NO128371B - - Google Patents
Download PDFInfo
- Publication number
- NO128371B NO128371B NO00121/71A NO12171A NO128371B NO 128371 B NO128371 B NO 128371B NO 00121/71 A NO00121/71 A NO 00121/71A NO 12171 A NO12171 A NO 12171A NO 128371 B NO128371 B NO 128371B
- Authority
- NO
- Norway
- Prior art keywords
- solution
- cadmium
- powder
- circuit
- precipitated
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- 239000010949 copper Substances 0.000 claims description 24
- 229910052793 cadmium Inorganic materials 0.000 claims description 23
- 229910052759 nickel Inorganic materials 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 229910052785 arsenic Inorganic materials 0.000 claims description 14
- 229910052787 antimony Inorganic materials 0.000 claims description 12
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 5
- 238000001556 precipitation Methods 0.000 claims description 5
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 4
- 239000007790 solid phase Substances 0.000 claims description 3
- 159000000009 barium salts Chemical class 0.000 claims description 2
- QCUOBSQYDGUHHT-UHFFFAOYSA-L cadmium sulfate Chemical compound [Cd+2].[O-]S([O-])(=O)=O QCUOBSQYDGUHHT-UHFFFAOYSA-L 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 150000003751 zinc Chemical class 0.000 claims description 2
- 239000003638 chemical reducing agent Substances 0.000 claims 1
- 239000011701 zinc Substances 0.000 description 60
- 239000000843 powder Substances 0.000 description 20
- 229910052725 zinc Inorganic materials 0.000 description 17
- 238000004090 dissolution Methods 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 238000005868 electrolysis reaction Methods 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- -1 nitroso- Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B17/00—Obtaining cadmium
- C22B17/04—Obtaining cadmium by wet processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
- C22B3/46—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Fremgangsmåte til utvinning av kadmium. Process for the extraction of cadmium.
Foreliggende oppfinnelse vedrører en fremgangsmåte til utvinning av kadmium og spesielt dets utvinning fra sementeringsfell-ingen, som foruten kadmium også inneholder Co, Ni, Cu, As, Sb, Pb og Zn, og som er oppnådd ved rensing av en oppløsning utført i forbind-else med sinkprosessen som omtalt nedenfor. Hensikten med oppfinnelsen er å tilveiebringe en enklere og mer effektiv fremgangsmåte til utvinning av rent Cd enn det man tidligere med kjente fremgangsmåter har kunnet tilveiebringe. The present invention relates to a method for the extraction of cadmium and in particular its extraction from the cementation precipitate, which in addition to cadmium also contains Co, Ni, Cu, As, Sb, Pb and Zn, and which is obtained by purifying a solution carried out in connection else with the zinc process as discussed below. The purpose of the invention is to provide a simpler and more efficient method for extracting pure Cd than what has previously been possible with known methods.
Skjematisk er Zn-prosessen av følgende type: ZnO, som oppnåes ved røsting av ZnS-holdige materiale, oppløses i retursyre fra elektrolysen. Retursyren inneholder, ZnSO^ og ^SO^ i forskjellige mengder avhengig av forholdene i elektrolysen. Ved denne opplosning oppnåes en no yt ral ZnSO^'-opplosning, som inneholder forurensninger som må fjernes for elektrolysen. Den rensede opplosningen fores deretter til elektrolysen hvor Zn fraskilles og en ekvivalent mengde HpSC^ dannes.- Schematically, the Zn process is of the following type: ZnO, which is obtained by roasting ZnS-containing material, is dissolved in return acid from the electrolysis. The return acid contains ZnSO^ and ^SO^ in different amounts depending on the conditions in the electrolysis. With this solution, a neutral ZnSO 4 solution is obtained, which contains impurities that must be removed for the electrolysis. The purified solution is then fed to the electrolysis where Zn is separated and an equivalent amount of HpSC^ is formed.-
Noen forurensninger som forekommer i den urene opplSsningen er av okonomisk betydning,^men-de.fleste finnes i så små mengder at deres gjenvinning :er'- okonomisk ulonnsom.».,: Fjerningen av de, nevnte urenheter fra opplosningen og prosessen -r ("outlet") - er \dog..av .vital betydning, dels fordi.-de kan utfelles sammen med sinken, hvis renhets-krav er meget hoye, og dels fordi de i elektrolysen kan forårsake gjen-opplosning av den utfelte sink ved å senke hydrogenets overspenning ved katoden. Rensingen må også være meget effektiv fordi prosess-opplosningen beveger seg i en lukket krets hvorved elementene som inn-går i ubetydelige mengder i utgangsmaterialet kan anrikes i opplos--ningskretsen. Some contaminants that occur in the impure solution are of economic importance, but most of them are found in such small quantities that their recovery is economically unprofitable. The removal of the aforementioned impurities from the solution and the process is ("outlet") - are of vital importance, partly because they can be precipitated together with the zinc, whose purity requirements are very high, and partly because in the electrolysis they can cause re-dissolution of the precipitated zinc by lowering the hydrogen overvoltage at the cathode. The cleaning must also be very efficient because the process solution moves in a closed circuit whereby the elements that are included in negligible quantities in the starting material can be enriched in the solution circuit.
