP(O)(=O)OCCOP(O)(O)=O ZYQRJZOMRGLPMK-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- APKRDOMMNFBDSG-UHFFFAOYSA-N 2-propylnonanoic acid Chemical class CCCCCCCC(C(O)=O)CCC APKRDOMMNFBDSG-UHFFFAOYSA-N 0.000 description 1
- MHKLKWCYGIBEQF-UHFFFAOYSA-N 4-(1,3-benzothiazol-2-ylsulfanyl)morpholine Chemical compound C1COCCN1SC1=NC2=CC=CC=C2S1 MHKLKWCYGIBEQF-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- CNGYZEMWVAWWOB-VAWYXSNFSA-N 5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S(O)(=O)=O)=CC=2)S(O)(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 CNGYZEMWVAWWOB-VAWYXSNFSA-N 0.000 description 1
- SFHBJXIEBWOOFA-UHFFFAOYSA-N 5-methyl-3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical compound O=C1OC(C)COC(=O)C2=CC=C1C=C2 SFHBJXIEBWOOFA-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical group CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N Aspartic acid Chemical class OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 description 1
- RTMBGDBBDQKNNZ-UHFFFAOYSA-L C.I. Acid Blue 3 Chemical compound [Ca+2].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=C(O)C=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1.C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=C(O)C=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 RTMBGDBBDQKNNZ-UHFFFAOYSA-L 0.000 description 1
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 101100148128 Caenorhabditis elegans rsp-4 gene Proteins 0.000 description 1
- 101100201838 Caenorhabditis elegans rsp-6 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XFTRTWQBIOMVPK-YFKPBYRVSA-N Citramalic acid Natural products OC(=O)[C@](O)(C)CC(O)=O XFTRTWQBIOMVPK-YFKPBYRVSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 108010092681 DNA Primase Proteins 0.000 description 1
- 102000016559 DNA Primase Human genes 0.000 description 1
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical compound OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 1
- 108010083608 Durazym Proteins 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241001373560 Humicola sp. Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical class OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- 108091005507 Neutral proteases Proteins 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical group O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000209094 Oryza Species 0.000 description 1
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical compound OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 102100021923 Prolow-density lipoprotein receptor-related protein 1 Human genes 0.000 description 1
- 101710127332 Protease I Proteins 0.000 description 1
- 101710194948 Protein phosphatase PhpP Proteins 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- XYQRXRFVKUPBQN-UHFFFAOYSA-L Sodium carbonate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]C([O-])=O XYQRXRFVKUPBQN-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- OIQPTROHQCGFEF-QIKYXUGXSA-L Sunset Yellow FCF Chemical compound [Na+].[Na+].OC1=CC=C2C=C(S([O-])(=O)=O)C=CC2=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 OIQPTROHQCGFEF-QIKYXUGXSA-L 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- XOAAWQZATWQOTB-UHFFFAOYSA-N Taurine Natural products NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 1
- 101710137710 Thioesterase 1/protease 1/lysophospholipase L1 Proteins 0.000 description 1
- UAOKXEHOENRFMP-ZJIFWQFVSA-N [(2r,3r,4s,5r)-2,3,4,5-tetraacetyloxy-6-oxohexyl] acetate Chemical compound CC(=O)OC[C@@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)C=O UAOKXEHOENRFMP-ZJIFWQFVSA-N 0.000 description 1
- IFEUBXRSLPUMSI-UHFFFAOYSA-N [ClH]1NN=NC=C1 Chemical class [ClH]1NN=NC=C1 IFEUBXRSLPUMSI-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000005157 alkyl carboxy group Chemical group 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 125000005263 alkylenediamine group Chemical group 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 230000003625 amylolytic effect Effects 0.000 description 1
- 229960004543 anhydrous citric acid Drugs 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229940059720 apra Drugs 0.000 description 1
- 238000000508 aqueous-phase reforming Methods 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- SEJPYGHRHLPLII-UHFFFAOYSA-N benzenesulfonyl 6-(nonanoylamino)hexaneperoxoate Chemical compound CCCCCCCCC(=O)NCCCCCC(=O)OOS(=O)(=O)C1=CC=CC=C1 SEJPYGHRHLPLII-UHFFFAOYSA-N 0.000 description 1
- IYVBKVVOHXVKRD-UHFFFAOYSA-N benzimidazol-1-yl(phenyl)methanone Chemical compound C1=NC2=CC=CC=C2N1C(=O)C1=CC=CC=C1 IYVBKVVOHXVKRD-UHFFFAOYSA-N 0.000 description 1
- 238000006480 benzoylation reaction Methods 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 229940055580 brilliant blue fcf Drugs 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- XNOQNFJEPBFKLL-UHFFFAOYSA-N butanedioic acid;1,2-diaminopropan-2-ol Chemical compound CC(N)(O)CN.OC(=O)CCC(O)=O.OC(=O)CCC(O)=O XNOQNFJEPBFKLL-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- OKTJSMMVPCPJKN-YPZZEJLDSA-N carbon-10 atom Chemical group [10C] OKTJSMMVPCPJKN-YPZZEJLDSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 235000012698 chlorophylls and chlorophyllins Nutrition 0.000 description 1
- 239000001752 chlorophylls and chlorophyllins Substances 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- XFTRTWQBIOMVPK-UHFFFAOYSA-N citramalic acid Chemical compound OC(=O)C(O)(C)CC(O)=O XFTRTWQBIOMVPK-UHFFFAOYSA-N 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000000549 coloured material Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000004121 copper complexes of chlorophylls and chlorophyllins Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 108010005400 cutinase Proteins 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 150000004691 decahydrates Chemical class 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- DUCCPNVOQJMMAN-UHFFFAOYSA-N dimethylamino hexanoate Chemical compound CCCCCC(=O)ON(C)C DUCCPNVOQJMMAN-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- XQRLCLUYWUNEEH-UHFFFAOYSA-L diphosphonate(2-) Chemical compound [O-]P(=O)OP([O-])=O XQRLCLUYWUNEEH-UHFFFAOYSA-L 0.000 description 1
- PMPJQLCPEQFEJW-HPKCLRQXSA-L disodium;2-[(e)-2-[4-[4-[(e)-2-(2-sulfonatophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC=CC=C1\C=C\C1=CC=C(C=2C=CC(\C=C\C=3C(=CC=CC=3)S([O-])(=O)=O)=CC=2)C=C1 PMPJQLCPEQFEJW-HPKCLRQXSA-L 0.000 description 1
- VUJGKADZTYCLIL-YHPRVSEPSA-L disodium;5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S([O-])(=O)=O)C(S(=O)(=O)[O-])=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 VUJGKADZTYCLIL-YHPRVSEPSA-L 0.000 description 1
- VVYVUOFMPAXVCH-UHFFFAOYSA-L disodium;5-[[4-anilino-6-[2-hydroxyethyl(methyl)amino]-1,3,5-triazin-2-yl]amino]-2-[2-[4-[[4-anilino-6-[2-hydroxyethyl(methyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical group [Na+].[Na+].N=1C(NC=2C=C(C(C=CC=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(C)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)C)=NC=1NC1=CC=CC=C1 VVYVUOFMPAXVCH-UHFFFAOYSA-L 0.000 description 1
- GLYUSNXFOHTZTE-UHFFFAOYSA-L disodium;carbonate;heptahydrate Chemical compound O.O.O.O.O.O.O.[Na+].[Na+].[O-]C([O-])=O GLYUSNXFOHTZTE-UHFFFAOYSA-L 0.000 description 1
- MQRJBSHKWOFOGF-UHFFFAOYSA-L disodium;carbonate;hydrate Chemical compound O.[Na+].[Na+].[O-]C([O-])=O MQRJBSHKWOFOGF-UHFFFAOYSA-L 0.000 description 1
- LHGJTWLUIMCSNN-UHFFFAOYSA-L disodium;sulfate;heptahydrate Chemical compound O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O LHGJTWLUIMCSNN-UHFFFAOYSA-L 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- XWENCHGJOCJZQO-UHFFFAOYSA-N ethane-1,1,2,2-tetracarboxylic acid Chemical class OC(=O)C(C(O)=O)C(C(O)=O)C(O)=O XWENCHGJOCJZQO-UHFFFAOYSA-N 0.000 description 1
- IGBSXRIJNMDLFB-UHFFFAOYSA-N ethane-1,2-diamine;pentanedioic acid Chemical compound NCCN.OC(=O)CCCC(O)=O.OC(=O)CCCC(O)=O IGBSXRIJNMDLFB-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004820 halides Chemical group 0.000 description 1
- 150000004688 heptahydrates Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- JEGIFBGJZPYMJS-UHFFFAOYSA-N imidazol-1-yl(phenyl)methanone Chemical compound C1=CN=CN1C(=O)C1=CC=CC=C1 JEGIFBGJZPYMJS-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical class OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229920001427 mPEG Polymers 0.000 description 1
- LFCFXZHKDRJMNS-UHFFFAOYSA-L magnesium;sulfate;hydrate Chemical group O.[Mg+2].[O-]S([O-])(=O)=O LFCFXZHKDRJMNS-UHFFFAOYSA-L 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-N methyl sulfate Chemical group COS(O)(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910021527 natrosilite Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- SXLLDUPXUVRMEE-UHFFFAOYSA-N nonanediperoxoic acid Chemical compound OOC(=O)CCCCCCCC(=O)OO SXLLDUPXUVRMEE-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 150000004686 pentahydrates Chemical class 0.000 description 1
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- XCRBXWCUXJNEFX-UHFFFAOYSA-N peroxybenzoic acid Chemical class OOC(=O)C1=CC=CC=C1 XCRBXWCUXJNEFX-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- RRCSSMRVSNZOFR-UHFFFAOYSA-N phenyl 3,5,5-trimethylhexanoate;sodium Chemical compound [Na].CC(C)(C)CC(C)CC(=O)OC1=CC=CC=C1 RRCSSMRVSNZOFR-UHFFFAOYSA-N 0.000 description 1
- ZRXJXIVOMZDPKQ-UHFFFAOYSA-N phenyl 6-(nonanoylamino)hexanoate Chemical compound CCCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1 ZRXJXIVOMZDPKQ-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- NJKRDXUWFBJCDI-UHFFFAOYSA-N propane-1,1,2,3-tetracarboxylic acid Chemical class OC(=O)CC(C(O)=O)C(C(O)=O)C(O)=O NJKRDXUWFBJCDI-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000004023 quaternary phosphonium compounds Chemical class 0.000 description 1
- 229940051201 quinoline yellow Drugs 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229940001593 sodium carbonate Drugs 0.000 description 1
- 229940076133 sodium carbonate monohydrate Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- QSKQNALVHFTOQX-UHFFFAOYSA-M sodium nonanoyloxybenzenesulfonate Chemical compound [Na+].CCCCCCCCC(=O)OC1=CC=CC=C1S([O-])(=O)=O QSKQNALVHFTOQX-UHFFFAOYSA-M 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 1
- ZUFONQSOSYEWCN-UHFFFAOYSA-M sodium;2-(methylamino)acetate Chemical compound [Na+].CNCC([O-])=O ZUFONQSOSYEWCN-UHFFFAOYSA-M 0.000 description 1
- DAPMZWDGZVFZMK-UHFFFAOYSA-N sodium;2-[2-[4-[4-[2-(2-sulfophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonic acid Chemical group [Na].[Na].OS(=O)(=O)C1=CC=CC=C1C=CC1=CC=C(C=2C=CC(C=CC=3C(=CC=CC=3)S(O)(=O)=O)=CC=2)C=C1 DAPMZWDGZVFZMK-UHFFFAOYSA-N 0.000 description 1
- RPQSWSMNPBZEHT-UHFFFAOYSA-M sodium;2-acetyloxybenzenesulfonate Chemical compound [Na+].CC(=O)OC1=CC=CC=C1S([O-])(=O)=O RPQSWSMNPBZEHT-UHFFFAOYSA-M 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- KQHKITXZJDOIOD-UHFFFAOYSA-M sodium;3-sulfobenzoate Chemical compound [Na+].OS(=O)(=O)C1=CC=CC(C([O-])=O)=C1 KQHKITXZJDOIOD-UHFFFAOYSA-M 0.000 description 1
- KVCGISUBCHHTDD-UHFFFAOYSA-M sodium;4-methylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1 KVCGISUBCHHTDD-UHFFFAOYSA-M 0.000 description 1
- OYNITBPACPPTCI-UHFFFAOYSA-M sodium;boric acid;hydrogen carbonate Chemical compound [Na+].OB(O)O.OC([O-])=O OYNITBPACPPTCI-UHFFFAOYSA-M 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000013042 solid detergent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000004026 tertiary sulfonium compounds Chemical class 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- QQOWHRYOXYEMTL-UHFFFAOYSA-N triazin-4-amine Chemical class N=C1C=CN=NN1 QQOWHRYOXYEMTL-UHFFFAOYSA-N 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/046—Salts
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
- C11D11/0088—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/221—Mono, di- or trisaccharides or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/40—Dyes ; Pigments
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/40—Dyes ; Pigments
- C11D3/42—Brightening agents ; Blueing agents
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Emergency Medicine (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
The present invention provides a cleaning composition speckle particles havi ng a specific sparkle index and transparency index, the particle comprising sol id material, preferably specific crystalline material, which is coloured by addition of a dye pigment and/or a brightener. The invention also relates to cleaning compositions comprising the speckle particles of the invention, in particular laundry and dish washing compositions.
Description
CVO 00/279$0 PCTNS99/25259 Speckle Particles and Compositions Containin tg he Speckle Particles Technical Field The invention relates to improved speckle particles and compositions comprising the speckle particles, in particular cleaning compositions.
Background to the Invention In recent years, detergent manufacturers have introduced in their products small amounts of dyed particles or speckles. It has been found that the detergent users associate products having dyed particles with improved cleaning that the consumer acceptance of product comprising coloured particles is normally higher than product not comprising such coloured particles. Furthermore, the speckles can mask de-coloration in the product and/
or allows the incorporation in the products of small amounts of ingredients which do not have the colour of the bulk of the product by masking this colour difference.
These speckles are often obtained by spraying-on an aqueous solution of a specific dye onto hygroscopic material and addition of these materials to the other ingredients, or directly onto the final detergent base particles and subsequently drying the thus dyed materials or particles. A problem associated with this method is that the hygroscopic material absorbs large amount of water which may result in caking of the product. This is particularly a problem when higher amounts of aqueous dye-solution need to be used, for example, when very diluted dye solutions are to be used, or strongly dyed particles are needed or the dye is absorbed by the material or particles which are to be dyed.
Background to the Invention In recent years, detergent manufacturers have introduced in their products small amounts of dyed particles or speckles. It has been found that the detergent users associate products having dyed particles with improved cleaning that the consumer acceptance of product comprising coloured particles is normally higher than product not comprising such coloured particles. Furthermore, the speckles can mask de-coloration in the product and/
or allows the incorporation in the products of small amounts of ingredients which do not have the colour of the bulk of the product by masking this colour difference.
These speckles are often obtained by spraying-on an aqueous solution of a specific dye onto hygroscopic material and addition of these materials to the other ingredients, or directly onto the final detergent base particles and subsequently drying the thus dyed materials or particles. A problem associated with this method is that the hygroscopic material absorbs large amount of water which may result in caking of the product. This is particularly a problem when higher amounts of aqueous dye-solution need to be used, for example, when very diluted dye solutions are to be used, or strongly dyed particles are needed or the dye is absorbed by the material or particles which are to be dyed.
Another problem associated with detergents comprising large amounts of dye per particle can be that the dye can 'bleed' in the presence of water. This may be the case when the detergent is made by spraying on large amounts of aqueous dye solutions, or when the detergent comprises large amount of hygroscopic material or of course, when the detergents are introduced to the washing or cleaning liquid. This 'bleeding' may cause colour changes of the product and the packing material. Moreover, under certain conditions, the dye or the dye particles which may deposit on the fabrics, can 'bleed' on the fabrics and cause colour changes on the washed fabric.
Also, it has now been found to be essential that the dye in the product is evenly applied at the surface of the particles and throughout the product, to avoid localised high concentrations of dye, which may amount to any of the above problems.
However, despite these problems, it may be desirable to have speckles particles present in the product to provide the required contrast in the product and/ or masking of certain ingredients in the product.
The inventors have now found improved speckle particles, namely the inventors have found that particle which have a certain light reflection resulting in a specific sparkle, and which have a certain transparency, provide a better contrast with the other ingredients of the products, or can mask the undesired colour of other ingredients of the product. In particular, they have found that speckle particles comprising crystalline material can provide the required contrasting and/ or masking. Hereby, the speckle particles are preferably coloured, although in certain applications even the uncoloured crystalline material may provide a contrast or the masking.
Thus, due to the reflection/ transparency potential of these speckles, the amount of colorant required to provide the required contrast or masking can be reduced.
Moreover, the inventors have also found that speckle particle herein which comprise crystalline material, only require limited amounts of dye, because the crystalline material is less porous and/ or hygroscopic and thus absorbs less colorant. Thus, the speckle particles of the invention can be coloured more effectively and efficiently.
Thus, an optimum colour appearance of the product can be obtained with a minimum amount of dye, when the speckle materials of the invention are used.
An additional benefit is that less colorant is introduced in the speckle particles and thus in the compositions comprising the particles. Hereby, the risk of bleeding of the colorant is reduced and the problems associated therewith.
Summary of the Invention The invention provides a cleaning composition particle which comprises a solid material which is coloured with a colorant, the particle has a sparkle index of at least 5% and a transparency index of at least 5%. Preferably the particle has a colour saturation of at least 1 S 10, preferably at least 30, a sparkle index of at least 10% and a transparency index of at least 15%.
