Ciznicki et al., 2017 - Google Patents
Energy aware scheduling model and online heuristics for stencil codes on heterogeneous computing architecturesCiznicki et al., 2017
View HTML- Document ID
- 3425656871202550546
- Author
- Ciznicki M
- Kurowski K
- Weglarz J
- Publication year
- Publication venue
- Cluster Computing
External Links
Snippet
Performance of high-end supercomputers will reach the exascale through the advent of core counts in billions. However, in the upcoming exascale computing era it is important not only to focus on the performance, but also on scalability of fine-grained parallel applications, data …
- 238000009826 distribution 0 abstract description 11
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/505—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering the load
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5094—Allocation of resources, e.g. of the central processing unit [CPU] where the allocation takes into account power or heat criteria
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3234—Action, measure or step performed to reduce power consumption
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored programme computers
- G06F15/78—Architectures of general purpose stored programme computers comprising a single central processing unit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformations of program code
- G06F8/41—Compilation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2209/00—Indexing scheme relating to G06F9/00
- G06F2209/50—Indexing scheme relating to G06F9/50
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/78—Power analysis and optimization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pal et al. | Outerspace: An outer product based sparse matrix multiplication accelerator | |
US11907549B2 (en) | Systems and methods for minimizing communications | |
Abdel-Basset et al. | Energy-aware whale optimization algorithm for real-time task scheduling in multiprocessor systems | |
Kołodziej et al. | Hierarchical genetic-based grid scheduling with energy optimization | |
Wang et al. | Energy optimization for data allocation with hybrid SRAM+ NVM SPM | |
Bender et al. | Two-level main memory co-design: Multi-threaded algorithmic primitives, analysis, and simulation | |
Korthikanti et al. | Analysis of parallel algorithms for energy conservation in scalable multicore architectures | |
Javanmard et al. | Toward efficient architecture-independent algorithms for dynamic programs | |
Ciznicki et al. | Energy aware scheduling model and online heuristics for stencil codes on heterogeneous computing architectures | |
Gonthier et al. | Locality-Aware Scheduling of Independent Tasks for Runtime Systems | |
Haldeman et al. | Exploring energy-performance-quality tradeoffs for scientific workflows with in-situ data analyses | |
Rodríguez et al. | Lightweight asynchronous scheduling in heterogeneous reconfigurable systems | |
Wang et al. | Energy optimization of parallel programs in a heterogeneous system by combining processor core-shutdown and dynamic voltage scaling | |
Hoxha et al. | High performance heterogeneous multicore architectures: A study | |
Ahmad et al. | An Analytical Review and Performance Measures of State-of-Art Scheduling Algorithms in Heterogenous Computing Enviornment | |
Pottier | Co-scheduling for large-scale applications: memory and resilience | |
Li | Energy-efficient and high-performance processing of large-scale parallel applications in data centers | |
Gonthier et al. | Taming data locality for task scheduling under memory constraint in runtime systems | |
Heroux | Design issues for numerical libraries on scalable multicore architectures | |
Wang et al. | Whole procedure heterogeneous multiprocessors low-power optimization at algorithm-level | |
Brink et al. | Evaluating adaptive and predictive power management strategies for optimizing visualization performance on supercomputers | |
Al Shehri et al. | Evaluation of high-performance computing techniques for big data applications | |
Ahmed | Energy Demand Response for High-Performance Computing Systems | |
Li et al. | EPGraph: an efficient graph computing model in persistent memory system | |
Totoni | Power and energy management of modern architectures in adaptive HPC runtime systems |