Fjerningen av jern skjer vanligvis ved...hydrolyttisk utfelling av jernet under oksyderende betingelser hvorved også en del andre elementer - Ge, As, Sb - kan fjernes..- F.tter filtreringen oppnåes, en opplosning fra hvilken det gjenstår å. fjerne Cu, Cd og.små mengder Ni, Co, As og Sb. Av disse er som regel Cu og Cd okonomisk verdifulle og taes vare på, mens derimot de andre elementer i alminnelighet bare bor fjernes fra prosessen. Rensingen av opplosningen må derfor velges både med hensyn til god opplosningsrensing og noyaktig tilvaretagning av Cu og Cd. The removal of iron usually takes place by...hydrolytic precipitation of the iron under oxidizing conditions whereby also some other elements - Ge, As, Sb - can be removed..- After the filtration is achieved, a solution from which it remains to remove Cu , Cd and small amounts of Ni, Co, As and Sb. Of these, Cu and Cd are usually economically valuable and are taken care of, while the other elements generally only need to be removed from the process. The cleaning of the solution must therefore be chosen both with regard to good solution cleaning and accurate safeguarding of Cu and Cd.
Siden samtlige av disse elementer er edlere enn Zn, ligger det nærmest for hånden å utfelle dem med metallisk sink. Med denne sementering kan samtlige av de ovenfor nevnte elementer foruten Co fjernes til så lave innhold som kreves for god rensing. Co blir dog tilbake hvis bare Zn-pulver anvendes, mens god sementering oppnåes ved tilsetning av As eller Sb-forbindelser i nærvær av en egnet mengde Cu. Disse tilsetningsforbindelser forårsaker dog at Cd felles ut meget tregt og det utfelte metall viser en tendens til meget lett å oksyderes og tilbakegå i opplosning. Since all of these elements are more noble than Zn, it is next to hand to precipitate them with metallic zinc. With this cementation, all of the above-mentioned elements, apart from Co, can be removed to as low a content as is required for good cleaning. However, Co remains if only Zn powder is used, while good cementation is achieved by adding As or Sb compounds in the presence of a suitable amount of Cu. However, these additive compounds cause Cd to precipitate very slowly and the precipitated metal shows a tendency to oxidize very easily and return to solution.
For rensing av opplosningen er det da prinsippielt to okonomiske alternativer man kan velge mellom hvis opplosningen inneholder kobolt : 1. Sementering med rent Zn-pulver i forste trinn og deretter et andre trinn for fjerning av Co med en spesifikk reagens (vanligvis a- For the purification of the solution, there are in principle two economic alternatives to choose from if the solution contains cobalt: 1. Cementation with pure Zn powder in the first step and then a second step for the removal of Co with a specific reagent (usually a-
nitroso-|3-naftol). nitroso-|3-naphthol).
2. Sementering med Zn-pulver + As (Sb) tilsetning i forste trinn hvis opplosningen ikke inneholder tilstrekkelig As (Sb) og sementering av resten av Gd med rent Zn-pulver i andre trinn (britisk patent nr. 126 296, tysk patent nr. 403 7151. 2. Cementation with Zn powder + As (Sb) addition in the first stage if the solution does not contain sufficient As (Sb) and cementation of the rest of the Gd with pure Zn powder in the second stage (British patent no. 126 296, German patent no. .403 7151.