The invention also provides a cleaning composition speckle particle comprising a crystalline material preferably selected from the group comprising crystalline hydrated salts, crystalline acids, crystalline acid salts, crystalline surfactants, saccharides, or mixtures thereof.
The speckle particle is in particular for incorporation in solid laundry or dish washing or hard-surface cleaning compositions.
The invention also relates to a process for making the compositions and the speckle particle and the use thereof.
Detailed Description of the Invention Speckle Particles The speckle particle of the invention have a sparkle index of at least 5%, preferably at least 10% or even at least 15% or even at least 20%.
The speckle particle has a transparency index of at least 1%, preferably at least 5%, or even at least 15% or even at least 30% or even at least 60%.
The sparkle index and transparency index can be determined as follows, using a spectrophotometer capable of light transmission and reflectance measurements, such as the UItraScan XE unit from Hunter Labs Inc which is connected to a suitable personal computer, such as an IBM ThinkPad type 2640, being installed with Universal analysis software provided by Hunter Labs Inc:
25g of a speckle particle is poured into a glass cuvette with 4mm path length and SOmm length. Suitable cuvettes may be obtained via Hunter Labs Tnc. The spectrophotometer is calibrated using a light trap and a white tile, according to the operating manual provided with the spectrophotometer and the sample placed in the sample holder. Light reflectance and transmission is then measured: the light reflectance measurements is taken such that it include the specular reflected component (Spec in) and also such that it exclude the specular reflected component (Spec ex). The spectrophotomer generates spectral emission plots which are viewed on the personal computer.
The sparkle index, when used herein, is then: % reflectance (spec in) - %
reflectance (spec ex), where both % reflectance are measured at the peak reflectance wavelength, determined by the computer: this is seen by the maxima on the spectral reflectance emission curve. This typically will differ depending on the colour of the particles. For example, for blue particles using Monastral blue dye the peak wavelength is 460nm; for green particles with Pigmasol green dye, the peak wavelength is 500nm.
The transparency index, when used herein is then: % light transparency at peak wavelength. This is read from the personal computer after measuring transmission analysis on the spectrophotometer.
S
Preferably the speckle particle has a colour saturation, given as a delta saturation of at least 10, preferably at least 30, or even more preferably at least SO or even at least 100.
S
The delta colour saturation or saturation can be determined by any standard measurement used in the art. For example, it can be calculated by the UltraScan XE and Universal software using the standard L,a,b values which are generally used in the art, comparing the colour saturation of a coloured material after colouring, with the colour saturation of the same material prior to colouring.
The colour saturation of the sparkle particle herein is the delta colour saturation which equals the colour saturation of the coloured particle minus the colour saturation of an equivalent uncoloured particle.
The speckled particles of the invention may have any colour. When present in cleaning compositions the speckle may preferably be of another colour than the majority of the other ingredients or particles of the compositions. When used herein, 'colour' includes any shade of white and black. The words colorant, coloured and colouring are to be interpreted accordingly.
In a preferred embodiment, the speckle particle is preferably coloured with a dye, pigment or brightener, or mixtures thereof as described hereinafter.
The speckle particle of the invention has a specific light reflection and/or light transparency. Thereto, the speckle particle comprises preferably a crystalline hydrated inorganic salt, a crystalline organic acid salt, a crystalline organic salt, a crystalline surfactant, saccharide or mixtures thereof.
Preferably the crystalline material of the speckle particle has preferably at least a transparancey and/ or reflection equal to coarse trisodium citrate dihydrate as available from ADM.
Highly preferred crystalline organic salts include carboxylate salts. Also preferred are crystalline polymeric polycarboxylic acids and salts thereof, preferably poly acrylic and/
or malefic acid polymers and salts thereof.
Particular preferred is that the crystalline material comprises trisodium citrate dihydrate, most preferably coloured with a dye.
Preferred hydrated crystalline materials herein are hydrated inorganic salts including hydrated sulphate salt; hydrated carbonate salt; hydrated phosphate salt;
hydrated magnesium salt; hydrated carboxylic acids and/ or salts thereof. Highly preferred are sodium sulphate deca hydrate or hepta hydrate; sodium carbonate monohydrate, hepta hydrate or decahydrate; sodium tripolyphosphate, ortho phosphate, meta phosphate and/
or pyrophosphate with the applicable hydration numbers, in particular mono, di, tri hexa or deca hydrate; magnesium sulphate mono or hepta hydrate, sodium citrate di hydrate or penta hydrate; glucose, maltose, galactose or fructose or mixtures thereof, in particular sugar.
Also useful can be other ingredients commonly employed in detergent compositions which are crystalline materials, such as crystalline silicate, including crystalline layered silicate.
Preferably, the speckle particle comprises at least 20% by weight of the particle of the crystalline hydrated material, preferably at least 50% or even at least 75%, whereby it may be preferred that the particle is substantially free of amorphous material.
WO 00/279$0 PCT/US99/25259 The speckle particle may comprise other ingredients. In one embodiment it is preferred that the speckle particle comprises a binder, to bind the crystalline hydrated material and/
or the colorant.
Preferred hereby may be that the speckle particle is made by agglomerating the binder and the crystalline hydrated material and/ or the colorant.
Any binder material can be used herein. Preferred binders include water, or mixtures of water with other ingredients, such as surfactant pastes. Also useful are liquid or viscous surfactants, polyalkylene glycols, preferably polyethylene glycol, wax and oils.
In one preferred embodiment, the speckle particle a weight average particle size of 400 microns to 2000 microns, preferably from S00 microns to 1400 microns or even from 600 microns to 1180 microns or even 710 microns to 1000 microns.
When the weight average particle size is from 500 to 1400, it may be preferred hereby that at least 70% or even at least 80% or even at least 90% or even substantially all of the particles has a particle size of from 600 microns to 1180 microns. When the weight average particle size is from 600 to 1180, it may be preferred hereby that at least 70% or even at least 80% or even at least 90% or even substantially all of the particles has a particle size of from 710 microns to 1000 microns.
Namely, it has been found that when the speckle particles have an average particle size within these ranges, a smaller amount of speckle particles can be used to obtain the required result. Also, it been found that the use of speckle particles of a specific particle size ensures a more efficient and controlled dyeing of the particles, which enables the effective use of small amounts of dye per particle whilst obtaining a homogeneously dyed particle.
The speckle particles of this particle size may preferably be obtained by binding smaller particles with a binder, for example by agglomeration, as described herein.
They may also be obtained from larger particle size material, for example by grinding this material.
Also, the speckle particle of this particle size may alternatively or additionally be obtained by sieving the particles and selecting the required particle size material.
Other methods for controlling the particle size of crystalline material are known to the skilled person and may also be used to obtain the particles of the required size.
The speckle particle may be coloured by any method known in the art.
Preferably colorant is mixed with the crystalline material, preferably in the presence of a binder. Preferably, the speckle particle herein may be coloured with a colorant, preferably a dye and/ or a brightener by spraying the colorant into a mixing-container or mix drum, containing the speckle particles and optionally drying the coloured speckle particles, preferably in a fluidised-bed.
Dye The speckle particles of the invention are preferably dyed particles. The dye used for dyeing the particles as used herein can be a dye stuff or an aqueous solution of a dye stuff or an non-aqueous solution of or mixture with a dye stuff, for example using a carrier material such as a nonionic surfactant or other organic binder material. The use of an non-aqueous solution may have as an advantage herein that no subsequent drying step is needed when the solution is applied to the speckle particles.
It may be preferred that the dye is an aqueous solution comprising a dyestuff, at any level to obtain suitable dyeing of the particles, preferably such that levels of dye solution are obtained up to 2% by weight of the speckle particle, or more preferably up to 0.5% by weight, as described above. Optionally, the dye also comprising other ingredients such as organic binder materials.
The dyestuff can be any suitable dyestuff. Specific examples of suitable dyestuffs include E104 - food yellow 13 (quinoline yellow), E110 - food yellow 3 (sunset yellow FCF), E131 - food blue 5 (patent blue V), Ultra Marine blue (trade name), E133 -food blue 2 (brilliant blue FCF), E140 - natural green 3 (chlorophyll and chlorphyllins), E141 and Pigment green 7 (chlorinated Cu phthalocyanine). Preferred dyestuffs may be Monastral Blue BV paste (trade name) and/ or Pigmasol Green (trade name).
The speckle particle preferably comprise such a dyestuff or even at low levels, preferably only up to 2% or more preferably up to 1% or even up to 0.7% and it may be preferred that the dye is present a t a level of below 0.5% or even 0.2% or even 0.1 %
by weight of the speckle particle.
Brightener The speckle particle herein may be coloured with a brightener, preferably certain types of hydrophilic optical brighteners.
The speckle particle preferably comprise such a brightener at levels of up to 20% or more preferably up to 10% or even up to S% by weight of the speckle particle.
Hydrophilic optical brighteners useful herein include those having the structural formula:
R~ R2 N H H N
N OON O ~ ~ O NOO N
~N H H N O
R2 S03M S~3M Ri wherein R1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-b-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-CBS-X and Tinopal-I1NPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
Also, it has now been found to be essential that the dye in the product is evenly applied at the surface of the particles and throughout the product, to avoid localised high concentrations of dye, which may amount to any of the above problems.
However, despite these problems, it may be desirable to have speckles particles present in the product to provide the required contrast in the product and/ or masking of certain ingredients in the product.
The inventors have now found improved speckle particles, namely the inventors have found that particle which have a certain light reflection resulting in a specific sparkle, and which have a certain transparency, provide a better contrast with the other ingredients of the products, or can mask the undesired colour of other ingredients of the product. In particular, they have found that speckle particles comprising crystalline material can provide the required contrasting and/ or masking. Hereby, the speckle particles are preferably coloured, although in certain applications even the uncoloured crystalline material may provide a contrast or the masking.
Thus, due to the reflection/ transparency potential of these speckles, the amount of colorant required to provide the required contrast or masking can be reduced.
Moreover, the inventors have also found that speckle particle herein which comprise crystalline material, only require limited amounts of dye, because the crystalline material is less porous and/ or hygroscopic and thus absorbs less colorant. Thus, the speckle particles of the invention can be coloured more effectively and efficiently.
Thus, an optimum colour appearance of the product can be obtained with a minimum amount of dye, when the speckle materials of the invention are used.
An additional benefit is that less colorant is introduced in the speckle particles and thus in the compositions comprising the particles. Hereby, the risk of bleeding of the colorant is reduced and the problems associated therewith.
Summary of the Invention The invention provides a cleaning composition particle which comprises a solid material which is coloured with a colorant, the particle has a sparkle index of at least 5% and a transparency index of at least 5%. Preferably the particle has a colour saturation of at least 1 S 10, preferably at least 30, a sparkle index of at least 10% and a transparency index of at least 15%.
The invention also provides a cleaning composition speckle particle comprising a crystalline material preferably selected from the group comprising crystalline hydrated salts, crystalline acids, crystalline acid salts, crystalline surfactants, saccharides, or mixtures thereof.
The speckle particle is in particular for incorporation in solid laundry or dish washing or hard-surface cleaning compositions.
The invention also relates to a process for making the compositions and the speckle particle and the use thereof.
Detailed Description of the Invention Speckle Particles The speckle particle of the invention have a sparkle index of at least 5%, preferably at least 10% or even at least 15% or even at least 20%.
The speckle particle has a transparency index of at least 1%, preferably at least 5%, or even at least 15% or even at least 30% or even at least 60%.
The sparkle index and transparency index can be determined as follows, using a spectrophotometer capable of light transmission and reflectance measurements, such as the UItraScan XE unit from Hunter Labs Inc which is connected to a suitable personal computer, such as an IBM ThinkPad type 2640, being installed with Universal analysis software provided by Hunter Labs Inc:
25g of a speckle particle is poured into a glass cuvette with 4mm path length and SOmm length. Suitable cuvettes may be obtained via Hunter Labs Tnc. The spectrophotometer is calibrated using a light trap and a white tile, according to the operating manual provided with the spectrophotometer and the sample placed in the sample holder. Light reflectance and transmission is then measured: the light reflectance measurements is taken such that it include the specular reflected component (Spec in) and also such that it exclude the specular reflected component (Spec ex). The spectrophotomer generates spectral emission plots which are viewed on the personal computer.
The sparkle index, when used herein, is then: % reflectance (spec in) - %
reflectance (spec ex), where both % reflectance are measured at the peak reflectance wavelength, determined by the computer: this is seen by the maxima on the spectral reflectance emission curve. This typically will differ depending on the colour of the particles. For example, for blue particles using Monastral blue dye the peak wavelength is 460nm; for green particles with Pigmasol green dye, the peak wavelength is 500nm.
The transparency index, when used herein is then: % light transparency at peak wavelength. This is read from the personal computer after measuring transmission analysis on the spectrophotometer.
S
Preferably the speckle particle has a colour saturation, given as a delta saturation of at least 10, preferably at least 30, or even more preferably at least SO or even at least 100.
S
The delta colour saturation or saturation can be determined by any standard measurement used in the art. For example, it can be calculated by the UltraScan XE and Universal software using the standard L,a,b values which are generally used in the art, comparing the colour saturation of a coloured material after colouring, with the colour saturation of the same material prior to colouring.
The colour saturation of the sparkle particle herein is the delta colour saturation which equals the colour saturation of the coloured particle minus the colour saturation of an equivalent uncoloured particle.
The speckled particles of the invention may have any colour. When present in cleaning compositions the speckle may preferably be of another colour than the majority of the other ingredients or particles of the compositions. When used herein, 'colour' includes any shade of white and black. The words colorant, coloured and colouring are to be interpreted accordingly.
In a preferred embodiment, the speckle particle is preferably coloured with a dye, pigment or brightener, or mixtures thereof as described hereinafter.
The speckle particle of the invention has a specific light reflection and/or light transparency. Thereto, the speckle particle comprises preferably a crystalline hydrated inorganic salt, a crystalline organic acid salt, a crystalline organic salt, a crystalline surfactant, saccharide or mixtures thereof.
Preferably the crystalline material of the speckle particle has preferably at least a transparancey and/ or reflection equal to coarse trisodium citrate dihydrate as available from ADM.
Highly preferred crystalline organic salts include carboxylate salts. Also preferred are crystalline polymeric polycarboxylic acids and salts thereof, preferably poly acrylic and/
or malefic acid polymers and salts thereof.
Particular preferred is that the crystalline material comprises trisodium citrate dihydrate, most preferably coloured with a dye.
Preferred hydrated crystalline materials herein are hydrated inorganic salts including hydrated sulphate salt; hydrated carbonate salt; hydrated phosphate salt;
hydrated magnesium salt; hydrated carboxylic acids and/ or salts thereof. Highly preferred are sodium sulphate deca hydrate or hepta hydrate; sodium carbonate monohydrate, hepta hydrate or decahydrate; sodium tripolyphosphate, ortho phosphate, meta phosphate and/
or pyrophosphate with the applicable hydration numbers, in particular mono, di, tri hexa or deca hydrate; magnesium sulphate mono or hepta hydrate, sodium citrate di hydrate or penta hydrate; glucose, maltose, galactose or fructose or mixtures thereof, in particular sugar.
Also useful can be other ingredients commonly employed in detergent compositions which are crystalline materials, such as crystalline silicate, including crystalline layered silicate.
Preferably, the speckle particle comprises at least 20% by weight of the particle of the crystalline hydrated material, preferably at least 50% or even at least 75%, whereby it may be preferred that the particle is substantially free of amorphous material.
WO 00/279$0 PCT/US99/25259 The speckle particle may comprise other ingredients. In one embodiment it is preferred that the speckle particle comprises a binder, to bind the crystalline hydrated material and/
or the colorant.
Preferred hereby may be that the speckle particle is made by agglomerating the binder and the crystalline hydrated material and/ or the colorant.
Any binder material can be used herein. Preferred binders include water, or mixtures of water with other ingredients, such as surfactant pastes. Also useful are liquid or viscous surfactants, polyalkylene glycols, preferably polyethylene glycol, wax and oils.
In one preferred embodiment, the speckle particle a weight average particle size of 400 microns to 2000 microns, preferably from S00 microns to 1400 microns or even from 600 microns to 1180 microns or even 710 microns to 1000 microns.
When the weight average particle size is from 500 to 1400, it may be preferred hereby that at least 70% or even at least 80% or even at least 90% or even substantially all of the particles has a particle size of from 600 microns to 1180 microns. When the weight average particle size is from 600 to 1180, it may be preferred hereby that at least 70% or even at least 80% or even at least 90% or even substantially all of the particles has a particle size of from 710 microns to 1000 microns.
Namely, it has been found that when the speckle particles have an average particle size within these ranges, a smaller amount of speckle particles can be used to obtain the required result. Also, it been found that the use of speckle particles of a specific particle size ensures a more efficient and controlled dyeing of the particles, which enables the effective use of small amounts of dye per particle whilst obtaining a homogeneously dyed particle.
The speckle particles of this particle size may preferably be obtained by binding smaller particles with a binder, for example by agglomeration, as described herein.
They may also be obtained from larger particle size material, for example by grinding this material.
Also, the speckle particle of this particle size may alternatively or additionally be obtained by sieving the particles and selecting the required particle size material.
Other methods for controlling the particle size of crystalline material are known to the skilled person and may also be used to obtain the particles of the required size.
The speckle particle may be coloured by any method known in the art.
Preferably colorant is mixed with the crystalline material, preferably in the presence of a binder. Preferably, the speckle particle herein may be coloured with a colorant, preferably a dye and/ or a brightener by spraying the colorant into a mixing-container or mix drum, containing the speckle particles and optionally drying the coloured speckle particles, preferably in a fluidised-bed.
