Sardaraz et al., 2016 - Google Patents
Advances in high throughput DNA sequence data compressionSardaraz et al., 2016
- Document ID
- 2042151735877119476
- Author
- Sardaraz M
- Tahir M
- Ikram A
- Publication year
- Publication venue
- Journal of bioinformatics and computational biology
External Links
Snippet
Advances in high throughput sequencing technologies and reduction in cost of sequencing have led to exponential growth in high throughput DNA sequence data. This growth has posed challenges such as storage, retrieval, and transmission of sequencing data. Data …
- 238000007906 compression 0 title abstract description 143
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30312—Storage and indexing structures; Management thereof
- G06F17/30321—Indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30067—File systems; File servers
- G06F17/30129—Details of further file system functionalities
- G06F17/3015—Redundancy elimination performed by the file system
- G06F17/30156—De-duplication implemented within the file system, e.g. based on file segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/22—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for sequence comparison involving nucleotides or amino acids, e.g. homology search, motif or SNP [Single-Nucleotide Polymorphism] discovery or sequence alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30289—Database design, administration or maintenance
- G06F17/30303—Improving data quality; Data cleansing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30067—File systems; File servers
- G06F17/30129—Details of further file system functionalities
- G06F17/3015—Redundancy elimination performed by the file system
- G06F17/30153—Redundancy elimination performed by the file system using compression, e.g. sparse files
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/3061—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F17/30613—Indexing
- G06F17/30619—Indexing indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/14—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for phylogeny or evolution, e.g. evolutionarily conserved regions determination or phylogenetic tree construction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/28—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same information or similar information or a subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/40—Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
- H03M7/4031—Fixed length to variable length coding
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same information or similar information or a subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/3084—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction using adaptive string matching, e.g. the Lempel-Ziv method
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wandelt et al. | Trends in genome compression | |
Sardaraz et al. | Advances in high throughput DNA sequence data compression | |
Wandelt et al. | FRESCO: Referential compression of highly similar sequences | |
Kuruppu et al. | Iterative dictionary construction for compression of large DNA data sets | |
Deorowicz et al. | Robust relative compression of genomes with random access | |
Kuruppu et al. | Optimized relative Lempel-Ziv compression of genomes | |
Bonfield et al. | Compression of FASTQ and SAM format sequencing data | |
Wandelt et al. | RCSI: Scalable similarity search in thousand (s) of genomes | |
Bakr et al. | DNA lossless compression algorithms | |
Saha et al. | NRGC: a novel referential genome compression algorithm | |
Najam et al. | Pattern matching for DNA sequencing data using multiple bloom filters | |
Sardaraz et al. | SeqCompress: An algorithm for biological sequence compression | |
Yao et al. | HRCM: an efficient hybrid referential compression method for genomic big data | |
Grabowski et al. | MBGC: multiple bacteria genome compressor | |
Elnady et al. | Hadc: A hybrid compression approach for dna sequences | |
Selva et al. | SRComp: short read sequence compression using burstsort and Elias omega coding | |
Pizzi et al. | Fast profile matching algorithms—A survey | |
Law | Application of signal processing for DNA sequence compression | |
Gilmary et al. | Compression techniques for dna sequences: A thematic review | |
Kumar et al. | WBFQC: A new approach for compressing next-generation sequencing data splitting into homogeneous streams | |
Kumar et al. | A new efficient referential genome compression technique for FastQ files | |
Zhang et al. | Efficient Search Over Genomic Short Read Data | |
Gupta et al. | A novel approach for compressing DNA sequences using semi-statistical compressor | |
Neha et al. | Towards context-aware DNA sequence compression algorithms | |
Sun et al. | PMFFRC: a large-scale genomic short reads compression optimizer via memory modeling and redundant clustering |