Fremgangsmåte 1 er meget hensiktsmessig ut fra et Cd-til!-varetagningssynspunkt fordi alt Cd overfores til Cd-kretsen som i alminnelighet står i tilknytning til sinkforedlingen, men den har dog også åpenbare ulemper. Co vil i en viss utstrekning sementeres i forste trinn og således folge med til Cd-kretsen; man kan dog returnere Co til Zn-kretsen der det finnes et "outlet" for Co. Med Ni er for-holdet det at "outlet" må være i Cd-kretsen. Dette er dog et temmelig besværlig problem fordi Ni og Cd ikke kan sementeres med onsket selektivitet med Zn-pulver, men Cd, som utfelles forst, vil bli betydelig forurenset. Med enkel sementering med Zn-pulver kan man således ikke oppnå "outlet" for NI og samtidig en fullstendig separering fra Cd. Fremgangsmåte 1 kan derfor ikke ansees tilfredsstillende hvis ved siden av Co også Ni forekommer i ZnSO^-opplosningen, mens derimot fremgangsmåte 2 gir en mulighet til å få felles "outlet" for begge elementene. Dessuten kan Co-innholdet med denne metode lett bringes ned til mindre enn 0.1 mg/l, hvilket vanskelig kan oppnåes med oc-nitroso-(3-naftol (fig. 1). Method 1 is very appropriate from a Cd-to! handling point of view because all Cd is transferred to the Cd circuit which is generally connected to the zinc processing, but it also has obvious disadvantages. Co will to a certain extent be cemented in the first step and thus follow along to the Cd cycle; however, one can return Co to the Zn circuit where there is an "outlet" for Co. With Ni, the condition is that the "outlet" must be in the Cd circuit. This is, however, a rather difficult problem because Ni and Cd cannot be cemented with the desired selectivity with Zn powder, but Cd, which precipitates first, will be significantly contaminated. With simple cementation with Zn powder, one cannot thus achieve an "outlet" for NI and at the same time a complete separation from Cd. Method 1 cannot therefore be considered satisfactory if, in addition to Co, Ni also occurs in the ZnSO^ solution, while method 2, on the other hand, provides an opportunity to have a common "outlet" for both elements. Moreover, with this method, the Co content can easily be brought down to less than 0.1 mg/l, which is difficult to achieve with oc-nitroso-(3-naphthol) (Fig. 1).
Når fremgangsmåte 2 anvendes (se fig. 2) gjor man i alminnelighet bruk av det ovenfor nevnte tilfelle, hvori Cd sementeres When method 2 is used (see fig. 2), the above-mentioned case is generally used, in which Cd is cemented
meget vanskelig, hvis As (Sb) er tilstede, og man utforer derfor sementeringen slik at man i forste trinn forsoker å holde Cd i opplosningen og feller ut alle andre elementer som er edlere enn Zn. Herved oppnåes at man får "outlet"' for alle andre forurensninger enn Cd med Cu-sementatet som siden går til Cu-smeltingen og man får et forholdsvis rent Cd-sementat i andre trinn. Forurensningene som dog i små mengder kommer med til Cd-kretsen, kan returneres til Zn-kretsen for opplos-ningsrensningen, og således unngår man "outlet" i Cd-kretsen. very difficult, if As (Sb) is present, and one therefore carries out the cementation so that in the first stage one tries to keep Cd in the solution and precipitates all other elements that are more noble than Zn. This achieves that you get an "outlet" for all contaminants other than Cd with the Cu cementate which then goes to the Cu smelter and you get a relatively clean Cd cementate in the second stage. The impurities which, however, reach the Cd circuit in small quantities, can be returned to the Zn circuit for solution purification, and thus an "outlet" in the Cd circuit is avoided.
Denne fremgangsmåte har dog sine ulemper hvorav den verste er at fullstendig selektivitet ved utsementeringen ikke oppnåes, men However, this method has its disadvantages, the worst of which is that complete selectivity during the removal of cement is not achieved, but
10 - 15 % av Cd faller ut i forste trinnet samt at også dette sementat Zn-innhold er betydelig (20 - 30 Både Cd og Zn i dette Cu-sementat er direkte tap. En annen ulempe er at man heller ikke oppnår et fullstendig rent.Cd-sementat fordi små mengder forurensninger av edlere metaller ikke kan unngåes og disse må ha "outlet" i Cd-kretsen eller 10 - 15% of Cd falls out in the first step and that this cementate Zn content is also significant (20 - 30 Both Cd and Zn in this Cu cementate are direct losses. Another disadvantage is that a completely clean .Cd cementate because small amounts of contamination from nobler metals cannot be avoided and these must have an "outlet" in the Cd circuit or
så må de returneres til Zn-kretsen. then they must be returned to the Zn circuit.