Dye The speckle particles of the invention are preferably dyed particles. The dye used for dyeing the particles as used herein can be a dye stuff or an aqueous solution of a dye stuff or an non-aqueous solution of or mixture with a dye stuff, for example using a carrier material such as a nonionic surfactant or other organic binder material. The use of an non-aqueous solution may have as an advantage herein that no subsequent drying step is needed when the solution is applied to the speckle particles.
It may be preferred that the dye is an aqueous solution comprising a dyestuff, at any level to obtain suitable dyeing of the particles, preferably such that levels of dye solution are obtained up to 2% by weight of the speckle particle, or more preferably up to 0.5% by weight, as described above. Optionally, the dye also comprising other ingredients such as organic binder materials.
The dyestuff can be any suitable dyestuff. Specific examples of suitable dyestuffs include E104 - food yellow 13 (quinoline yellow), E110 - food yellow 3 (sunset yellow FCF), E131 - food blue 5 (patent blue V), Ultra Marine blue (trade name), E133 -food blue 2 (brilliant blue FCF), E140 - natural green 3 (chlorophyll and chlorphyllins), E141 and Pigment green 7 (chlorinated Cu phthalocyanine). Preferred dyestuffs may be Monastral Blue BV paste (trade name) and/ or Pigmasol Green (trade name).
The speckle particle preferably comprise such a dyestuff or even at low levels, preferably only up to 2% or more preferably up to 1% or even up to 0.7% and it may be preferred that the dye is present a t a level of below 0.5% or even 0.2% or even 0.1 %
by weight of the speckle particle.
Brightener The speckle particle herein may be coloured with a brightener, preferably certain types of hydrophilic optical brighteners.
The speckle particle preferably comprise such a brightener at levels of up to 20% or more preferably up to 10% or even up to S% by weight of the speckle particle.
Hydrophilic optical brighteners useful herein include those having the structural formula:
R~ R2 N H H N
N OON O ~ ~ O NOO N
~N H H N O
R2 S03M S~3M Ri wherein R1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-b-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-CBS-X and Tinopal-I1NPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
When in the above formula, R1 is anilino, R2 is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
This particular brightener species is commercially marketed under the tradename Tinopal 10 SBM-GX by Ciba-Geigy Corporation.
When in the above formula, R1 is anilino, R2 is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species are commercially marketed under the tradename Tinopal-DMS-X and Tinopal AMS-GX by Ciba Geigy Corporation.
Pi ~ment The speckle particle may also comprise as a colorant a pigment. Any pigement suitable for cleaning compositions may be used herein.
Compositions The speckle particle is preferably present in cleaning compositions, preferably granular cleaning compositions. The precise level of speckle particles present in the composition depends in particular on the colour of the degree of light reflection or transparency of the speckle particle, the colour of the speckle particle and the other ingredients of the composition, the particle size of the speckled particles and the other ingredients of the composition, and the application of the composition.
WO 00/Z79$0 PCT/US99/25259 The compositions may comprise the speckle particles at a level any level, but preferably from 0.05% to 50%, more preferably from 0.1% to 30%, more preferably from 0.3%
to 10% by weight of the composition.
The cleaning compositions of the invention are preferably solid laundry, dishwashing or hard-surface cleaning compositions, preferably in the form of granules, extrudates, flakes or tablets.
The cleaning composition may additionalcomprise any conventional ingredient, not being the coloured speckle particles herein, commonly employed in cleaning compositions, preferred ingredeints described herein after.
The speckle particle of the invention is particularly useful in compositions comprising ingredients which do not have the desired product colour, or in compositions comprising hygroscopic ingredients which may absorb moisture and may cause any dye present, to bleed.
The compositions herein thus preferably comprising ingredients such as particles comprising surfactant, enzymes, bleach activators, cellulose derivative or mixtures thereof, which tend to have an undesired colour.
The surfactant containing particles are preferably agglomerates with anionic and/ or nonionic surfactants, preferably with LAS and/ or ethoxylated alcohol surfactants.
Also preferred are particles containing peroxy acid bleach precursors, such as TAED, NAC-OBS, and other OBS- variants, or mixtures thereof.
When a composition herein, containing the speckle particles contains other ingredients in particulate form, it may be preferred that these other particles or part thereof, also have the hereinafter specified weight average particle size, so that a homogeneously distribution of the dye throughout the product can be obtained by reduction of segregation of the particles and thus a reduction of the formation of localised high concentrations of dye.
This will also amount to a reduction of the chance of colour changes in the products, packaging material and moreover of the fabrics in the washing or cleaning process.
Then, in one embodiment, it may be preferred that composition preferably comprises granules whereof at least 60%, more preferably at least 80% of have an average particle size, by weight, of from 600 microns to 1400 microns, preferably from 700 microns to 1100 microns or even 750 to 1000 microns. It may be preferred that the compositions comprises less than 20% or even less than 10% or 5% by weight of particulate components of a particle size of less than 300 microns, or even 450 microns or even 600 microns, and/ or less than 20% or even 10% or even 5% by weight of particulate components of a particle size of more than 1600 microns, or even more than microns or even 1200 microns.
The composition can be made by any method known in the art, including by agglomeration and/ or spray-drying, whereby certain ingredients may be admixed or sprayed-on as described herein. It may be preferred that the composition is made by mixing all or part of the granules, including those made by agglomeration or spray-drying and even the speckle particle of the invention, and subsequently adding a binder and agglomerating the mixture and binder to form agglomerated detergent granules, which may be of the required particle size or which may be sieved to obtain particles of the required size.
The compositions are preferably solid detergents which preferably have a density of at least 350g/litre, more preferably at least 500 g/ litre or even 580 g/ litre.
It may be preferred that the detergent composition herein comprise one or more anionic surfactants and an aluminosilicate builder, whereby it is preferred that only small amounts of the aluminosilicate builder and the anionic surfactant are in an intimate mixture, i.e.
less than 50% or even less than 30% of the total amount of the anionic surfactant and less than 50% or even less than 30% of the total amount of alumnisilicate; it may even be preferred that substantially no anionic surfactant and aluminosilicate builder are in an intimate mixture. Thus, it may be preferred that the composition comprises at least two separate particles which comprise either anionic surfactant or aluminosilicate. 'Intimate mixture' means for the purpose of the invention that the two or more ingredients the component are substantially homogeneously divided in the component or particle.
Namely, it has been found that the solubility and/ or dispensing of the composition is thereby improved.
It may also be preferred that the composition only comprises low levels of aluminosilicate builder, for example less than 10% or even less than 5% by weight of the composition, whereby it is preferred that the composition comprises highly soluble builders, for example sodium citrate or citric acid, carbonate, and/ or crystalline layered silicate.
It may also be preferred that the composition comprises as builder system or as part of the builder system, an agglomerate comprising from 0.5% to 80% by weight a crystalline layered silicate, from 10% to 70% by weight of a surfactant, preferably an anionic surfactant and preferably less than 10% by weight of the agglomerate of free moisture, more preferably 30% to 60% by weight a crystalline layered silicate and 20% to SO% by weight of an anionic surfactant.
Effervescence Component It may be highly preferred that the detergent composition comprises an effervescence component, preferably comprising an acid source and an alkali source capable of reacting together to form a gas upon contact with water, in particular a carbon dioxide gas, formed by reaction of an organic carboxylic acid and a carbonate source. For the purpose of the invention, the ingredients of the effervescence components may be present in an intimate mixture with one another, preferably in the form of a granule or the may be present in separate particles.
It may be preferred that the effervescence component is a particulate component having an average particle size, by weight, of from 700 microns to 1400 microns, preferably from 750 microns to 1100 microns, preferably comprising an acid source and an alkali source.
It may be preferred that the effervescence component is substantially free of water, preferably such that no water has been intimately mixed with the effervescence component or part thereof. or that no water is present other than the moisture of the raw materials themselves. Typically, the level of water in intimate mixture with the effervescence component is below 5% by weight of the total granule, preferably below 3% and more preferably below 1.5%, preferably obtainable by dry-powder compaction or pressure agglomeration.
These preferred dry effervescent particles result in a very fast carbon dioxide production and therefore in accelerated dispersibility and dissolution rate of the granular composition.
The granular compositions of the present invention, as described herein, comprising the dry effervescent granules allow dispensing and dissolution in water of the granular compositions in a shorter period of time and at lower total level of effervescent particles/materials and ensure a faster and more effective delivery of detergent ingredients to the wash.
Suitable acids to be used herein include solid organic, mineral or inorganic acids, salts or derivatives thereof or a mixture thereof. It may be preferred that the acids are mono-, bi-or tri-protonic acids. Such acids include mono- or polycarboxylic acids preferably citric acid, adipic acid, glutaric acid, 3 chetoglutaric acid, citramalic acid, tartaric acid, malefic acid, fumaric acid, malic acid, succinic acid, malonic acid. Such acids are preferably used in their acidic forms, and it may be preferred that their anhydrous forms are used, or mixtures thereof. Derivatives also include ester of the acids.
The effervescence component or source preferably comprises a carbonate source, including carbonate, bicarbonate and percarbonate salts, in particular bicarbonate and/or carbonate. Suitable carbonates to be used herein include carbonate and hydrogen carbonate of potassium, lithium, sodium, and the like amongst which sodium and potassium carbonate are preferred. Suitable bicarbonates to be used herein include any alkali metal salt of bicarbonate like lithium, sodium, potassium and the like, amongst which sodium and potassium bicarbonate are preferred. Bicarbonate may be preferred to 5 carbonate, because it is more-weigh effective, i.e., at parity weigh bicarbonate is a larger C02 "reservoir" than carbonate. However, the choice of carbonate or bicarbonate or mixtures thereof in the dry effervescent granules may be made depending on the pH
desired in the aqueous medium wherein the dry effervescent granules are dissolved. For example where a relative high pH is desired in the aqueous medium (e.g., above pH 9.5) it 10 may be preferred to use carbonate alone or to use a combination of carbonate and bicarbonate wherein the level of carbonate is higher than the level of bicarbonate, typically in a weight ratio of carbonate to bicarbonate from 0.1 to 10, more preferably from 1 to 5 and most preferably from 1 to 2.
1 S Such an effervescence granule may also comprise a binder, including surfactants, such as anionic and nonionic surfactants..
The effervescence component is preferably present in the composition according to the present invention at a level of from 0.5% to 60% by weight, preferably from 2%
to 50%, more preferably from 5% to 45% and preferably such that the acid component is present at a level of from 0.3% to 40%, more preferably from 1.0% to 35%, or even 2%
to 25% or even to 1 S% by weight of the composition.
Surfactant The compositions in accord with the invention preferably contain one or more surfactants selected from anionic, nonionic, cationic, ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
A typical listing of anionic, nonionic, ampholytic, and zwitterionic classes, and species of these surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December 30, 1975. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
Where present, ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
Anionic Surfactant The compositions in accord with the present invention preferably comprise an additional anionic surfactant. Essentially any anionic surfactants useful for detersive purposes can be comprised in the detergent composition. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di-and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate and sulfonate surfactants are preferred.
Highly preferred are surfactants systems comprising a sulfonate and a sulfate surfactant, preferably a linear or branched alkyl benzene sulfonate and alkyl ethoxylsulfates, as described herein, preferably combined with a cationic surfactants as described herein.
Other anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12-C 18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C 14 diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
Anionic Sulfate Surfactant Anionic sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the CS-C17 acyl-N-{C1-C4 alkyl) and -N-(C1-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
Alkyl sulfate surfactants are preferably selected from the linear and branched primary C 1 p-C 1 g alkyl sulfates, more preferably the C 11-C 15 branched chain alkyl sulfates and the C 12-C 14 linear chain alkyl sulfates.
Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C 10-C 1 g alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C11-C 1 g, most preferably C 11-C 15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
A particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and/ or sulfonate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
Anionic Sulfonate Surfactant Anionic sulfonate surfactants suitable for use herein include the salts of CS-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
Anionic Carboxylate Surfactant Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH20)x CH2C00-M+ wherein R is a C6 to C 1 g alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation. Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR1-CHR2-O)-R3 wherein R is a C6 to C1 g alkyl group, x is from 1 to 25, R1 and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid.
Certain soaps may also be included as suds suppressors.
Alkali Metal Sarcosinate Surfactant Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON
(R1) CH2 LOOM, wherein R is a CS-C1~ linear or branched alkyl or alkenyl group, R1 is a C1-C4 alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleoyl methyl sarcosinates in the form of their sodium salts.
Alkox~rlated Nonionic Surfactant Essentially any alkoxylated nonionic surfactants are suitable herein. The ethoxylated and propoxylated nonionic surfactants are preferred.
Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
Nonionic Alkoxylated Alcohol Surfactant The condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
Nonionic Pol~hydroxy FattLAcid Amide Surfactant Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONRIZ wherein : R1 is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable Cl-C4 alkyl, more preferably Cl or C2 alkyl, most preferably C1 alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight-chain C5-C I g alkyl or alkenyl, more preferably straight-chain Cg-C 1 ~
alkyl or alkenyl, most preferably straight-chain C I I -C 1 ~ alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
Nonionic Fatty Acid Amide Surfactant Suitable fatty acid amide surfactants include those having the formula:
R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the group consisting of hydrogen, C 1-C4 alkyl, C 1-C4 5 hydroxyalkyl, and -(C2H40)xH, where x is in the range of from 1 to 3.
Nonionic Alkylpolysaccharide Surfactant Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 10 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
Preferred alkylpolyglycosides have the formula:
15 R20(CnH2n0)t(glycosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8. The glycosyl is 20 preferably derived from glucose.
Amnhoteric Surfactant Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
Suitable amine oxides include those compounds having the formula R3(OR4)xN0(RS)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each RS is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are C 10-C 18 alkyl dimethylamine oxide, and C 10-18 acylamido alkyl dimethylamine oxide.
A suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Conc.
manufactured by Miranol, Inc., Dayton, NJ.
Zwitterionic Surfactant Zwitterionic surfactants can also be incorporated into the detergent compositions in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
Suitable betaines are those compounds having the formula R(R')2N+R2C00-wherein R
is a C6-Clg hydrocarbyl group, each R1 is typically C1-C3 alkyl, and R2 is a hydrocarbyl group. Preferred betaines are C12-18 dimethyl-ammonio hexanoate and the C10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
Cationic Surfactants Suitable cationic surfactants to be used in the detergent herein include the quaternary ammonium surfactants. Preferably the quaternary ammonium surfactant is a mono C 16, preferably Cg-C 10 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
Preferred are also the mono-alkoxylated and bis-alkoxylated amine surfactants.
Another suitable group of cationic surfactants which can be used in the detergent compositions or components thereof herein are cationic ester surfactants. The cationic ester surfactant is a, preferably water dispersible, compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
Suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
In one preferred aspect the ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms. The atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain. Thus spacer groups having, for example, -O-O- (i.e. peroxide), -N-N-, and -N-O- linkages are excluded, whilst spacer groups having, for example -CH2-O- CH2- and -CH2-NH-CH2-linkages are included. In a preferred aspect the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain.
Cationic mono-alkoxylated amine surfactants Highly preferred herein are cationic mono-alkoxylated amine surfactant preferably of the general formula I:
R~ /ApRa _N+ X
R2~ ~.R3 (I) wherein R1 is an alkyl or alkenyl moiety containing from about 6 to about 18 carbon atoms, preferably 6 to about 16 carbon atoms, most preferably from about 6 to about 14 carbon atoms; R2 and R3 are each independently alkyl groups containing from one to about three carbon atoms, preferably methyl, most preferably both R2 and R3 are methyl groups; R4 is selected from hydrogen (preferred), methyl and ethyl; X- is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, to provide electrical neutrality; A is a alkoxy group, especially a ethoxy, propoxy or butoxy group; and p is from 0 to about 30, preferably 2 to about 15, most preferably 2 to about 8.
Preferably the ApR4 group in formula I has p=1 and is a hydroxyalkyl group, having no greater than 6 carbon atoms whereby the -OH group is separated from the quaternary ammonium nitrogen atom by no more than 3 carbon atoms. Particularly preferred ApR4 groups are -CH2CH20H, -CH2CH2CH20H, -CH2CH(CH3)OH and -CH(CH3)CH20H, with -CH2CH20H being particularly preferred. Preferred R1 groups are linear alkyl groups. Linear R1 groups having from 8 to 14 carbon atoms are preferred.
Another highly preferred cationic mono-alkoxylated amine surfactants for use herein are of the formula R1\ /(C H2C H2O )2-S H
\N+ x0 CH3/ \CH3 wherein R1 is C 1 p-C 1 g hydrocarbyl and mixtures thereof, especially C 10-C
14 alkyl, preferably C10 and C12 alkyl, and X is any convenient anion to provide charge balance, preferably chloride or bromide.
As noted, compounds of the foregoing type include those wherein the ethoxy (CH2CH20) units (EO) are replaced by butoxy, isopropoxy [CH(CH3)CH20] and WO 00/27980 PCT/US991x5259 [CH2CH(CH30] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.
The levels of the cationic mono-alkoxylated amine surfactants used in detergent compositions of the invention is preferably from 0.1% to 20%, more preferably from 0.2% to 7%, most preferably from 0.3% to 3.0% by weight of the composition.