For å minske Cd- og Zn-tapene når man anvender■alternativ To reduce the Cd and Zn losses when using ■alternative
2 som-rensingsmetode,/skulle man kunne utfore rensingen slik 'at.man 2 as-purification method,/should one be able to carry out the purification so 'that.man
bare tar ut en. kombinert felling og således behandler alt sementert materiale i Cd-kretsen. Samtidig som man oppnår en .hovere--Cd- og- Zn-ekstraksjon, får man også en Cd-krets som har alle de forurensninger som sementeres ut fra Zn-kretsen. Dette betyr at deres "outlet" fra prosessen må være. i Cd-kretsen, og at man ikke kan benytte seg av returnering til Zn-kretsen som eneste rensemetode i Cd-kretsen. Siden også innholdet av forurensninger er meget hoy kreves det at rensings-metodene er slik at tapene av Cu, Cd eller Zn er små og dessuten så effektive at rent Cd kan fremstilles på noenlunde. enkel måte.. just take one out. combined precipitation and thus processes all cemented material in the Cd circuit. At the same time as you achieve superior Cd and Zn extraction, you also get a Cd circuit that has all the impurities cemented out of the Zn circuit. This means that their "outlet" from the process must be. in the Cd circuit, and that you cannot use return to the Zn circuit as the only cleaning method in the Cd circuit. Since the content of pollutants is also very high, it is required that the purification methods are such that the losses of Cu, Cd or Zn are small and, moreover, so efficient that pure Cd can be produced in a reasonable amount. easy way..
Hvis den kombinerte utfellingen opplpses i retursyren fra Zn-elektrolysen, får man en temmelig fullstendig opplosning av Zn, Cd, Ni og Co, mens Cu og As derimot forblir i uopplost tilstand. Hvis luft er tilgjengelig, begynner også disse å oksyderes og opplose seg, når Zn og Cd har gått i opplosning, og av denne grunn kan (Cu -kon-sentrasjonen) i opplosningen benyttes som indikator på oppløsningens fullstendighet. If the combined precipitate is dissolved in the return acid from the Zn electrolysis, a fairly complete dissolution of Zn, Cd, Ni and Co is obtained, while Cu and As, on the other hand, remain in an undissolved state. If air is available, these also begin to oxidize and dissolve, when Zn and Cd have gone into solution, and for this reason (the Cu concentration) in the solution can be used as an indicator of the completeness of the solution.
Etter opplosningen kan fortsettelsen utfores på folgende kjente måte, som benyttes eller har vært benyttet (se fig. 3, Alf, A.J.: Journal of Metals, September 1958, side 607-6lO). Opplosningsresten filtreres bort og Cu <+> sementeres fra den rene opplosningen med Zn-pulver. Etter ny filtrering sementeres Cd ut med Zn-pulver. Cd filtreres bort og Co og Ni sementeres fra den Cd-fattige opplosningen med Zn-pulver og As (Sb)- + Cu-tilsetning på normal måte, hvoretter den rensede opplosningen etter filtrering kan returneres til Zn-kretsen. After the dissolution, the continuation can be carried out in the following known way, which is used or has been used (see fig. 3, Alf, A.J.: Journal of Metals, September 1958, pages 607-610). The solution residue is filtered off and Cu <+> is cemented from the pure solution with Zn powder. After new filtration, Cd is cemented out with Zn powder. Cd is filtered away and Co and Ni are cemented from the Cd-poor solution with Zn powder and As (Sb) + Cu addition in the normal way, after which the purified solution after filtration can be returned to the Zn circuit.
På denne måte får man en akseptabel "outlet" for Co og Ni In this way, you get an acceptable "outlet" for Co and Ni
i det henseende at Cd- og Zn-tapene blir små. Ved utfelling av Cd med Zn-pulver fra en slik forurenset opplosning vil dog, som nevnt ovenfor, spesielt Ni, men også i en viss utstrekning, Co delvis sementeres med og forurense det utfelte Cd. Det kreves derfor ytterligere foranstaltninger for fjerning av disse elementer samt Zn, som benyttes i overskudd ved sementeringen. Den vanligste metode er opplosning av Cd-svamp i H2S0^ (retursyre fra Cd-elektrolysen) og deretter elektro-lytisk utfelling av Cd, hvorved Co og Ni ikke utfelles i storre grad. Når innholdet av disse elementer samt Zn etterhvert stiger i elektro-lytten, returneres en del av denne alltid til opplosningen av semen- in that the Cd and Zn losses are small. When Cd is precipitated with Zn powder from such a contaminated solution, however, as mentioned above, especially Ni, but also to a certain extent, Co will be partially cemented with and contaminate the precipitated Cd. Additional measures are therefore required to remove these elements as well as Zn, which is used in excess during cementation. The most common method is the dissolution of Cd sponge in H2S0^ (return acid from the Cd electrolysis) and then electrolytic precipitation of Cd, whereby Co and Ni are not precipitated to a large extent. When the content of these elements as well as Zn gradually rises in the electrolyte, a part of this is always returned to the dissolution of semen
teringsfellingen. Elektrolysen, som vanligvis utføres med Pb-Ag-anoder, har dog den ulempe at Pb-innholdet ved katoden blir temmelig høyt (0.01 - 0.015 %) og dessuten oppnåes omtrent samme mengde Zn som forurensning. Katodene smeltes deretter i alkalismelte, hvorved Zn oksyderes og oppløser seg som sinkat i slagget; for Pb oppnåes ikke en tilsvarende rensingseffekt. the rolling of the dice. The electrolysis, which is usually carried out with Pb-Ag anodes, however has the disadvantage that the Pb content at the cathode becomes rather high (0.01 - 0.015%) and, moreover, approximately the same amount of Zn is obtained as contamination. The cathodes are then melted in alkaline melt, whereby Zn is oxidized and dissolves as zincate in the slag; for Pb, a corresponding cleaning effect is not achieved.