Cationic Bis-alkoxylated Amine Surfactant The cationic bis-alkoxylated amine surfactant preferably has the general formula II:
R~ APRs ~N+/
R2~ ~A,qRa (II) wherein R1 is an alkyl or alkenyl moiety containing from about 8 to about 18 carbon atoms, preferably 10 to about 16 carbon atoms, most preferably from about 10 to about 14 carbon atoms; R2 is an alkyl group containing from one to three carbon atoms, preferably methyl; R3 and R4 can vary independently and are selected from hydrogen (preferred), methyl and ethyl, X' is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, sufficient to provide electrical neutrality. A and A' can vary independently and are each selected from C1-C4 alkoxy, especially ethoxy, (i.e., -CH2CH20-), propoxy, butoxy and mixtures thereof; p is from 1 to about 30, preferably 1 to about 4 and q is from 1 to about 30, preferably 1 to about 4, and most preferably both p and q are 1.
Highly preferred cationic bis-alkoxylated amine surfactants for use herein are of the formula R\ +/CH2CH20H
N X
CH / \CH2CH20H
wherein R1 is C 10-C 1 g hydrocarbyl and mixtures thereof, preferably C 1 p, C
12, C 14 alkyl and mixtures thereof. X is any convenient anion to provide charge balance, preferably chloride. With reference to the general cationic bis-alkoxylated amine structure noted above, since in a preferred compound Rl is derived from (coconut) C12-C14 alkyl 5 fraction fatty acids, R2 is methyl and ApR3 and A'qR4 are each monoethoxy.
Other cationic bis-alkoxylated amine surfactants useful herein include compounds of the formula:
t R~N+~(CH2CH20)pH X_ R2~ ~(CH2CH20)qH
10 wherein R1 is C 10-C 1 g hydrocarbyl, preferably C 10-C 14 alkyl, independently p is 1 to about 3 and q is 1 to about 3, R2 is C1-C3 alkyl, preferably methyl, and X is an anion, especially chloride or bromide.
Other compounds of the foregoing type include those wherein the ethoxy (CH2CH20) 15 units (EO) are replaced by butoxy (Bu) isopropoxy [CH(CH3)CH20] and [CH2CH(CH30] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.
Perhydrate Bleaches An preferred additional components of the compositions is a perhydrate bleach, such as metal perborates, metal percarbonates, particularly the sodium salts.
Perborate can be mono or tetra hydrated. Sodium percarbonate has the formula corresponding to 2Na2C03.3H202, and is available commercially as a crystalline solid.
The perhydrate bleach may be coated, for example with sulphate salts or carbonate salts or silicate or mixtures thereof.
Potassium peroxymonopersulfate, sodium per is another optional inorganic perhydrate salt of use in the detergent compositions herein.
Bleach Activator The composition preferably comprises a bleach activator, preferably comprising an organic peroxyacid bleach precursor. It may be preferred that the composition comprises at least two peroxy acid bleach precursors, preferably at least one hydrophobic peroxyacid bleach precursor and at least one hydrophilic peroxy acid bleach precursor, as defined herein.
The bleach activator may also comprise a preformed peroxy acid bleach.
The production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide.
Peroxyacid Bleach Precursor Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid. Generally peroxyacid bleach precursors may be represented as O
X--C-L
WO 00/279$0 PCT/US99/25259 where L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is O
X-C-(30H
For the purpose of the invention, hydrophobic peroxyacid bleach precursors produce a peroxy acid of the formula above wherein X is a group comprising at least 6 carbon atoms and a hydrophilic peroxyacid bleach precursor produces a peroxyacid bleach of the formula above wherein X is a group comprising 1 to 5 carbon atoms.
Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1 % to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
Suitable peroxyacid bleach precursor compounds typically contain one or more N-or O-acyl groups, which precursors can be selected from a wide range of classes.
Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
Leaving Groups The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
2$
Preferred L groups are selected from the group consisting of Y R3 RaY
-O ~ , -O ~ Y , and -O
-N-C-R - ~ -N-C-CH-R
R3 ~ R3 Y , I
Y
I I
-O-C H=C-C H=C H2 -O-C H=C-C H----C H2 p Y O
O 1 -NCH2-C NR4 -N~ /NR4 O-C R ~C~ , '~'C
p O
-O-C=CHR4 , and -N-S-CH-R4 R~ O
and mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, and Y is H or a solubilizing group. Any of R1, R3 and R4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups.
The preferred solubilizing groups are -S03 M+, -C02 M+, -S04 M+, -N+(R3)4X and O<--N(R3)3 and most preferably -S03 M+ and -C02 M+ wherein R3 is an alkyl chain containing from 1 to 4 carbon atoms, M is a canon which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator.
Preferably, M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
Alk~ Percarboxylic Acid Bleach Precursors Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
Preferred precursors of this type provide peracetic acid on perhydrolysis.
Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains l, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred as hydrophilic peroxy acid bleach precursor.
Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (HOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
Amide Substituted Plkyl Peroxyacid Precursors Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
R~ CN-R2-C-L R~ -N-C-R2-C-L
O Rb O or R~ O O
wherein R1 is an aryl or alkaryl group with from about 1 to about 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from about 1 to 14 carbon atoms, and RS is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. R1 preferably contains from about 6 to 12 carbon 10 atoms. R2 preferably contains from about 4 to 8 carbon atoms. R1 may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R2.
R2 can include alkyl, aryl, wherein said R2 may also contain halogen, nitrogen, sulphur and other 15 typical substituent groups or organic compounds. RS is preferably H or methyl. RI and RS should not contain more than I 8 carbon atoms total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386. It can be preferred that R1 and RS forms together with the nitrogen and carbon atom a ring structure.
20 Preferred examples of bleach precursors of this type include amide substituted peroxyacid precursor compounds selected from (6-octanamido-caproyl)oxybenzenesulfonate, {6-decanamido-caproyl) oxybenzene- sulfonate, and the highly preferred (6-nonanamidocaproyl)oxy benzene sulfonate, and mixtures thereof as described in EP-A-0170386.
Perbenzoic Acid Precursor Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted areas. Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole. Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
Preformed Or,~~anic Peroxyacid The detergent composition may contain, in addition to, ar as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1 % to 1 S% by weight, more preferably from 1 % to 10% by weight of the composition.
A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
R~ CN-R2--COOH R~ -NCR2COOH
O R5 O or R5 O O
wherein R1 is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and RS is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
Heavy metal ion sequestrant The compositions of the invention preferably contain as an optional component a heavy metal ion sequestrant or chelant or chelating agent. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions.
These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
Heavy metal ion sequestrants are generally present at a level of from 0.005%
to 10%, preferably from 0.1% to 5%, more preferably from 0.25% to 7.5% and most preferably from 0.3% to 2% by weight of the compositions or component Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate, 1,1 hydroxyethane diphosphonic acid and 1,1 hydroxyethane dimethylene phosphoric acid.
Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133. The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The ~3-alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are alos suitable. Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
Especially preferred are diethylenetriamine pentacetic acid, ethylenediamine-N,N'-disuccinic acid (EDDS) and 1,1 hydroxyethane diphosphonic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
In particular the chelating agents comprising a amino or amine group can be bleach-sensitive and are suitable in the compositions of the invention.
E
Another highly preferred ingredient useful in the compositions herein is one or more additional enzymes.
Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S
(Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticiean and Optimase by Solvay Enzymes. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001%
to 4%
active enzyme by weight of the composition.
Preferred amylases include, for example, a-amylases obtained from a special strain of B
licheniformis, described in more detail in GB-1,269,839 (Novo). Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl, Duramyl and BAN by Novo Industries A/S. Highly preferred amylase enzymes maybe those described in PCT/
US
9703635, and in W095/26397 and W096/23873.
Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001 % to 2% active enzyme by weight of the composition.
Lipolytic enzyme may be present at levels of active lipolytic enzyme of from 0.0001 % to 2% by weight, preferably 0.001 % to 1 % by weight, most preferably from 0.001 % to 0.5%
by weight of the compositions.
The lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Thermomvces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein. A
preferred lipase is derived from Pseudomonas pseudoalcaligenes, which is described in Granted European Patent, EP-B-0218272.
Another preferred lipase herein is obtained by cloning the gene from Humicola lams ig nosa 10 and expressing the gene in Asper ig llus oryza, as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S.
Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
1 S Optical Bri tener The compositions herein also preferably contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners, as mentioned above.
20 Photo-bleaching agent Photo-bleaching agents are preferred ingredients of the compositions herein.
Preferred photo-bleaching agent herein comprise a compounds having a porphin or porphyrin structure.
25 Porphin and porphyrin, in the literature, are used as synonyms, but conventionally porphin stands for the simplest porphyrin without any substituents; wherein porphyrin is a sub-class of porphin. The references to porphin in this application will include porphyrin.
The porphin structures preferably comprise a metal element or cation, preferably Ca, Mg, 30 P, Ti, Cr, Zr, In, Sn or Hf, more preferably Ge, Si or Ga, or more preferably Al , most preferably Zn.
It can be preferred that the photo-bleaching compound or component is substituted with substituents selected from alkyl groups such as methyl, ethyl, propyl, t-butyl group and aromatic ring systems such as pyridyl, pyridyl-N-oxide, phenyl, naphthyl and anthracyl moieties.
The photo-bleaching compound or component can have solubilizing groups as substituents. Alternatively, or in addition hereto the photo-bleaching agent can comprise a polymeric component capable of solubilizing the photo-bleaching compound, for example PVP, PVNP, PVI or co-polymers thereof or mixtures thereof.
Highly preferred photo-bleaching compounds are compounds having a phthalocyanine structure, which preferably have the metal elements or cations described above.
Metal phthaIocyanines and their derivatives have the structure indicated in Figure 1 andlor Figure 2, wherein the atom positions of the phthalocyanine structure are numbered conventionally.
The phthalocyanines can be substituted for example the phthalocyanine structures which are substituted at one or more of the 1-4, 6, 8-11, 13, 15-18, 20, 22-25, 27 atom positions.
Water-Soluble Builder Compound The compositions in accord with the present invention preferably contain a water-soluble builder compound, typically present in detergent compositions at a level of from 1% to 80% by weight, preferably from 10% to 60% by weight, most preferably from 15%
to 40% by weight of the composition.
The detergent compositions of the invention preferably comprise phosphate-containing builder material. Preferably present at a level of from O.S% to 60%, more preferably from 5% to 50%, more preferably from 8% to 40.
The phosphate-containing builder material preferably comprises tetrasodium pyrophosphate or even more preferably anhydrous sodium tripolyphosphate.
Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, malefic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
Polycarboxylates or their acids containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No.
1,387,447.
The most preferred polycarboxylic acid containing three carboxy groups is citric acid, preferably present at a level of from 0.1% to 15%, more preferably from 0.5%
to 8% by weight of the composition.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane WO 00/Z~980 PCTNS99/25259 tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos.
1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions are useful water-soluble builders herein.
Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
Partially Soluble or Insoluble Builder Compound The compositions in accord with the present invention may contain a partially soluble or insoluble builder compound, typically present in detergent compositions at a level of from 0.5% to 60% by weight, preferably from 5% to 50% by weight, most preferably from 8%
to 40% weight of the composition.
Examples of largely water insoluble builders include the sodium aluminosilicates. As mentioned above, it may be preferred in one mbodiment of the inevntion, that only small amounts of alumino silicate builder are present.
Suitable aluminosilicate zeolites have the unit cell formula Naz[(A102)z{Si02)yJ. xH20 wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicate material S are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
The aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula:
Na 12 [A102) 12 (Si02)12J. xH20 wherein x is from 20 to 30, especially 27. Zeolite X has the formula Nag6 [(A102)g6(Si02)106J~ 276 H20.
Another preferred aluminosilicate zeolite is zeolite MAP builder.
The zeolite MAP can be present at a level of from 1% to 80%, more preferably from , 15% to 40% by weight of the compositions.
Zeolite MAP is described in EP 384070A (Unilever). It is defined as an alkali metal alumino-silicate of the zeolite P type having a silicon to aluminium ratio not greater than 1.33, preferably within the range from 0.9 to 1.33 and more preferably within the range of from 0.9 to 1.2.
Of particular interest is zeolite MAP having a silicon to aluminium ratio not greater than 1.15 and, more particularly, not greater than 1.07.
wo oon~9so Pc~nus99nsis9 In a preferred aspect the zeolite MAP detergent builder has a particle size, expressed as a ds0 value of from 1.0 to 10.0 micrometres, more preferably from 2.0 to 7.0 micrometres, most preferably from 2.S to S.0 micrometres.
5 The dsp value indicates that SO% by weight of the particles have a diameter smaller than that figure. The particle size may, in particular be determined by conventional analytical techniques such as microscopic determination using a scanning electron microscope or by means of a laser granulometer. Other methods of establishing dS0 values are disclosed in EP 384070A.
Organic Polymeric Compound Organic polymeric compounds are preferred additional components of the compositions herein and are preferably present as components of any particulate components where they may act such as to bind the particulate component together. By organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein, including quaternised ethoxylated (poly) amine clay-soil removal/ anti-redeposition agent in accord with the invention.
Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.01 % to 30%, preferably from 0.1 % to 1 S%, most preferably from O.S% to 10% by weight of the compositions.
Examples of organic polymeric compounds include the water soluble organic homo-or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756.
Examples of such salts are polyacrylates of MWt 1000-5000 and their copolymers with malefic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
The polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
Terpolymers containing monomer units selected from malefic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.
Other organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.
Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
Highly preferred polymeric components herein are cotton and non-cotton soil release polymer according to U.S. Patent 4,968,451, Scheibel et al., and U.S. Patent 5,415,807, Gosselink et al., and in particular according to US application no.60/051517.
Another organic compound, which is a preferred clay dispersant/ anti-redeposition agent, for use herein, can be the ethoxylated cationic monoamines and diamines of the formula:
CH3 i H3 X-(--OCH2CH2)n i +.-CHZ-CH2 -~CH2)a b i +-CH2CH20~X
(CH2CH20-j~ X (CH2CH20-~X
wherein X is a nonionic group selected from the group consisting of H, C1-C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof, a is from 0 to 20, preferably from 0 to 4 (e.g. ethylene, propylene, hexamethylene) b is 1 or 0; for cationic monoamines (b=0), n is at least 16, with a typical range of from 20 to 35; for cationic diamines (b=1), n is at least about 12 with a typical range of from about 12 to about 42.
Other dispersants/ anti-redeposition agents for use herein are described in EP-and US 4,659,802 and US 4,664,$48.
Suds Su~nressin~S,~rstem The detergent compositions of the invention, when formulated for use in machine washing compositions, may comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.02% to 10%, most preferably from 0.05% to 3%
by weight of the composition.
Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component.
Such silicone antifoam compounds also typically contain a silica component.
The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types. Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C1 g-C4p ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
A preferred suds suppressing system comprises:
(a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination (i) polydimethyl siloxane, at a level of from 50% to 99%, preferably 75% to 95% by weight of the silicone antifoam compound; and (ii) silica, at a level of from 1 % to 50%, preferably 5% to 25% by weight of the siliconelsilica antifoam compound;
wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight;
(b) a dispersant compound, most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1 % to 10% by weight; a particularly preferred silicone glycol rake copolymer of this type is DC0544, commercially available from DOW Corning under the tradename DC0544;
(c) an inert earner fluid compound, most preferably comprising a C16-C18 ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;
A highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms. EP-A-0210721 discloses other preferred particulate suds suppressing 10 systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
Other highly preferred suds suppressing systems comprise polydimethylsiloxane or 15 mixtures of silicone, such as polydimethylsiloxane, aluminosilicate and polycarboxylic polymers, such as copolymers of laic and acrylic acid.
Polymeric Dye Transfer Inhibiting Agents 20 The compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05%
to 0.5% by weight of polymeric dye transfer inhibiting agents.
The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, 25 polyvinylpyrrolidonepolymers or combinations thereof, whereby these polymers can be cross-linked polymers.
Pol~cneric Soil Release Agent Polymeric soil release agents, hereinafter "SRA", can optionally be employed in the present compositions. If utilized, SRA's will generally comprise from 0.01% to 10.0%, typically from 0.1% to 5%, preferably from 0.2% to 3.0% by weight, of the compositions.
Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments.
This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures.
Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide. Such esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without, of course, forming a densely crosslinked overall structure.
Suitable SRA's include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P.
Gosselink. Such ester oligomers can be prepared by: (a) ethoxylating allyl alcohol; (b) reacting the product of (a) with dimethyl terephthalate ("DMT") and 1,2-propylene glycol ("PG") in a two-stage transesterification/oligomerization procedure; and (c) reacting the product of (b) with sodium metabisulfite in water. Other SRA's include the nonionic end-capped 1,2-propylene/polyoxyethylene terephthalate polyesters of U.S.
4,711,730, December 8, 1987 to Gosselink et al., for example those produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG"). Other examples of SRA's include: the partly- and fully-anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S. 4,702,857, October 27, 1987 to Gosselink, for example produced from DMT, methyl (Me)-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S. 4,877,896, October 31, 1989 to Maldonado, Gosselink et al., the latter being typical of SRA's useful in both laundry and fabric conditioning products, an example being an ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT, optionally but preferably further comprising added PEG, e.g., PEG 3400.
SRA's also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S.
3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975;
cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL
from Dow; the C1-C4 alkyl celluloses and C4 hydroxyalkyl ceiluloses, see U.S.
4,000,093, December 28, 1976 to Nicol, et al.; and the methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20°C as a 2%
aqueous solution. Such materials are available as METOLOSE SM100 and METOLOSE
SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
Additional classes of SRA's include: (I) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S. 4,201,824, Violland et al. and U.S. 4,240,918 Lagasse et al.; and (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With the proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage. Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S. 4,525,524 Tung et al.. Other classes include:
(>I17 anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201,824, Violland et al.;
Other Optional Ingedients Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes and filler salts, with sodium sulfate being a preferred filler salt.