De ovennevnte ulemper unngåes ved hjelp av foreliggende oppfinnelse idet det er tilveiebragt en fremgangsmåte til utvinning av kadmium fra en kadmiumsulfatoppløsning som inneholder kobolt-, nikkel-, kobber-, arsen-, antimon- og sinksalter som oppløste forurensninger, idet kobolt, nikkel, kobber, arsen og antimon sementeres fra oppløs-ningen under anvendelse av et egnet reduksjonsmiddel, mens kadmium utfelles fra oppløsningen og deretter raffineres i et alkalisk smeltebad, kjennetegnet ved at sementeringen gjennomføres i nærvær av en fast fase som i alt vesentlig er sammensatt av kobber og arsen, henholdsvis antimon, og som er suspendert i oppløsningen, og at det opp-løste bly utfelles ved hjelp av oppløselige strontium- eller bariumsalter etter filtrering av sementatet og nevnte faste fase og før utfelling av kadmium. The above-mentioned disadvantages are avoided by means of the present invention in that a method is provided for extracting cadmium from a cadmium sulphate solution containing cobalt, nickel, copper, arsenic, antimony and zinc salts as dissolved impurities, cobalt, nickel, copper . , respectively antimony, and which are suspended in the solution, and that the dissolved lead is precipitated using soluble strontium or barium salts after filtering the cementate and said solid phase and before precipitation of cadmium.
Oppfinnelsen angår således en fremgangsmåte som utføres slik at etter sementeringsfellingens oppløsning, eller metaller som er edlere enn Cd, fjernes fra oppløsningen før Cd utsementeres. Herved-oppnåes en Cd-svamp hvis eneste betydelige forurensning er Zn som lett kan fjernes ved smelteraffinering under alkali (britisk patent nr. 461 222, tysk patent nr. 691 787). Fremgangsmåten blir mulig å utføre fordi Co og Ni (samt Cu, As, Sb) fjernes fra CdSO^-oppløsningen før Cd-svampen utsementeres, hvorved man arbeider på følgende måte (se fig. 4). The invention thus relates to a method which is carried out so that after the dissolution of the cementing precipitate, or metals which are more noble than Cd, are removed from the solution before Cd is cemented out. This results in a Cd sponge whose only significant contamination is Zn, which can be easily removed by melt refining under alkali (British patent no. 461 222, German patent no. 691 787). The procedure becomes possible to carry out because Co and Ni (as well as Cu, As, Sb) are removed from the CdSO^ solution before the Cd sponge is cemented out, whereby one works in the following way (see fig. 4).
Etter oppløsningen av Cd og Zn fra den kombinerte sementerings-fellingen fra Zn-kretsens oppløsningsrensing (i hvilken oppløsnings-rensing ifølge metode 2 er benyttet), hvorved også Co og Ni er gått i oppløsning, etterlates den uoppløste Cu-As-fellingen tilbake i oppløs-ningen og temperaturen heves (helst til over 90°C). Zn-pulver tilsettes først i en mengde som tilsvarer eventuelt oppløst Cu og deretter porsjonsvis til Co er fjernet hvilket indikerer at også Cu, Ni, As, Sb er fjernet fra oppløsningen. Man anvender således enda en gang det As og Cu som er nødvendig for rensingen i Zn-kretsen, og dessuten anvendes det på en slik måte at Cd til tross for det høye innhold holdes i opp-løsning. After the dissolution of Cd and Zn from the combined cementation precipitate from the Zn circuit's dissolution purification (in which dissolution purification according to method 2 is used), whereby Co and Ni have also dissolved, the undissolved Cu-As precipitate is left back in the solution and the temperature are raised (preferably to over 90°C). Zn powder is first added in an amount corresponding to any dissolved Cu and then in portions until Co is removed, which indicates that Cu, Ni, As, Sb have also been removed from the solution. Thus, the As and Cu that are necessary for the purification in the Zn circuit are used once again, and furthermore, they are used in such a way that Cd is kept in solution despite the high content.
Med denne rensing er alle elementer unntagen Pb, som er edlere enn Cd, fjernet så fullstendig at deres innhold i Cd-s vampen blir så lavt at ytterligere rensingsforanstaltninger ene og alene for deres fjerning, ikke er nodvendige. Pb er den eneste forurensning som vil inngå i Cd-svampen og som ikke kan fjernes effektiv ved smelt-ing med alkali. Pb kan dog som kjent utfelles fra en sur sulfatopp-losning som isomorft Sr-Pb-sulfat ved tilsetning av SrCO^ (Ba kan også anvendes) (US patent nr. 2 4.96 996, tysk patent nr. 820 969), hvorved Pb-innholdet i opplosningen kan bringes ned til f„eks. 6.1,mg/l, hvilket gir et maksimalt innhold på 5 PPm i Cd-svampen, hvis Cd-innholdet i opplosningen er 20 g/l. With this purification, all elements except Pb, which is more noble than Cd, are removed so completely that their content in the Cd-s vamp becomes so low that further purification measures solely for their removal are not necessary. Pb is the only contaminant that will be included in the Cd sponge and that cannot be effectively removed by melting with alkali. However, as is known, Pb can be precipitated from an acidic sulphate solution as isomorphous Sr-Pb-sulphate by adding SrCO^ (Ba can also be used) (US patent no. 2 4.96 996, German patent no. 820 969), whereby Pb- the content of the solution can be reduced to e.g. 6.1,mg/l, which gives a maximum content of 5 PPm in the Cd sponge, if the Cd content in the solution is 20 g/l.
Etter .at Pb er fjernet felles Cd-svampen med Zn-pulver av hoy kvalitet hvorved innholdet av edle, forurensende elementer be-stemmes .av deres innhold i Zn-pulveret. Zn samt en hel del andre uedle elementer slik som Fe, Si, Al, Mn og Mg fjernes deretter med enkel smelteraffinering under alkali. After the Pb has been removed, the Cd sponge is mixed with high quality Zn powder whereby the content of noble, polluting elements is determined by their content in the Zn powder. Zn as well as a number of other non-precious elements such as Fe, Si, Al, Mn and Mg are then removed by simple smelting under alkali.
Med denne fremgangsmåte kan man også fra et så vanskelig materiale som det som oppnåes fra opplosningsrensing ifolge fremgangsmåte 2 ovenfor, på en enkel måte fremstille Cd med en renhetsgrad på minst 99-995 With this method, it is also possible to easily produce Cd with a purity of at least 99-995 from such a difficult material as that obtained from solution purification according to method 2 above.
Med denne fremgangsmåte oppnåes også "outlet" for Co, Ni, Cu, As og Sb i Cd-kretsen og samtidig en fullstendig fjerning, hvorved Cd-fremstillingens fortsettelse blir meget enkel fordi man ikke mer behover å ta disse elementer i betraktning. With this method, an "outlet" is also achieved for Co, Ni, Cu, As and Sb in the Cd circuit and at the same time a complete removal, whereby the continuation of the Cd production becomes very simple because one no longer needs to take these elements into account.
Ekstraksjonen av Cd og Zn blir også meget god, fordi for det forste de elementer As, Co, Ni, som ved senking av hydrogenets overspenning i anseelig grad forhoyer opplosningshastigheten for Cd og Zn, finnes tilstede i hoye innhold. For det annet behover man ikke ta hensyn til i hvilken grad disse forurensninger finnes i opplosningen fordi etterfølgende rensing effektivt utfeller dem tilbake. Opplosningen kan derfor utfores med hoyest mulige ekstraksjon av Cd og Zn som mål. The extraction of Cd and Zn is also very good, because, firstly, the elements As, Co, Ni, which by lowering the hydrogen overvoltage considerably increase the rate of dissolution of Cd and Zn, are present in high contents. Secondly, one does not need to take into account the extent to which these contaminants are present in the solution because subsequent purification effectively precipitates them back. The dissolution can therefore be carried out with the highest possible extraction of Cd and Zn as a target.