Highly preferred compositions contain from about 2% to about 10% by weight of an organic acid, preferably citric acid. Also, preferably combined with a carbonate salt, minor amounts (e.g., less than about 20% by weight) of neutralizing agents, buffering agents, phase regulants, hydrotropes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides can be present.
Form of the Compositions The composition of the invention can be made via a variety of methods, including dry-mixing, agglomerating, compaction, or spray-drying of the various compounds comprised in the detergent component, or mixtures of these techniques.
The compositions herein can take a variety of physical forms including liquid, but preferably solid forms such as tablet, flake, pastille and bar, and preferably granular forms.
The compositions in accord with the present invention can also be used in or in combination with bleach additive compositions, for example comprising chlorine bleach.
Example I
The following speckle particle is a preferred speckle particle of the invention.
coarse sodium citrate dihydrate ex ADM are mixed with Monastral blue BV paste solution in a mixing drum, by spraying the dye paste solution into the drum containing the sodium citrate particles. The coloured particles are subsequently dried, obtaining speckle particles comprising 1000ppm of dye.
Measurements:
Sodium citrate dihydrate crystals with Monastral blue dye was found to have, as measured with the method set out herein:
sparkle index = 10.4%
transparency value = 22%
delta colour saturation = 120 Sodium citrate dihydrate crystals with Pigmasol green dye was found to have, as measured with the method set out herein:
sparkle index = 10.1 transparency value = 22%
delta colour saturation = 63 Abbreviations used in the Granular Detergent Composition Examples In the detergent compositions, the abbreviated component identifications have the following meanings:
LAS : Sodium linear C11-13 alkyl benzene sulfonate TAS : Sodium tallow alkyl sulfate CxyAS : Sodium C 1 x - C 1 y alkyl sulfate C46SAS . Sodium C 14 - C 16 secondary (2,3) alkyl sulfate CxyEzS : Sodium Clx-Cly alkyl sulfate condensed with z moles of ethylene oxide CxyEz . C 1 x-C 1 y predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide QAS . R2.N+(CH3)2(C2H40H} with R2 = C12 - C14 QAS 1 . R2.N-~-(CH3)2(C2H40H} with R2 = C8 - C 11 APA . C8 - C10 amido propyl dimethyl amine Soap : Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut fatty acids STS : Sodium toluene sulphonate 5 CFAA . C 12-C 14 (coco) alkyl N-methyl glucamide TFAA . C16-C18 alkyl N-methyl glucamide TPKFA : C12-C14 topped whole cut fatty acids STPP : Anhydrous sodium tripolyphosphate TSPP : Tetrasodium pyrophosphate 10 Zeolite A Hydrated sodium aluminosilicate of formula :
Nal2(A102Si02)12.27H20 having a primary particle size in the range from 0.1 to 10 micrometers (weight expressed on an anhydrous basis) NaSKS-6 . Crystalline layered silicate of formula 8- Na2Si2O5 15 Citric acid Anhydrous citric acid :
Borate : Sodium borate Carbonate Anydrous sodium carbonate with a particle size : between 200pm and 900pm Bicarbonate Anhydrous sodium bicarbonate with a particle : size distribution 20 between 400pm and 1200um Silicate : Amorphous sodium silicate {Si02:Na20 = 2.0:1 ) Sulfate . Anhydrous sodium sulfate Mg sulfate Anhydrous magnesium sulfate .
Citrate . Tri-sodium citrate dihydrate of activity 86.4%
with a particle size 25 distribution between 425pm and 850p.m MA/AA : Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 70,000 MA/AA (I) Copolymer of 4:6 maleic/acrylic acid, average : molecular weight about 10,000 30 AA : Sodium polyacrylate polymer of average molecular weight 4,500 CMC . Sodium carboxymethyl cellulose Cellulose ether . Methyl cellulose ether with a degree of polymerization of 650 available from Shin Etsu Chemicals Protease : Proteolytic enzyme, having 3.3% by weight of active enzyme, sold by NOVO Industries A/~ under the tradename Savinase Protease I : Proteolytic enzyme, having 4% by weight of active enzyme, as described in WO 95/10591, sold by Genencor Int.
Inc.
Alcalase : Proteolytic enzyme, having 5.3% by weight of active enzyme, sold by NOVO Industries A/S
Cellulase Cellulytic enzyme, having 0.23% by weight of : active enzyme, sold by NOVO Industries A/S under the tradename Carezyme Amylase . Amylolytic enzyme, having 1.6% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Termamyl Lipase : Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Lipase ( 1 ) Lipolytic enzyme, having 2.0% by weight of active . enzyme, sold by NOVO Industries A/S under the tradename Lipolase Ultra Endolase : Endoglucanase enzyme, having 1.5% by weight of active enzyme, sold by NOVO Industries A/S
PB4 : Particle containing sodium perborate tetrahydrate of nominal formula NaB02.3H2 O, the particles having a weight average particle size of 950 microns, 85% particles having a particle size of from 850 microns to 950 microns PB1 : Particle containing anhydrous sodium perborate bleach of nominal formula NaB02.H 202, the particles having a weight average particle size of 800 microns, 85% particles having a particle size of from 750 microns to 950 microns Percarbonate Particle containing sodium percarbonate of nominal . formula 2Na2C03.3H2O2, the particles having a weight average particle size of 850 microns, 95% particles having a particle size of from 750 microns to 950 microns NOBS . Particle comprising nonanoyloxybenzene sulfonate in the form of the sodium salt, the particles having a weight average particle size of 750 microns to 900 microns NAC-OBS : Particle comprising (6-nonamidocaproyl) oxybenzene sulfonate, the particles having a weight average particle size of from 825 microns to 875 microns TAED I . Particle containing tetraacetylethylenediamine, the particles having a weight average particle size of from 700 microns to 1000 microns TAED II . Tetraacetylethylenediamine of a particle size from 150 microns to 600 microns DTPA : Diethylene triamine pentaacetic acid DTPMP : Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Tradename bequest 2060 Photoactivated Sulfonated zinc phthlocyanine encapsulated in : bleach ( 1 ) dextrin soluble polymer Photoactivated : Sulfonated alumino phthlocyanine encapsulated in bleach (2) dextrin soluble polymer Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl .
Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2-:
yl)amino) stilbene-2:2'-disulfonate EDDS : Ethylenediamine-N,N'-disuccinic acid, (S,S) isomer in the form of its sodium salt.
HEDP . 1,1-hydroxyethane diphosphonic acid PEGx : Polyethylene glycol, with a molecular weight of x (typically 4,000) PEO : Polyethylene oxide, with an average molecular weight of 50,000 TEPAE : Tetraethylenepentaamine ethoxylate PVI . Polyvinyl imidosole, with an average molecular weight of 20,000 PVP : Polyvinylpyrolidone polymer, with an average molecular weight of 60,000 PVNO : Polyvinylpyridine N-oxide polymer, with an average molecular weight of 50,000 PVPVI . Copolymer of polyvinylpyrolidone and vinylimidazole, with an average molecular weight of 20,000 QEA : bis((C2H50){C2H40)n)(CH3) -N+-C6H12-N+-(CH3) bis((C2H50)-(C2H4 O))n, wherein n = from 20 to SRP 1 : Anionically end capped~poly esters SRP 2 : Diethoxylated poly (l, 2 propylene terephtalate) short block polymer PEI : Polyethyleneimine with an average molecular weight of 1800 and an average ethoxylation degree of 7 ethyleneoxy residues per nitrogen Silicone antifoam . Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1 Opacifier . Water based monostyrene latex mixture, sold by BASF
Aktiengesellschaft under the tradename Lytron 621 Wax . Paraffin wax Speckle : as made in examplel In the following examples all levels are quoted as % by weight of the composition:
TABLE I
The following compositions are in accordance with the invention.
F
S ra -dried Granules AS 10.0 10.015.0 5.0 5.0 10.0 AS 1.0 BAS 5.0 5.0 45AS 1.0 2.0 .0 4535 1.0 AS 1.0 1.0 TPA, HEDP and/or.3 .3 0.5 .3 DDS
gS04 .5 .5 .1 Sodium citrate .0 5.0 Sodium carbonate10.0 .0 15.0 10.0 Sodium sulphate 5.0 5.0 5.0 .0 Sodium silicate .0 1.6R
eolite A 16.0 18.0 0.0 0.0 SKS-6 3.0 S.0 A/AA or AA 1.0 .0 11.0 .0 EG 4000 .0 1.0 1.0 EA 1.0 1.0 rightener .OS .OS .OS .OS
ilicone oil .O1 .O1 .O1 .O1 lomerate AS .0 .0 BAS 1.0 45AS .0 1.0 .5 Carbonate .0 1.0 1.0 1.0 Sodium citrate 5.0 CFAA
Citric acid .0 1.0 1.0 QEA .0 .0 1.0 RP 1.0 1.0 .2 eolite A 15.0 6.0 1 16.0 S.0 Sodium silicate EG .0 uilder A lomerates SKS-6 6.0 .0 3.0 .0 10.0 AS .0 5.0 5.0 3.0 10.012.0 -add articulate com onents aleic 8.0 10.0 10.0 .0 8.0 .0 .0 .0 acid/carbonate/bicarbon ate (40:20:40) QEA 0.2 0.5 ACAOBS 3.0 4.5 .5 OBS 1.0 3.0 3.0 5.0 AED I .5 1.5 .5 6.5 1.5 BAS 8.0 8.0 .0 LAS (flake) 10.0 10.0 8.0 S ra -on rightener 0.2 .2 0.3 .1 0.2 0.1 .6 0.3 E7 0.5 0.7 erfume 1.0 0.5 1.1 .8 0.3 0.5 0.3 .5 -add Citrate 0.0 .0 5.0 1 5.0 S.0 ercarbonate I5.0 3.0 6.0 10.0 4.0 18.05.0 erborate 6.0 18.0 hotobleach .02 0.02 .02 0.1 0.05 - ~.3 - 0.03 ~ ~ 1 nzymes (cellulase,1.3 .3 .5 0.5 .8 .0 0.5 0.16 0.2 amylase, protease, lipase) Carbonate .0 10.0 5.0 8.0 10.0 5.0 erfume (encapsulated) 0.5 .5 .3 .2 Suds suppressor 1.0 .6 0.3 .10 0.5 1.0 0.3 1.2 oap .S 0.2 .3 3.0 .5 0.3 itric acid .0 .0 5.0 Speckle .5 0,3 .0 1.0 5.0 .5 1.5 .8 1.0 SKS-6 .0 .0 fillers up to 100%
TABLE II
The following compositions are in accordance with the invention.
C ~ F G H
S ra -Dried Granules AS 10.0 10.0 16.0 5.0 5.0 10.0 AS 1.0 BAS 5.0 5.0 C45AS 1.0 2.0 .0 4535 1.0 AS 1.0 1.0 TPA, HEDP and/or.3 0.3 0.3 0.3 DDS
gS04 .5 0.4 .1 odium citrate 10.0 12.0 17.0 3.0 5.0 odium carbonate 15.0 8.0 15.0 10.0 Sodium sulphate 5.0 5.0 ~ 1 5.0 3.0 I I ~ 1 Sodium silicate .0 1.6R
eolite A .0 KS-6 3.0 5.0 A/AA or AA 1.0 .0 10.0 .0 EG 4000 .0 1.0 1.0 EA 1.0 1.0 rightener .OS .OS .OS .OS
ilicone oil .O1 .O1 0.01 .O1 lomerate AS .0 .0 AS 1.0 45AS .0 1.0 .5 arbonate .0 1.0 1.0 1.0 Sodium citrate 5.0 CFAA
Citric acid .0 1.0 1.0 EA .0 .0 1.0 RP 1.0 1.0 0.2 eolite A 15.0 6.0 15.016.0 Sodium silicate EG 4.0 TAED II 3.0 1.5 uilder A lomerate KS-6 .0 5.0 .0 .0 7.0 10.0 AS .0 S.0 .0 3.0 10.012.0 -add particulate com onents aleic acid/ 8.0 10.0 .0 .0 .0 .0 2.0 .0 arbonate/bicarbonate 40:20:40) QEA .2 .S
ACAOBS .0 1.S S.S
OBS/ LOBS/ DOBS 3.0 3.0 S.0 AED I .S 1.S .S 6.S 1.S
BAS 8.0 8.0 .0 AS (flake) 8.0 S ra -on rightener .2 0.2 0.3 0.1 .2 .6 7 .S .7 erfume .8 .S 0.8 O.S 1.0 -add itrate .0 3.0 .0 S.0 15.0 S.0 ercarbonate 1 3.0 .0 10.0 12.0 18.0S.0 S.0 erborate .0 18.0 hotobleach .02 .02 .02 .l 0.05 .3 .03 nzymes (cellulase,1.S .3 .S O.S 0.8 .0 .S .16 0.2 amylase, protease, ipase) Carbonate S.0 8.0 10.0S.0 erfume (encapsulated)0.6 O.S O.S 0.3 O.S 0.2 0.1 0.6 Suds suppressor 1.0 0.6 0.3 .10 O.S 1.0 0.3 1.2 ~~Soap O.S 0.2 0.3 .0 .5 0.3 yV0 00/2?980 PCT/US99/25259 Citric acid .0 .0 5.0 Speckle 0.5 .5 5.0 .0 .2 .S .S .5 1.0 SKS-6 .0 6.0 fillers up to 100%
This particular brightener species is commercially marketed under the tradename Tinopal 10 SBM-GX by Ciba-Geigy Corporation.
When in the above formula, R1 is anilino, R2 is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species are commercially marketed under the tradename Tinopal-DMS-X and Tinopal AMS-GX by Ciba Geigy Corporation.
Pi ~ment The speckle particle may also comprise as a colorant a pigment. Any pigement suitable for cleaning compositions may be used herein.
Compositions The speckle particle is preferably present in cleaning compositions, preferably granular cleaning compositions. The precise level of speckle particles present in the composition depends in particular on the colour of the degree of light reflection or transparency of the speckle particle, the colour of the speckle particle and the other ingredients of the composition, the particle size of the speckled particles and the other ingredients of the composition, and the application of the composition.
WO 00/Z79$0 PCT/US99/25259 The compositions may comprise the speckle particles at a level any level, but preferably from 0.05% to 50%, more preferably from 0.1% to 30%, more preferably from 0.3%
to 10% by weight of the composition.
The cleaning compositions of the invention are preferably solid laundry, dishwashing or hard-surface cleaning compositions, preferably in the form of granules, extrudates, flakes or tablets.
The cleaning composition may additionalcomprise any conventional ingredient, not being the coloured speckle particles herein, commonly employed in cleaning compositions, preferred ingredeints described herein after.
The speckle particle of the invention is particularly useful in compositions comprising ingredients which do not have the desired product colour, or in compositions comprising hygroscopic ingredients which may absorb moisture and may cause any dye present, to bleed.
The compositions herein thus preferably comprising ingredients such as particles comprising surfactant, enzymes, bleach activators, cellulose derivative or mixtures thereof, which tend to have an undesired colour.
The surfactant containing particles are preferably agglomerates with anionic and/ or nonionic surfactants, preferably with LAS and/ or ethoxylated alcohol surfactants.
Also preferred are particles containing peroxy acid bleach precursors, such as TAED, NAC-OBS, and other OBS- variants, or mixtures thereof.
When a composition herein, containing the speckle particles contains other ingredients in particulate form, it may be preferred that these other particles or part thereof, also have the hereinafter specified weight average particle size, so that a homogeneously distribution of the dye throughout the product can be obtained by reduction of segregation of the particles and thus a reduction of the formation of localised high concentrations of dye.
This will also amount to a reduction of the chance of colour changes in the products, packaging material and moreover of the fabrics in the washing or cleaning process.
Then, in one embodiment, it may be preferred that composition preferably comprises granules whereof at least 60%, more preferably at least 80% of have an average particle size, by weight, of from 600 microns to 1400 microns, preferably from 700 microns to 1100 microns or even 750 to 1000 microns. It may be preferred that the compositions comprises less than 20% or even less than 10% or 5% by weight of particulate components of a particle size of less than 300 microns, or even 450 microns or even 600 microns, and/ or less than 20% or even 10% or even 5% by weight of particulate components of a particle size of more than 1600 microns, or even more than microns or even 1200 microns.
The composition can be made by any method known in the art, including by agglomeration and/ or spray-drying, whereby certain ingredients may be admixed or sprayed-on as described herein. It may be preferred that the composition is made by mixing all or part of the granules, including those made by agglomeration or spray-drying and even the speckle particle of the invention, and subsequently adding a binder and agglomerating the mixture and binder to form agglomerated detergent granules, which may be of the required particle size or which may be sieved to obtain particles of the required size.
The compositions are preferably solid detergents which preferably have a density of at least 350g/litre, more preferably at least 500 g/ litre or even 580 g/ litre.
It may be preferred that the detergent composition herein comprise one or more anionic surfactants and an aluminosilicate builder, whereby it is preferred that only small amounts of the aluminosilicate builder and the anionic surfactant are in an intimate mixture, i.e.
less than 50% or even less than 30% of the total amount of the anionic surfactant and less than 50% or even less than 30% of the total amount of alumnisilicate; it may even be preferred that substantially no anionic surfactant and aluminosilicate builder are in an intimate mixture. Thus, it may be preferred that the composition comprises at least two separate particles which comprise either anionic surfactant or aluminosilicate. 'Intimate mixture' means for the purpose of the invention that the two or more ingredients the component are substantially homogeneously divided in the component or particle.
Namely, it has been found that the solubility and/ or dispensing of the composition is thereby improved.
It may also be preferred that the composition only comprises low levels of aluminosilicate builder, for example less than 10% or even less than 5% by weight of the composition, whereby it is preferred that the composition comprises highly soluble builders, for example sodium citrate or citric acid, carbonate, and/ or crystalline layered silicate.