Eksempel 1 Example 1
Sementeringsfelling av folgende sammensetning anvendes som Cementing slurry of the following composition is used as
■utgangsmateriale: ■starting material:
Etter opplosning ved 70 C med Zn-retursyre (60 g Zn og l80 g l^SO^/l) oppnåes folgende opplosning: After dissolution at 70 C with Zn reflux acid (60 g Zn and 180 g l^SO^/l), the following solution is obtained:
Etter tilsetning av 4«9 g Zn-pulver/l (= ekv. mengde mot Cu<++> ZhO = 10%) + 1.95 g Zn-pulver/l ved 90°C oppnåes folgende opp-' losning: After adding 4-9 g Zn powder/l (= equivalent amount to Cu<++> ZhO = 10%) + 1.95 g Zn powder/l at 90°C, the following solution is obtained:
Til opplosningen tilsettes 3 x 0.3 g SrCO^/l med en l/2 times mellomrom og den inneholder deretter 0.05 mg Pb/l. Fra denne opplosning oppnåes en Cd-svamp med folgende sammensetning (Zn-pulveret, som anvendes ved sementeringen inneholder 30 ppm Pb): 3 x 0.3 g SrCO^/l are added to the solution at 1/2 hour intervals and it then contains 0.05 mg Pb/l. From this solution, a Cd sponge with the following composition is obtained (the Zn powder, which is used in the cementation, contains 30 ppm Pb):
Co og Ni kunne ikke påvises, hvilket betyr at deres innhold var under 3 ppm. Co and Ni could not be detected, which means that their content was below 3 ppm.
Denne Cd-svamp smeltet under NaOH, og folgende Cd oppnåes: This Cd sponge melted under NaOH, and the following Cd is obtained:
Eksempel 2 Example 2
Råmateriale: kombinert Cu- og Cd-kake Raw material: combined Cu and Cd cake
Kaken utlutes med Zn-elektrolysens retursyre i ca. 12 timer ved en syrekonsentrasjon på 3 - 10 g F^SO^/l. Opplosningen og utlut-ningsresten oppviser folgende sammensetning: The cake is leached with the return acid from Zn electrolysis for approx. 12 hours at an acid concentration of 3 - 10 g F^SO^/l. The solution and the leach residue have the following composition:
Opplosningen The solution
Zn-pulver ble tilsatt til suspensjonen til pH-verdien ble 5. Zn-pulverforbruket var 2.6 g/l. Temperaturen var over 90°C. Suspensjonen ble filtrert når Co-drypptesten viste mindre enn 2 mg Co/l. Zn powder was added to the suspension until the pH value became 5. The Zn powder consumption was 2.6 g/l. The temperature was over 90°C. The suspension was filtered when the Co drop test showed less than 2 mg Co/l.
Analyse av opplosningen: Analysis of the solution:
Analyse av resten: Analysis of the rest:
BaCO^ ble deretter tilsatt til opplosningen i form av en vannoppslemming. •Den'tilsatte BaCO^-mengden var 2 g/l og den ble tilsatt i, lopet av 2 timer. I begynnelsen ble det også tilsatt 0.3 g Zn-pulver/l. Opplosningen ble deretter filtrert. BaCO^ was then added to the solution in the form of a water slurry. • The amount of BaCO^ added was 2 g/l and it was added for 2 hours. At the beginning, 0.3 g Zn powder/l was also added. The solution was then filtered.
Analyse av opplosningen: Analysis of the solution:
Cd-svampen ble utsementert fra denne opplosning med et Zn-pulver som inneholdt: The Cd sponge was cemented out of this solution with a Zn powder containing:
Svampen hadde folgende analyse: The sponge had the following analysis:
Svampen ble brikettert og brikettene plasert i en elektrisk' oppvarmet jernbeholder som var forsynt med en rorer. Brikettene ble dekket méd NaOH og oppvarmet til alt var smeltet. ■Omroringen ble på-begynt og den pågikk i 2 timer. The sponge was briquetted and the briquettes placed in an electrically heated iron container which was fitted with a stirrer. The briquettes were covered with NaOH and heated until everything was melted. ■Stirring was started and continued for 2 hours.