It may also be preferred that the composition comprises as builder system or as part of the builder system, an agglomerate comprising from 0.5% to 80% by weight a crystalline layered silicate, from 10% to 70% by weight of a surfactant, preferably an anionic surfactant and preferably less than 10% by weight of the agglomerate of free moisture, more preferably 30% to 60% by weight a crystalline layered silicate and 20% to SO% by weight of an anionic surfactant.
Effervescence Component It may be highly preferred that the detergent composition comprises an effervescence component, preferably comprising an acid source and an alkali source capable of reacting together to form a gas upon contact with water, in particular a carbon dioxide gas, formed by reaction of an organic carboxylic acid and a carbonate source. For the purpose of the invention, the ingredients of the effervescence components may be present in an intimate mixture with one another, preferably in the form of a granule or the may be present in separate particles.
It may be preferred that the effervescence component is a particulate component having an average particle size, by weight, of from 700 microns to 1400 microns, preferably from 750 microns to 1100 microns, preferably comprising an acid source and an alkali source.
It may be preferred that the effervescence component is substantially free of water, preferably such that no water has been intimately mixed with the effervescence component or part thereof. or that no water is present other than the moisture of the raw materials themselves. Typically, the level of water in intimate mixture with the effervescence component is below 5% by weight of the total granule, preferably below 3% and more preferably below 1.5%, preferably obtainable by dry-powder compaction or pressure agglomeration.
These preferred dry effervescent particles result in a very fast carbon dioxide production and therefore in accelerated dispersibility and dissolution rate of the granular composition.
The granular compositions of the present invention, as described herein, comprising the dry effervescent granules allow dispensing and dissolution in water of the granular compositions in a shorter period of time and at lower total level of effervescent particles/materials and ensure a faster and more effective delivery of detergent ingredients to the wash.
Suitable acids to be used herein include solid organic, mineral or inorganic acids, salts or derivatives thereof or a mixture thereof. It may be preferred that the acids are mono-, bi-or tri-protonic acids. Such acids include mono- or polycarboxylic acids preferably citric acid, adipic acid, glutaric acid, 3 chetoglutaric acid, citramalic acid, tartaric acid, malefic acid, fumaric acid, malic acid, succinic acid, malonic acid. Such acids are preferably used in their acidic forms, and it may be preferred that their anhydrous forms are used, or mixtures thereof. Derivatives also include ester of the acids.
The effervescence component or source preferably comprises a carbonate source, including carbonate, bicarbonate and percarbonate salts, in particular bicarbonate and/or carbonate. Suitable carbonates to be used herein include carbonate and hydrogen carbonate of potassium, lithium, sodium, and the like amongst which sodium and potassium carbonate are preferred. Suitable bicarbonates to be used herein include any alkali metal salt of bicarbonate like lithium, sodium, potassium and the like, amongst which sodium and potassium bicarbonate are preferred. Bicarbonate may be preferred to 5 carbonate, because it is more-weigh effective, i.e., at parity weigh bicarbonate is a larger C02 "reservoir" than carbonate. However, the choice of carbonate or bicarbonate or mixtures thereof in the dry effervescent granules may be made depending on the pH
desired in the aqueous medium wherein the dry effervescent granules are dissolved. For example where a relative high pH is desired in the aqueous medium (e.g., above pH 9.5) it 10 may be preferred to use carbonate alone or to use a combination of carbonate and bicarbonate wherein the level of carbonate is higher than the level of bicarbonate, typically in a weight ratio of carbonate to bicarbonate from 0.1 to 10, more preferably from 1 to 5 and most preferably from 1 to 2.
1 S Such an effervescence granule may also comprise a binder, including surfactants, such as anionic and nonionic surfactants..
The effervescence component is preferably present in the composition according to the present invention at a level of from 0.5% to 60% by weight, preferably from 2%
to 50%, more preferably from 5% to 45% and preferably such that the acid component is present at a level of from 0.3% to 40%, more preferably from 1.0% to 35%, or even 2%
to 25% or even to 1 S% by weight of the composition.
Surfactant The compositions in accord with the invention preferably contain one or more surfactants selected from anionic, nonionic, cationic, ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
A typical listing of anionic, nonionic, ampholytic, and zwitterionic classes, and species of these surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December 30, 1975. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
Where present, ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
Anionic Surfactant The compositions in accord with the present invention preferably comprise an additional anionic surfactant. Essentially any anionic surfactants useful for detersive purposes can be comprised in the detergent composition. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di-and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate and sulfonate surfactants are preferred.
Highly preferred are surfactants systems comprising a sulfonate and a sulfate surfactant, preferably a linear or branched alkyl benzene sulfonate and alkyl ethoxylsulfates, as described herein, preferably combined with a cationic surfactants as described herein.
Other anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12-C 18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C 14 diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
Anionic Sulfate Surfactant Anionic sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the CS-C17 acyl-N-{C1-C4 alkyl) and -N-(C1-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
Alkyl sulfate surfactants are preferably selected from the linear and branched primary C 1 p-C 1 g alkyl sulfates, more preferably the C 11-C 15 branched chain alkyl sulfates and the C 12-C 14 linear chain alkyl sulfates.
Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C 10-C 1 g alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C11-C 1 g, most preferably C 11-C 15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
A particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and/ or sulfonate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
Anionic Sulfonate Surfactant Anionic sulfonate surfactants suitable for use herein include the salts of CS-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
Anionic Carboxylate Surfactant Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH20)x CH2C00-M+ wherein R is a C6 to C 1 g alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation. Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR1-CHR2-O)-R3 wherein R is a C6 to C1 g alkyl group, x is from 1 to 25, R1 and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid.
Certain soaps may also be included as suds suppressors.
Alkali Metal Sarcosinate Surfactant Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON
(R1) CH2 LOOM, wherein R is a CS-C1~ linear or branched alkyl or alkenyl group, R1 is a C1-C4 alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleoyl methyl sarcosinates in the form of their sodium salts.
Alkox~rlated Nonionic Surfactant Essentially any alkoxylated nonionic surfactants are suitable herein. The ethoxylated and propoxylated nonionic surfactants are preferred.
Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
Nonionic Alkoxylated Alcohol Surfactant The condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
Nonionic Pol~hydroxy FattLAcid Amide Surfactant Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONRIZ wherein : R1 is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable Cl-C4 alkyl, more preferably Cl or C2 alkyl, most preferably C1 alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight-chain C5-C I g alkyl or alkenyl, more preferably straight-chain Cg-C 1 ~
alkyl or alkenyl, most preferably straight-chain C I I -C 1 ~ alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
Nonionic Fatty Acid Amide Surfactant Suitable fatty acid amide surfactants include those having the formula:
R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the group consisting of hydrogen, C 1-C4 alkyl, C 1-C4 5 hydroxyalkyl, and -(C2H40)xH, where x is in the range of from 1 to 3.
Nonionic Alkylpolysaccharide Surfactant Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 10 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
Preferred alkylpolyglycosides have the formula:
15 R20(CnH2n0)t(glycosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8. The glycosyl is 20 preferably derived from glucose.
Amnhoteric Surfactant Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
Suitable amine oxides include those compounds having the formula R3(OR4)xN0(RS)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each RS is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are C 10-C 18 alkyl dimethylamine oxide, and C 10-18 acylamido alkyl dimethylamine oxide.
A suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Conc.
manufactured by Miranol, Inc., Dayton, NJ.
Zwitterionic Surfactant Zwitterionic surfactants can also be incorporated into the detergent compositions in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
Suitable betaines are those compounds having the formula R(R')2N+R2C00-wherein R
is a C6-Clg hydrocarbyl group, each R1 is typically C1-C3 alkyl, and R2 is a hydrocarbyl group. Preferred betaines are C12-18 dimethyl-ammonio hexanoate and the C10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
Cationic Surfactants Suitable cationic surfactants to be used in the detergent herein include the quaternary ammonium surfactants. Preferably the quaternary ammonium surfactant is a mono C 16, preferably Cg-C 10 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
Preferred are also the mono-alkoxylated and bis-alkoxylated amine surfactants.
Another suitable group of cationic surfactants which can be used in the detergent compositions or components thereof herein are cationic ester surfactants. The cationic ester surfactant is a, preferably water dispersible, compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
Suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
In one preferred aspect the ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms. The atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain. Thus spacer groups having, for example, -O-O- (i.e. peroxide), -N-N-, and -N-O- linkages are excluded, whilst spacer groups having, for example -CH2-O- CH2- and -CH2-NH-CH2-linkages are included. In a preferred aspect the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain.
Cationic mono-alkoxylated amine surfactants Highly preferred herein are cationic mono-alkoxylated amine surfactant preferably of the general formula I:
R~ /ApRa _N+ X
R2~ ~.R3 (I) wherein R1 is an alkyl or alkenyl moiety containing from about 6 to about 18 carbon atoms, preferably 6 to about 16 carbon atoms, most preferably from about 6 to about 14 carbon atoms; R2 and R3 are each independently alkyl groups containing from one to about three carbon atoms, preferably methyl, most preferably both R2 and R3 are methyl groups; R4 is selected from hydrogen (preferred), methyl and ethyl; X- is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, to provide electrical neutrality; A is a alkoxy group, especially a ethoxy, propoxy or butoxy group; and p is from 0 to about 30, preferably 2 to about 15, most preferably 2 to about 8.
Preferably the ApR4 group in formula I has p=1 and is a hydroxyalkyl group, having no greater than 6 carbon atoms whereby the -OH group is separated from the quaternary ammonium nitrogen atom by no more than 3 carbon atoms. Particularly preferred ApR4 groups are -CH2CH20H, -CH2CH2CH20H, -CH2CH(CH3)OH and -CH(CH3)CH20H, with -CH2CH20H being particularly preferred. Preferred R1 groups are linear alkyl groups. Linear R1 groups having from 8 to 14 carbon atoms are preferred.
Another highly preferred cationic mono-alkoxylated amine surfactants for use herein are of the formula R1\ /(C H2C H2O )2-S H
\N+ x0 CH3/ \CH3 wherein R1 is C 1 p-C 1 g hydrocarbyl and mixtures thereof, especially C 10-C
14 alkyl, preferably C10 and C12 alkyl, and X is any convenient anion to provide charge balance, preferably chloride or bromide.
As noted, compounds of the foregoing type include those wherein the ethoxy (CH2CH20) units (EO) are replaced by butoxy, isopropoxy [CH(CH3)CH20] and WO 00/27980 PCT/US991x5259 [CH2CH(CH30] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.
The levels of the cationic mono-alkoxylated amine surfactants used in detergent compositions of the invention is preferably from 0.1% to 20%, more preferably from 0.2% to 7%, most preferably from 0.3% to 3.0% by weight of the composition.
Cationic Bis-alkoxylated Amine Surfactant The cationic bis-alkoxylated amine surfactant preferably has the general formula II:
R~ APRs ~N+/
R2~ ~A,qRa (II) wherein R1 is an alkyl or alkenyl moiety containing from about 8 to about 18 carbon atoms, preferably 10 to about 16 carbon atoms, most preferably from about 10 to about 14 carbon atoms; R2 is an alkyl group containing from one to three carbon atoms, preferably methyl; R3 and R4 can vary independently and are selected from hydrogen (preferred), methyl and ethyl, X' is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, sufficient to provide electrical neutrality. A and A' can vary independently and are each selected from C1-C4 alkoxy, especially ethoxy, (i.e., -CH2CH20-), propoxy, butoxy and mixtures thereof; p is from 1 to about 30, preferably 1 to about 4 and q is from 1 to about 30, preferably 1 to about 4, and most preferably both p and q are 1.
Highly preferred cationic bis-alkoxylated amine surfactants for use herein are of the formula R\ +/CH2CH20H
N X
CH / \CH2CH20H
wherein R1 is C 10-C 1 g hydrocarbyl and mixtures thereof, preferably C 1 p, C
12, C 14 alkyl and mixtures thereof. X is any convenient anion to provide charge balance, preferably chloride. With reference to the general cationic bis-alkoxylated amine structure noted above, since in a preferred compound Rl is derived from (coconut) C12-C14 alkyl 5 fraction fatty acids, R2 is methyl and ApR3 and A'qR4 are each monoethoxy.
Other cationic bis-alkoxylated amine surfactants useful herein include compounds of the formula:
t R~N+~(CH2CH20)pH X_ R2~ ~(CH2CH20)qH
10 wherein R1 is C 10-C 1 g hydrocarbyl, preferably C 10-C 14 alkyl, independently p is 1 to about 3 and q is 1 to about 3, R2 is C1-C3 alkyl, preferably methyl, and X is an anion, especially chloride or bromide.
Other compounds of the foregoing type include those wherein the ethoxy (CH2CH20) 15 units (EO) are replaced by butoxy (Bu) isopropoxy [CH(CH3)CH20] and [CH2CH(CH30] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.
Perhydrate Bleaches An preferred additional components of the compositions is a perhydrate bleach, such as metal perborates, metal percarbonates, particularly the sodium salts.
Perborate can be mono or tetra hydrated. Sodium percarbonate has the formula corresponding to 2Na2C03.3H202, and is available commercially as a crystalline solid.
The perhydrate bleach may be coated, for example with sulphate salts or carbonate salts or silicate or mixtures thereof.
Potassium peroxymonopersulfate, sodium per is another optional inorganic perhydrate salt of use in the detergent compositions herein.
Bleach Activator The composition preferably comprises a bleach activator, preferably comprising an organic peroxyacid bleach precursor. It may be preferred that the composition comprises at least two peroxy acid bleach precursors, preferably at least one hydrophobic peroxyacid bleach precursor and at least one hydrophilic peroxy acid bleach precursor, as defined herein.
The bleach activator may also comprise a preformed peroxy acid bleach.
The production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide.
Peroxyacid Bleach Precursor Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid. Generally peroxyacid bleach precursors may be represented as O
X--C-L
WO 00/279$0 PCT/US99/25259 where L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is O
X-C-(30H
For the purpose of the invention, hydrophobic peroxyacid bleach precursors produce a peroxy acid of the formula above wherein X is a group comprising at least 6 carbon atoms and a hydrophilic peroxyacid bleach precursor produces a peroxyacid bleach of the formula above wherein X is a group comprising 1 to 5 carbon atoms.
Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1 % to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
Suitable peroxyacid bleach precursor compounds typically contain one or more N-or O-acyl groups, which precursors can be selected from a wide range of classes.
Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
Leaving Groups The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
2$
Preferred L groups are selected from the group consisting of Y R3 RaY
-O ~ , -O ~ Y , and -O
-N-C-R - ~ -N-C-CH-R
R3 ~ R3 Y , I
Y
I I
-O-C H=C-C H=C H2 -O-C H=C-C H----C H2 p Y O
O 1 -NCH2-C NR4 -N~ /NR4 O-C R ~C~ , '~'C
p O
-O-C=CHR4 , and -N-S-CH-R4 R~ O
and mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, and Y is H or a solubilizing group. Any of R1, R3 and R4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups.
The preferred solubilizing groups are -S03 M+, -C02 M+, -S04 M+, -N+(R3)4X and O<--N(R3)3 and most preferably -S03 M+ and -C02 M+ wherein R3 is an alkyl chain containing from 1 to 4 carbon atoms, M is a canon which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator.
Preferably, M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
Alk~ Percarboxylic Acid Bleach Precursors Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
Preferred precursors of this type provide peracetic acid on perhydrolysis.
Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains l, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred as hydrophilic peroxy acid bleach precursor.
Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (HOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
Amide Substituted Plkyl Peroxyacid Precursors Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
R~ CN-R2-C-L R~ -N-C-R2-C-L
O Rb O or R~ O O
wherein R1 is an aryl or alkaryl group with from about 1 to about 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from about 1 to 14 carbon atoms, and RS is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. R1 preferably contains from about 6 to 12 carbon 10 atoms. R2 preferably contains from about 4 to 8 carbon atoms. R1 may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R2.
R2 can include alkyl, aryl, wherein said R2 may also contain halogen, nitrogen, sulphur and other 15 typical substituent groups or organic compounds. RS is preferably H or methyl. RI and RS should not contain more than I 8 carbon atoms total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386. It can be preferred that R1 and RS forms together with the nitrogen and carbon atom a ring structure.
20 Preferred examples of bleach precursors of this type include amide substituted peroxyacid precursor compounds selected from (6-octanamido-caproyl)oxybenzenesulfonate, {6-decanamido-caproyl) oxybenzene- sulfonate, and the highly preferred (6-nonanamidocaproyl)oxy benzene sulfonate, and mixtures thereof as described in EP-A-0170386.
Perbenzoic Acid Precursor Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted areas. Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole. Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
Preformed Or,~~anic Peroxyacid The detergent composition may contain, in addition to, ar as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1 % to 1 S% by weight, more preferably from 1 % to 10% by weight of the composition.
A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
R~ CN-R2--COOH R~ -NCR2COOH
O R5 O or R5 O O
wherein R1 is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and RS is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
Heavy metal ion sequestrant The compositions of the invention preferably contain as an optional component a heavy metal ion sequestrant or chelant or chelating agent. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions.
These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
Heavy metal ion sequestrants are generally present at a level of from 0.005%
to 10%, preferably from 0.1% to 5%, more preferably from 0.25% to 7.5% and most preferably from 0.3% to 2% by weight of the compositions or component Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate, 1,1 hydroxyethane diphosphonic acid and 1,1 hydroxyethane dimethylene phosphoric acid.
Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133. The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The ~3-alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are alos suitable. Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
Especially preferred are diethylenetriamine pentacetic acid, ethylenediamine-N,N'-disuccinic acid (EDDS) and 1,1 hydroxyethane diphosphonic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
In particular the chelating agents comprising a amino or amine group can be bleach-sensitive and are suitable in the compositions of the invention.
E
Another highly preferred ingredient useful in the compositions herein is one or more additional enzymes.
Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S
(Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticiean and Optimase by Solvay Enzymes. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001%
to 4%
active enzyme by weight of the composition.
Preferred amylases include, for example, a-amylases obtained from a special strain of B
licheniformis, described in more detail in GB-1,269,839 (Novo). Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl, Duramyl and BAN by Novo Industries A/S. Highly preferred amylase enzymes maybe those described in PCT/
US
9703635, and in W095/26397 and W096/23873.
Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001 % to 2% active enzyme by weight of the composition.
Lipolytic enzyme may be present at levels of active lipolytic enzyme of from 0.0001 % to 2% by weight, preferably 0.001 % to 1 % by weight, most preferably from 0.001 % to 0.5%
by weight of the compositions.
The lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Thermomvces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein. A
preferred lipase is derived from Pseudomonas pseudoalcaligenes, which is described in Granted European Patent, EP-B-0218272.
Another preferred lipase herein is obtained by cloning the gene from Humicola lams ig nosa 10 and expressing the gene in Asper ig llus oryza, as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S.
Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
1 S Optical Bri tener The compositions herein also preferably contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners, as mentioned above.
20 Photo-bleaching agent Photo-bleaching agents are preferred ingredients of the compositions herein.
Preferred photo-bleaching agent herein comprise a compounds having a porphin or porphyrin structure.
25 Porphin and porphyrin, in the literature, are used as synonyms, but conventionally porphin stands for the simplest porphyrin without any substituents; wherein porphyrin is a sub-class of porphin. The references to porphin in this application will include porphyrin.
The porphin structures preferably comprise a metal element or cation, preferably Ca, Mg, 30 P, Ti, Cr, Zr, In, Sn or Hf, more preferably Ge, Si or Ga, or more preferably Al , most preferably Zn.
It can be preferred that the photo-bleaching compound or component is substituted with substituents selected from alkyl groups such as methyl, ethyl, propyl, t-butyl group and aromatic ring systems such as pyridyl, pyridyl-N-oxide, phenyl, naphthyl and anthracyl moieties.
The photo-bleaching compound or component can have solubilizing groups as substituents. Alternatively, or in addition hereto the photo-bleaching agent can comprise a polymeric component capable of solubilizing the photo-bleaching compound, for example PVP, PVNP, PVI or co-polymers thereof or mixtures thereof.
Highly preferred photo-bleaching compounds are compounds having a phthalocyanine structure, which preferably have the metal elements or cations described above.
Metal phthaIocyanines and their derivatives have the structure indicated in Figure 1 andlor Figure 2, wherein the atom positions of the phthalocyanine structure are numbered conventionally.
The phthalocyanines can be substituted for example the phthalocyanine structures which are substituted at one or more of the 1-4, 6, 8-11, 13, 15-18, 20, 22-25, 27 atom positions.
Water-Soluble Builder Compound The compositions in accord with the present invention preferably contain a water-soluble builder compound, typically present in detergent compositions at a level of from 1% to 80% by weight, preferably from 10% to 60% by weight, most preferably from 15%
to 40% by weight of the composition.
The detergent compositions of the invention preferably comprise phosphate-containing builder material. Preferably present at a level of from O.S% to 60%, more preferably from 5% to 50%, more preferably from 8% to 40.
The phosphate-containing builder material preferably comprises tetrasodium pyrophosphate or even more preferably anhydrous sodium tripolyphosphate.
Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, malefic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
Polycarboxylates or their acids containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No.
1,387,447.
The most preferred polycarboxylic acid containing three carboxy groups is citric acid, preferably present at a level of from 0.1% to 15%, more preferably from 0.5%
to 8% by weight of the composition.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane WO 00/Z~980 PCTNS99/25259 tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos.
1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions are useful water-soluble builders herein.
Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
Partially Soluble or Insoluble Builder Compound The compositions in accord with the present invention may contain a partially soluble or insoluble builder compound, typically present in detergent compositions at a level of from 0.5% to 60% by weight, preferably from 5% to 50% by weight, most preferably from 8%
to 40% weight of the composition.
Examples of largely water insoluble builders include the sodium aluminosilicates. As mentioned above, it may be preferred in one mbodiment of the inevntion, that only small amounts of alumino silicate builder are present.
Suitable aluminosilicate zeolites have the unit cell formula Naz[(A102)z{Si02)yJ. xH20 wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicate material S are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
The aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula:
Na 12 [A102) 12 (Si02)12J. xH20 wherein x is from 20 to 30, especially 27. Zeolite X has the formula Nag6 [(A102)g6(Si02)106J~ 276 H20.
Another preferred aluminosilicate zeolite is zeolite MAP builder.
The zeolite MAP can be present at a level of from 1% to 80%, more preferably from , 15% to 40% by weight of the compositions.
Zeolite MAP is described in EP 384070A (Unilever). It is defined as an alkali metal alumino-silicate of the zeolite P type having a silicon to aluminium ratio not greater than 1.33, preferably within the range from 0.9 to 1.33 and more preferably within the range of from 0.9 to 1.2.
Of particular interest is zeolite MAP having a silicon to aluminium ratio not greater than 1.15 and, more particularly, not greater than 1.07.
wo oon~9so Pc~nus99nsis9 In a preferred aspect the zeolite MAP detergent builder has a particle size, expressed as a ds0 value of from 1.0 to 10.0 micrometres, more preferably from 2.0 to 7.0 micrometres, most preferably from 2.S to S.0 micrometres.
5 The dsp value indicates that SO% by weight of the particles have a diameter smaller than that figure. The particle size may, in particular be determined by conventional analytical techniques such as microscopic determination using a scanning electron microscope or by means of a laser granulometer. Other methods of establishing dS0 values are disclosed in EP 384070A.
Organic Polymeric Compound Organic polymeric compounds are preferred additional components of the compositions herein and are preferably present as components of any particulate components where they may act such as to bind the particulate component together. By organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein, including quaternised ethoxylated (poly) amine clay-soil removal/ anti-redeposition agent in accord with the invention.
Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.01 % to 30%, preferably from 0.1 % to 1 S%, most preferably from O.S% to 10% by weight of the compositions.
Examples of organic polymeric compounds include the water soluble organic homo-or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756.
Examples of such salts are polyacrylates of MWt 1000-5000 and their copolymers with malefic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
The polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
Terpolymers containing monomer units selected from malefic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.
Other organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.
Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
Highly preferred polymeric components herein are cotton and non-cotton soil release polymer according to U.S. Patent 4,968,451, Scheibel et al., and U.S. Patent 5,415,807, Gosselink et al., and in particular according to US application no.60/051517.
Another organic compound, which is a preferred clay dispersant/ anti-redeposition agent, for use herein, can be the ethoxylated cationic monoamines and diamines of the formula:
CH3 i H3 X-(--OCH2CH2)n i +.-CHZ-CH2 -~CH2)a b i +-CH2CH20~X
(CH2CH20-j~ X (CH2CH20-~X
wherein X is a nonionic group selected from the group consisting of H, C1-C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof, a is from 0 to 20, preferably from 0 to 4 (e.g. ethylene, propylene, hexamethylene) b is 1 or 0; for cationic monoamines (b=0), n is at least 16, with a typical range of from 20 to 35; for cationic diamines (b=1), n is at least about 12 with a typical range of from about 12 to about 42.
Other dispersants/ anti-redeposition agents for use herein are described in EP-and US 4,659,802 and US 4,664,$48.
Suds Su~nressin~S,~rstem The detergent compositions of the invention, when formulated for use in machine washing compositions, may comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.02% to 10%, most preferably from 0.05% to 3%
by weight of the composition.
Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component.
Such silicone antifoam compounds also typically contain a silica component.
The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types. Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C1 g-C4p ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
A preferred suds suppressing system comprises:
(a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination (i) polydimethyl siloxane, at a level of from 50% to 99%, preferably 75% to 95% by weight of the silicone antifoam compound; and (ii) silica, at a level of from 1 % to 50%, preferably 5% to 25% by weight of the siliconelsilica antifoam compound;
wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight;
(b) a dispersant compound, most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1 % to 10% by weight; a particularly preferred silicone glycol rake copolymer of this type is DC0544, commercially available from DOW Corning under the tradename DC0544;
(c) an inert earner fluid compound, most preferably comprising a C16-C18 ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;
A highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms. EP-A-0210721 discloses other preferred particulate suds suppressing 10 systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
Other highly preferred suds suppressing systems comprise polydimethylsiloxane or 15 mixtures of silicone, such as polydimethylsiloxane, aluminosilicate and polycarboxylic polymers, such as copolymers of laic and acrylic acid.
Polymeric Dye Transfer Inhibiting Agents 20 The compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05%
to 0.5% by weight of polymeric dye transfer inhibiting agents.
The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, 25 polyvinylpyrrolidonepolymers or combinations thereof, whereby these polymers can be cross-linked polymers.
Pol~cneric Soil Release Agent Polymeric soil release agents, hereinafter "SRA", can optionally be employed in the present compositions. If utilized, SRA's will generally comprise from 0.01% to 10.0%, typically from 0.1% to 5%, preferably from 0.2% to 3.0% by weight, of the compositions.
Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments.
This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures.
Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide. Such esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without, of course, forming a densely crosslinked overall structure.
Suitable SRA's include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P.
Gosselink. Such ester oligomers can be prepared by: (a) ethoxylating allyl alcohol; (b) reacting the product of (a) with dimethyl terephthalate ("DMT") and 1,2-propylene glycol ("PG") in a two-stage transesterification/oligomerization procedure; and (c) reacting the product of (b) with sodium metabisulfite in water. Other SRA's include the nonionic end-capped 1,2-propylene/polyoxyethylene terephthalate polyesters of U.S.
4,711,730, December 8, 1987 to Gosselink et al., for example those produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG"). Other examples of SRA's include: the partly- and fully-anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S. 4,702,857, October 27, 1987 to Gosselink, for example produced from DMT, methyl (Me)-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S. 4,877,896, October 31, 1989 to Maldonado, Gosselink et al., the latter being typical of SRA's useful in both laundry and fabric conditioning products, an example being an ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT, optionally but preferably further comprising added PEG, e.g., PEG 3400.
SRA's also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S.
3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975;
cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL
from Dow; the C1-C4 alkyl celluloses and C4 hydroxyalkyl ceiluloses, see U.S.
4,000,093, December 28, 1976 to Nicol, et al.; and the methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20°C as a 2%
aqueous solution. Such materials are available as METOLOSE SM100 and METOLOSE
SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
Additional classes of SRA's include: (I) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S. 4,201,824, Violland et al. and U.S. 4,240,918 Lagasse et al.; and (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With the proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage. Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S. 4,525,524 Tung et al.. Other classes include:
(>I17 anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201,824, Violland et al.;
Other Optional Ingedients Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes and filler salts, with sodium sulfate being a preferred filler salt.
Highly preferred compositions contain from about 2% to about 10% by weight of an organic acid, preferably citric acid. Also, preferably combined with a carbonate salt, minor amounts (e.g., less than about 20% by weight) of neutralizing agents, buffering agents, phase regulants, hydrotropes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides can be present.
Form of the Compositions The composition of the invention can be made via a variety of methods, including dry-mixing, agglomerating, compaction, or spray-drying of the various compounds comprised in the detergent component, or mixtures of these techniques.
The compositions herein can take a variety of physical forms including liquid, but preferably solid forms such as tablet, flake, pastille and bar, and preferably granular forms.
The compositions in accord with the present invention can also be used in or in combination with bleach additive compositions, for example comprising chlorine bleach.
Example I
The following speckle particle is a preferred speckle particle of the invention.
coarse sodium citrate dihydrate ex ADM are mixed with Monastral blue BV paste solution in a mixing drum, by spraying the dye paste solution into the drum containing the sodium citrate particles. The coloured particles are subsequently dried, obtaining speckle particles comprising 1000ppm of dye.
Measurements:
Sodium citrate dihydrate crystals with Monastral blue dye was found to have, as measured with the method set out herein:
sparkle index = 10.4%
transparency value = 22%
delta colour saturation = 120 Sodium citrate dihydrate crystals with Pigmasol green dye was found to have, as measured with the method set out herein:
sparkle index = 10.1 transparency value = 22%
delta colour saturation = 63 Abbreviations used in the Granular Detergent Composition Examples In the detergent compositions, the abbreviated component identifications have the following meanings:
LAS : Sodium linear C11-13 alkyl benzene sulfonate TAS : Sodium tallow alkyl sulfate CxyAS : Sodium C 1 x - C 1 y alkyl sulfate C46SAS . Sodium C 14 - C 16 secondary (2,3) alkyl sulfate CxyEzS : Sodium Clx-Cly alkyl sulfate condensed with z moles of ethylene oxide CxyEz . C 1 x-C 1 y predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide QAS . R2.N+(CH3)2(C2H40H} with R2 = C12 - C14 QAS 1 . R2.N-~-(CH3)2(C2H40H} with R2 = C8 - C 11 APA . C8 - C10 amido propyl dimethyl amine Soap : Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut fatty acids STS : Sodium toluene sulphonate 5 CFAA . C 12-C 14 (coco) alkyl N-methyl glucamide TFAA . C16-C18 alkyl N-methyl glucamide TPKFA : C12-C14 topped whole cut fatty acids STPP : Anhydrous sodium tripolyphosphate TSPP : Tetrasodium pyrophosphate 10 Zeolite A Hydrated sodium aluminosilicate of formula :
Nal2(A102Si02)12.27H20 having a primary particle size in the range from 0.1 to 10 micrometers (weight expressed on an anhydrous basis) NaSKS-6 . Crystalline layered silicate of formula 8- Na2Si2O5 15 Citric acid Anhydrous citric acid :
Borate : Sodium borate Carbonate Anydrous sodium carbonate with a particle size : between 200pm and 900pm Bicarbonate Anhydrous sodium bicarbonate with a particle : size distribution 20 between 400pm and 1200um Silicate : Amorphous sodium silicate {Si02:Na20 = 2.0:1 ) Sulfate . Anhydrous sodium sulfate Mg sulfate Anhydrous magnesium sulfate .
Citrate . Tri-sodium citrate dihydrate of activity 86.4%
with a particle size 25 distribution between 425pm and 850p.m MA/AA : Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 70,000 MA/AA (I) Copolymer of 4:6 maleic/acrylic acid, average : molecular weight about 10,000 30 AA : Sodium polyacrylate polymer of average molecular weight 4,500 CMC . Sodium carboxymethyl cellulose Cellulose ether . Methyl cellulose ether with a degree of polymerization of 650 available from Shin Etsu Chemicals Protease : Proteolytic enzyme, having 3.3% by weight of active enzyme, sold by NOVO Industries A/~ under the tradename Savinase Protease I : Proteolytic enzyme, having 4% by weight of active enzyme, as described in WO 95/10591, sold by Genencor Int.
Inc.
Alcalase : Proteolytic enzyme, having 5.3% by weight of active enzyme, sold by NOVO Industries A/S
Cellulase Cellulytic enzyme, having 0.23% by weight of : active enzyme, sold by NOVO Industries A/S under the tradename Carezyme Amylase . Amylolytic enzyme, having 1.6% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Termamyl Lipase : Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Lipase ( 1 ) Lipolytic enzyme, having 2.0% by weight of active . enzyme, sold by NOVO Industries A/S under the tradename Lipolase Ultra Endolase : Endoglucanase enzyme, having 1.5% by weight of active enzyme, sold by NOVO Industries A/S
PB4 : Particle containing sodium perborate tetrahydrate of nominal formula NaB02.3H2 O, the particles having a weight average particle size of 950 microns, 85% particles having a particle size of from 850 microns to 950 microns PB1 : Particle containing anhydrous sodium perborate bleach of nominal formula NaB02.H 202, the particles having a weight average particle size of 800 microns, 85% particles having a particle size of from 750 microns to 950 microns Percarbonate Particle containing sodium percarbonate of nominal . formula 2Na2C03.3H2O2, the particles having a weight average particle size of 850 microns, 95% particles having a particle size of from 750 microns to 950 microns NOBS . Particle comprising nonanoyloxybenzene sulfonate in the form of the sodium salt, the particles having a weight average particle size of 750 microns to 900 microns NAC-OBS : Particle comprising (6-nonamidocaproyl) oxybenzene sulfonate, the particles having a weight average particle size of from 825 microns to 875 microns TAED I . Particle containing tetraacetylethylenediamine, the particles having a weight average particle size of from 700 microns to 1000 microns TAED II . Tetraacetylethylenediamine of a particle size from 150 microns to 600 microns DTPA : Diethylene triamine pentaacetic acid DTPMP : Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Tradename bequest 2060 Photoactivated Sulfonated zinc phthlocyanine encapsulated in : bleach ( 1 ) dextrin soluble polymer Photoactivated : Sulfonated alumino phthlocyanine encapsulated in bleach (2) dextrin soluble polymer Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl .
Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2-:
yl)amino) stilbene-2:2'-disulfonate EDDS : Ethylenediamine-N,N'-disuccinic acid, (S,S) isomer in the form of its sodium salt.