Metallet oppviste deretter folgende sammensetning: The metal then had the following composition:
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI700106A FI46633C (en) | 1970-01-14 | 1970-01-14 | Process for the production of cadmium. |
Publications (1)
Publication Number | Publication Date |
---|---|
NO128371B true NO128371B (en) | 1973-11-05 |
Family
ID=8503616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO00121/71A NO128371B (en) | 1970-01-14 | 1971-01-13 |
Country Status (8)
Country | Link |
---|---|
US (1) | US3850619A (en) |
BE (1) | BE761430A (en) |
CA (1) | CA941619A (en) |
DE (1) | DE2101072C3 (en) |
FI (1) | FI46633C (en) |
NL (1) | NL154557B (en) |
NO (1) | NO128371B (en) |
SU (1) | SU764618A3 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1082438B (en) * | 1977-08-03 | 1985-05-21 | Ammi Spa | CADMIUM EXTRACTION PROCESS FROM CADMIUM CEMENTS |
CH671780A5 (en) * | 1987-09-28 | 1989-09-29 | Recytec S A C O Orfigest S A |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3127264A (en) * | 1964-03-31 | Non-ferrous recovery process | ||
US1869259A (en) * | 1927-07-29 | 1932-07-26 | American Smelting Refining | Process for extracting and separating cadmium |
US1785139A (en) * | 1928-05-18 | 1930-12-16 | Grasselli Chemical Co | Process of producing metallic cadmium from cadmium-containing material |
US1827755A (en) * | 1930-06-28 | 1931-10-20 | Kirsebom Gustaf Newton | Treatment of cadmium-bearing material |
US2112191A (en) * | 1936-03-21 | 1938-03-22 | Cie Metaux Doverpelt Lommel | Process for purifying metallic cadmium |
US2178763A (en) * | 1938-08-12 | 1939-11-07 | Glidden Co | Purification of cadmium |
US2473962A (en) * | 1944-12-01 | 1949-06-21 | Eagle Picher Co | Process for recovering cadmium |
US2923618A (en) * | 1958-09-08 | 1960-02-02 | Fluor Corp | Treatment of copper leach solutions |
US3464814A (en) * | 1966-02-24 | 1969-09-02 | Anaconda Co | Leaching zinc plant purification residue |
US3510414A (en) * | 1967-12-04 | 1970-05-05 | Bunker Hill Co | Process of recovering metals from zinc plant residue |
-
1970
- 1970-01-14 FI FI700106A patent/FI46633C/en active
-
1971
- 1971-01-08 SU SU711613964A patent/SU764618A3/en active
- 1971-01-11 BE BE761430A patent/BE761430A/en not_active IP Right Cessation
- 1971-01-12 DE DE2101072A patent/DE2101072C3/en not_active Expired
- 1971-01-13 NO NO00121/71A patent/NO128371B/no unknown
- 1971-01-13 CA CA102,663A patent/CA941619A/en not_active Expired
- 1971-01-14 US US00106387A patent/US3850619A/en not_active Expired - Lifetime
- 1971-01-14 NL NL717100530A patent/NL154557B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
NL7100530A (en) | 1971-07-16 |
FI46633C (en) | 1973-05-08 |
DE2101072A1 (en) | 1971-07-22 |
BE761430A (en) | 1971-06-16 |
NL154557B (en) | 1977-09-15 |
DE2101072C3 (en) | 1974-03-07 |
FI46633B (en) | 1973-01-31 |
CA941619A (en) | 1974-02-12 |
DE2101072B2 (en) | 1973-08-16 |
US3850619A (en) | 1974-11-26 |
SU764618A3 (en) | 1980-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4229270A (en) | Process for the recovery of metal values from anode slimes | |
US4071421A (en) | Process for the recovery of zinc | |
US4571262A (en) | Recovery of platinum group metals from nickel-copper-iron matte | |
US4076605A (en) | Dichromate leach of copper anode slimes | |
US4030990A (en) | Process for recovering electrolytic copper of high purity by means of reduction electrolysis | |
PL205994B1 (en) | Method for processing anode sludge | |
US4662938A (en) | Recovery of silver and gold | |
CN109055764B (en) | Comprehensive recovery method of high-chlorine low-zinc material | |
US20120144959A1 (en) | Smelting method | |
US2981595A (en) | Recovery of tellurium | |
JP2642230B2 (en) | Manufacturing method of high purity tin | |
US4468302A (en) | Processing copper-nickel matte | |
US4124379A (en) | Recovery of silver from cuprous chloride solutions by amalgamation | |
NO128371B (en) | ||
CA3146817A1 (en) | Method for processing copper and nickel sulfide materials | |
US5939042A (en) | Tellurium extraction from copper electrorefining slimes | |
US1759494A (en) | Method for the recovery of lead and other metals from ores or other lead-bearing materials | |
JP2009074128A (en) | Method for recovering tin | |
US5135624A (en) | Electrolytic hydrometallurgical silver refining | |
JPS6119718B2 (en) | ||
US5108721A (en) | Treatment of high nickel slimes | |
CN112575192A (en) | Method for extracting valuable metals by electrolytic separation of bismuth silver zinc slag | |
US2839461A (en) | Electrolytic recovery of nickel | |
US2322786A (en) | Process of electrolytic parting | |
US1979229A (en) | Removing impurities from metallurgical solutions |