HEDP . 1,1-hydroxyethane diphosphonic acid PEGx : Polyethylene glycol, with a molecular weight of x (typically 4,000) PEO : Polyethylene oxide, with an average molecular weight of 50,000 TEPAE : Tetraethylenepentaamine ethoxylate PVI . Polyvinyl imidosole, with an average molecular weight of 20,000 PVP : Polyvinylpyrolidone polymer, with an average molecular weight of 60,000 PVNO : Polyvinylpyridine N-oxide polymer, with an average molecular weight of 50,000 PVPVI . Copolymer of polyvinylpyrolidone and vinylimidazole, with an average molecular weight of 20,000 QEA : bis((C2H50){C2H40)n)(CH3) -N+-C6H12-N+-(CH3) bis((C2H50)-(C2H4 O))n, wherein n = from 20 to SRP 1 : Anionically end capped~poly esters SRP 2 : Diethoxylated poly (l, 2 propylene terephtalate) short block polymer PEI : Polyethyleneimine with an average molecular weight of 1800 and an average ethoxylation degree of 7 ethyleneoxy residues per nitrogen Silicone antifoam . Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1 Opacifier . Water based monostyrene latex mixture, sold by BASF
Aktiengesellschaft under the tradename Lytron 621 Wax . Paraffin wax Speckle : as made in examplel In the following examples all levels are quoted as % by weight of the composition:
TABLE I
The following compositions are in accordance with the invention.
F
S ra -dried Granules AS 10.0 10.015.0 5.0 5.0 10.0 AS 1.0 BAS 5.0 5.0 45AS 1.0 2.0 .0 4535 1.0 AS 1.0 1.0 TPA, HEDP and/or.3 .3 0.5 .3 DDS
gS04 .5 .5 .1 Sodium citrate .0 5.0 Sodium carbonate10.0 .0 15.0 10.0 Sodium sulphate 5.0 5.0 5.0 .0 Sodium silicate .0 1.6R
eolite A 16.0 18.0 0.0 0.0 SKS-6 3.0 S.0 A/AA or AA 1.0 .0 11.0 .0 EG 4000 .0 1.0 1.0 EA 1.0 1.0 rightener .OS .OS .OS .OS
ilicone oil .O1 .O1 .O1 .O1 lomerate AS .0 .0 BAS 1.0 45AS .0 1.0 .5 Carbonate .0 1.0 1.0 1.0 Sodium citrate 5.0 CFAA
Citric acid .0 1.0 1.0 QEA .0 .0 1.0 RP 1.0 1.0 .2 eolite A 15.0 6.0 1 16.0 S.0 Sodium silicate EG .0 uilder A lomerates SKS-6 6.0 .0 3.0 .0 10.0 AS .0 5.0 5.0 3.0 10.012.0 -add articulate com onents aleic 8.0 10.0 10.0 .0 8.0 .0 .0 .0 acid/carbonate/bicarbon ate (40:20:40) QEA 0.2 0.5 ACAOBS 3.0 4.5 .5 OBS 1.0 3.0 3.0 5.0 AED I .5 1.5 .5 6.5 1.5 BAS 8.0 8.0 .0 LAS (flake) 10.0 10.0 8.0 S ra -on rightener 0.2 .2 0.3 .1 0.2 0.1 .6 0.3 E7 0.5 0.7 erfume 1.0 0.5 1.1 .8 0.3 0.5 0.3 .5 -add Citrate 0.0 .0 5.0 1 5.0 S.0 ercarbonate I5.0 3.0 6.0 10.0 4.0 18.05.0 erborate 6.0 18.0 hotobleach .02 0.02 .02 0.1 0.05 - ~.3 - 0.03 ~ ~ 1 nzymes (cellulase,1.3 .3 .5 0.5 .8 .0 0.5 0.16 0.2 amylase, protease, lipase) Carbonate .0 10.0 5.0 8.0 10.0 5.0 erfume (encapsulated) 0.5 .5 .3 .2 Suds suppressor 1.0 .6 0.3 .10 0.5 1.0 0.3 1.2 oap .S 0.2 .3 3.0 .5 0.3 itric acid .0 .0 5.0 Speckle .5 0,3 .0 1.0 5.0 .5 1.5 .8 1.0 SKS-6 .0 .0 fillers up to 100%
TABLE II
The following compositions are in accordance with the invention.
C ~ F G H
S ra -Dried Granules AS 10.0 10.0 16.0 5.0 5.0 10.0 AS 1.0 BAS 5.0 5.0 C45AS 1.0 2.0 .0 4535 1.0 AS 1.0 1.0 TPA, HEDP and/or.3 0.3 0.3 0.3 DDS
gS04 .5 0.4 .1 odium citrate 10.0 12.0 17.0 3.0 5.0 odium carbonate 15.0 8.0 15.0 10.0 Sodium sulphate 5.0 5.0 ~ 1 5.0 3.0 I I ~ 1 Sodium silicate .0 1.6R
eolite A .0 KS-6 3.0 5.0 A/AA or AA 1.0 .0 10.0 .0 EG 4000 .0 1.0 1.0 EA 1.0 1.0 rightener .OS .OS .OS .OS
ilicone oil .O1 .O1 0.01 .O1 lomerate AS .0 .0 AS 1.0 45AS .0 1.0 .5 arbonate .0 1.0 1.0 1.0 Sodium citrate 5.0 CFAA
Citric acid .0 1.0 1.0 EA .0 .0 1.0 RP 1.0 1.0 0.2 eolite A 15.0 6.0 15.016.0 Sodium silicate EG 4.0 TAED II 3.0 1.5 uilder A lomerate KS-6 .0 5.0 .0 .0 7.0 10.0 AS .0 S.0 .0 3.0 10.012.0 -add particulate com onents aleic acid/ 8.0 10.0 .0 .0 .0 .0 2.0 .0 arbonate/bicarbonate 40:20:40) QEA .2 .S
ACAOBS .0 1.S S.S
OBS/ LOBS/ DOBS 3.0 3.0 S.0 AED I .S 1.S .S 6.S 1.S
BAS 8.0 8.0 .0 AS (flake) 8.0 S ra -on rightener .2 0.2 0.3 0.1 .2 .6 7 .S .7 erfume .8 .S 0.8 O.S 1.0 -add itrate .0 3.0 .0 S.0 15.0 S.0 ercarbonate 1 3.0 .0 10.0 12.0 18.0S.0 S.0 erborate .0 18.0 hotobleach .02 .02 .02 .l 0.05 .3 .03 nzymes (cellulase,1.S .3 .S O.S 0.8 .0 .S .16 0.2 amylase, protease, ipase) Carbonate S.0 8.0 10.0S.0 erfume (encapsulated)0.6 O.S O.S 0.3 O.S 0.2 0.1 0.6 Suds suppressor 1.0 0.6 0.3 .10 O.S 1.0 0.3 1.2 ~~Soap O.S 0.2 0.3 .0 .5 0.3 yV0 00/2?980 PCT/US99/25259 Citric acid .0 .0 5.0 Speckle 0.5 .5 5.0 .0 .2 .S .S .5 1.0 SKS-6 .0 6.0 fillers up to 100%
Claims (15)
1. A cleaning composition speckle particle which comprises a solid material which is coloured with a colorant, the particle has a sparkle index of at least 5% and a transparency index of at least 5%.
2. A cleaning composition speckle-particle according to claim 1, having a colour saturation of at least 10, preferably at least 30, a sparkle index of at least 15% and a transparency index of at least 15%.
3. A cleaning composition speckle-particle according to claim 1 or 2 comprising a coloured crystalline material, preferably selected from the group comprising crystalline hydrated salts, crystalline acids, crystalline acid salts, crystalline surfactants, saccharides, or mixtures thereof.
4. A speckle particle according to any preceding claim which is coloured with a dye, pigment and/ or brightener.
5. A speckle particle according to claim 1, 2, 3 or 4 wherein the crystalline material comprises: a hydrated sulphate salt; hydrated carbonate salt; a hydrated phosphate salt; a hydrated magnesium salt; a crystalline carboxylic acid or salt thereof;
crystalline silicate;
a crystalline polymeric polycarboxylic acid or salts thereof; a crystalline surfactant; a saccheride, preferably sugar; or mixtures thereof.
crystalline silicate;
a crystalline polymeric polycarboxylic acid or salts thereof; a crystalline surfactant; a saccheride, preferably sugar; or mixtures thereof.
6. A speckle particle according to claim 1, 2, 3 or 4 wherein the crystalline material comprises sodium citrate dihydrate.
7. A speckle particle according to any preceding claim comprising a binder.
8. A speckle particle according to any preceding claim having a weight average particle size of 300 microns to 2000 microns, preferably from 500 microns to 1400 microns, more preferably from 600 microns to 1180 microns.
9. A process for making coloured cleaning composition speckle particles by spraying a colorant into a mixing container, containing the solid material, preferably being a crystalline material, and mixing the colorant and the speckle particle, and optionally drying the coloured speckle particles.
10. A process according to claim 9 wherein the speckle particle comprises crystalline material and a binder, whereby the speckle particle preferably is in the form of an agglomerate.
11. A cleaning composition comprising the speckle particle according to any preceding claim at a level of from 0.05% to 30% by weight.
12. A composition according to claim 11 comprising a coloured speckle particle and other ingredients, the composition obtainable by a process comprising the steps of a) colouring the solid material with a colorant to obtain coloured speckle particles, preferably by spraying a colorant into a mix drum containing the speckle particles;
b) optionally drying the coloured speckle particles obtained in step b);
c) mixing of the coloured speckle particles of step a) or b) with the other ingredients of the cleaning composition.
b) optionally drying the coloured speckle particles obtained in step b);
c) mixing of the coloured speckle particles of step a) or b) with the other ingredients of the cleaning composition.
13. A composition according to claim 11 or 12, being a solid laundry or dishwashing detergent composition, preferably a granular composition, extruded composition or a tablet composition, preferably comprising a particle comprising surfactant, an enzyme, a bleach activator, a cellulose derivative or mixtures thereof.
14. Use in a cleaning composition of a speckle as in any of claims 1 to 8, to provide a contrasting appearance with the other ingredients of the composition.
15. Use in a cleaning composition of a speckle particle as in any of claims 1 to 8, to mask undesired colours of other detergent ingredients.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9824225A GB2343456A (en) | 1998-11-06 | 1998-11-06 | Speckle particles and compositions containing the speckle particles |
GB9824225.8 | 1998-11-06 | ||
PCT/US1999/025259 WO2000027980A1 (en) | 1998-11-06 | 1999-11-03 | Speckle particles and compositions containing the speckle particles |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2348603A1 true CA2348603A1 (en) | 2000-05-18 |
Family
ID=10841866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002348603A Abandoned CA2348603A1 (en) | 1998-11-06 | 1999-11-03 | Speckle particles and compositions containing the speckle particles |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1124930A1 (en) |
JP (1) | JP2002529583A (en) |
CN (1) | CN1325438A (en) |
AU (1) | AU1238900A (en) |
BR (1) | BR9915124A (en) |
CA (1) | CA2348603A1 (en) |
GB (1) | GB2343456A (en) |
WO (1) | WO2000027980A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19943254A1 (en) | 1999-09-10 | 2001-03-15 | Clariant Gmbh | Bleach-active metal complexes |
DE19960744A1 (en) * | 1999-12-16 | 2001-07-05 | Clariant Gmbh | Granular alkali layer silicate compound |
GB2361930A (en) | 2000-05-05 | 2001-11-07 | Procter & Gamble | Process for making solid cleaning components |
DE10243329B3 (en) * | 2002-09-18 | 2004-06-03 | Bk Giulini Chemie Gmbh & Co. Ohg | Process for coloring sodium carbonate and its use in detergent and cleaning agent formulations |
EP1586629A1 (en) * | 2004-04-08 | 2005-10-19 | The Procter & Gamble Company | Detergent composition with masked colored ingredients |
DE602004027371D1 (en) | 2004-07-22 | 2010-07-08 | Procter & Gamble | Detergent compositions containing color particles |
US7605116B2 (en) * | 2004-08-11 | 2009-10-20 | The Procter & Gamble Company | Highly water-soluble solid laundry detergent composition that forms a clear wash liquor upon dissolution in water |
CN101389742B (en) * | 2006-02-25 | 2013-05-29 | 荷兰联合利华有限公司 | Shading dye granule, its use in a detergent formulation and process to make it |
ATE452960T1 (en) | 2006-05-03 | 2010-01-15 | Procter & Gamble | LIQUID DETERGENT |
ES2308931B1 (en) * | 2007-05-24 | 2009-10-29 | Casares Daza, S.L. | COMPOSITION OF A DETERGENT PAD FOR WATER CLEANING OF A VEHICLE. |
PL2009086T3 (en) * | 2007-06-26 | 2013-10-31 | Sa Minera Catalano Aragonesa Samca | Procedure for colouring non-adsorbent minerals and the product thus obtained |
US8999912B2 (en) | 2007-07-09 | 2015-04-07 | The Procter & Gamble Company | Detergent compositions |
JP6407682B2 (en) * | 2014-11-27 | 2018-10-17 | 花王株式会社 | Method for producing powder detergent composition for clothing |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3579299A (en) * | 1968-07-30 | 1971-05-18 | Philadelphia Quartz Co | Porous silicate |
NL6911825A (en) * | 1968-08-08 | 1970-02-10 | Colour speckling of washing powder | |
GB1378923A (en) * | 1971-01-25 | 1974-12-27 | Colgate Palmolive Co | Coloured particles and cleanser composition containing same |
IT1121458B (en) * | 1979-05-09 | 1986-04-02 | Unilever Nv | PROCEDURE FOR THE PRODUCTION OF COLORED GRAINS FOR DETERGENT POWDERS |
US4434068A (en) * | 1981-03-18 | 1984-02-28 | Lever Brothers Company | Process for manufacturing detergent speckles |
US4443564A (en) * | 1981-09-30 | 1984-04-17 | Colgate-Palmolive Company | Packaged speckled dentifrice |
GB2194793A (en) * | 1987-10-15 | 1988-03-16 | Unilever Plc | Mottled liquid detergents |
GB2213161A (en) * | 1987-12-30 | 1989-08-09 | Procter & Gamble | Vividly colored laundry or cleaning products |
AU3223389A (en) * | 1988-03-30 | 1989-10-05 | Unilever Plc | Components for detergent compositions |
US5089162A (en) * | 1989-05-08 | 1992-02-18 | Lever Brothers Company, Division Of Conopco, Inc. | Cleaning compositions with bleach-stable colorant |
US5605883A (en) * | 1993-02-24 | 1997-02-25 | Iliff; Robert J. | Agglomerated colorant speckle exhibiting reduced colorant spotting |
GB2299956A (en) * | 1995-04-13 | 1996-10-23 | Procter & Gamble | Detergent compositions for dishwashers |
AU2075097A (en) * | 1996-03-15 | 1997-10-01 | Amway Corporation | Discrete whitening agent particles, method of making, and powder detergent containing same |
DE19801186A1 (en) * | 1998-01-15 | 1999-07-22 | Henkel Kgaa | Production of colored laundry detergent particles for universal, colored or fine wash |
GB9807477D0 (en) * | 1998-04-07 | 1998-06-10 | Unilever Plc | Coloured granular composition for use in particulate detergent compositions |
-
1998
- 1998-11-06 GB GB9824225A patent/GB2343456A/en not_active Withdrawn
-
1999
- 1999-11-03 BR BR9915124-3A patent/BR9915124A/en not_active IP Right Cessation
- 1999-11-03 EP EP99971839A patent/EP1124930A1/en not_active Withdrawn
- 1999-11-03 CA CA002348603A patent/CA2348603A1/en not_active Abandoned
- 1999-11-03 WO PCT/US1999/025259 patent/WO2000027980A1/en not_active Application Discontinuation
- 1999-11-03 CN CN 99812788 patent/CN1325438A/en active Pending
- 1999-11-03 JP JP2000581147A patent/JP2002529583A/en not_active Withdrawn
- 1999-11-03 AU AU12389/00A patent/AU1238900A/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU1238900A (en) | 2000-05-29 |
EP1124930A1 (en) | 2001-08-22 |
GB2343456A (en) | 2000-05-10 |
WO2000027980A1 (en) | 2000-05-18 |
BR9915124A (en) | 2001-07-31 |
JP2002529583A (en) | 2002-09-10 |
GB9824225D0 (en) | 1998-12-30 |
CN1325438A (en) | 2001-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2352627C (en) | Effervescence components | |
CA2346306C (en) | Detergent compositions or components | |
US6444634B1 (en) | Bleaching compositions | |
CA2348603A1 (en) | Speckle particles and compositions containing the speckle particles | |
US6683043B1 (en) | Process for manufacturing effervescence components | |
GB2345701A (en) | Particulate bleaching components | |
US6551983B1 (en) | Bleach-containing detergent composition | |
US6770609B1 (en) | Light reflecting particles | |
GB2348884A (en) | Light reflecting particles | |
CA2386338A1 (en) | Detergent compositions and methods for cleaning | |
GB2348436A (en) | Detergent compositions | |
CA2348593C (en) | Bleach-containing detergent composition | |
CA2346292A1 (en) | A detergent composition containing a salt of an anionic cellulose material and a cyclic amine based polymer | |
CA2365628A1 (en) | Detergent compositions | |
CA2386131A1 (en) | Detergent compositions | |
CA2362475A1 (en) | Detergent compositions | |
GB2339194A (en) | Layered crystalline silicate as detergent builder component | |
CA2388838A1 (en) | Detergent compositions | |
WO1999064558A1 (en) | Cleaning compositions containing speckle particles | |
CA2386948A1 (en) | Detergent compositions | |
CA2331359C (en) | Method for dispensing | |
WO2001012767A1 (en) | Disintegrating component and detergent composition containing it | |
GB2339574A (en) | Disintegrating components | |
GB2347681A (en) | Detergent compositions or components | |
GB2339204A (en) | Detergent composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |