Dhote et al., 1997 - Google Patents
Low temperature growth and reliability of ferroelectric memory cell integrated on Si with conducting barrier stackDhote et al., 1997
- Document ID
- 15531657666245573780
- Author
- Dhote A
- Madhukar S
- Young D
- Venkatesan T
- Ramesh R
- Cotell C
- Benedetto J
- Publication year
- Publication venue
- Journal of materials research
External Links
Snippet
Polycrystalline LSCO/PNZT/LSCO ferroelectric capacitor heterostructures were grown by pulsed laser deposition using a composite conducting barrier layer of Pt/TiN on poly-Si/Si substrate. The growth of the ferroelectric heterostructure is accomplished at a temperature in …
- 230000015654 memory 0 title abstract description 8
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L39/00—Devices using superconductivity; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L39/24—Processes or apparatus peculiar to the manufacture or treatment of devices provided for in H01L39/00 or of parts thereof
- H01L39/2419—Processes or apparatus peculiar to the manufacture or treatment of devices provided for in H01L39/00 or of parts thereof the superconducting material comprising copper oxide
- H01L39/2422—Processes for depositing or forming superconductor layers
- H01L39/2454—Processes for depositing or forming superconductor layers characterised by the substrate
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
- H01L27/10—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
- H01L27/105—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
- H01L27/112—Read-only memory structures [ROM] and multistep manufacturing processes therefor
- H01L27/115—Electrically programmable read-only memories; Multistep manufacturing processes therefor
- H01L27/11502—Electrically programmable read-only memories; Multistep manufacturing processes therefor with ferroelectric memory capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/55—Capacitors with a dielectric comprising a perovskite structure material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/40—Electrodes; Multistep manufacturing processes therefor
- H01L29/43—Electrodes; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/516—Insulating materials associated therewith with at least one ferroelectric layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L49/00—Solid state devices not provided for in groups H01L27/00 - H01L47/00 and H01L51/00 and not provided for in any other subclass; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L41/00—Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Larsen et al. | Ferroelectric memories | |
Dat et al. | Polycrystalline La0. 5Sr0. 5CoO3/PbZr0. 53Ti0. 47O3/La0. 5Sr0. 5CoO3 ferroelectric capacitors on platinized silicon with no polarization fatigue | |
Ramesh et al. | Oriented ferroelectric La‐Sr‐Co‐O/Pb‐La‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on [001] Pt/SiO2 Si substrates using a bismuth titanate template layer | |
Liu et al. | Epitaxial La-doped SrTiO 3 on silicon: A conductive template for epitaxial ferroelectrics on silicon | |
Lee et al. | Imprint of (Pb, La)(Zr, Ti) O3 thin films with various crystalline qualities | |
US5418389A (en) | Field-effect transistor with perovskite oxide channel | |
Dat et al. | Pulsed laser ablation synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric capacitors with practically no polarization fatigue | |
Lee et al. | Built-in voltages and asymmetric polarization switching in Pb (Zr, Ti) O 3 thin film capacitors | |
Ganpule et al. | Scaling of ferroelectric and piezoelectric properties in Pt/SrBi 2 Ta 2 O 9/Pt thin films | |
JP2923361B2 (en) | C-axis perovskite thin film grown on silicon dioxide | |
JP3040483B2 (en) | Polycrystalline ferroelectric capacitor heterostructure using hybrid electrode | |
Yang et al. | La0. 5Sr0. 5CoO3/Pb (Nb0. 04Zr0. 28Ti0. 68) O3/La0. 5Sr0. 5CoO3 thin film heterostructures on Si using TiN/Pt conducting barrier | |
Ramesh et al. | Fatigue and aging in ferroelectric PbZr0. 2Ti0. 8O3/YBa2Cu3O7 heterostructures | |
EP0632925A1 (en) | Crystallographically aligned ferroelectric films usable in memories and method of making | |
KR20010080131A (en) | Low imprint ferroelectric material for long retention memory and method of making the same | |
Ramesh et al. | Scaling of ferroelectric properties in La‐Sr‐Co‐O/Pb‐La‐Zr‐Ti‐O/La‐Sr‐Co‐O capacitors | |
Lee et al. | Highly c-axis oriented Pb (Zr, Ti) O 3 thin films grown on Ir electrode barrier and their electrical properties | |
Dhote et al. | Direct integration of ferroelectric La–Sr–Co–O/Pb–Nb–Zr–Ti–O/La–Sr–Co–O capacitors on silicon with conducting barrier layers | |
Kijima et al. | Fabrication and Characterization of Pt/(Bi, La) 4Ti3O12/Si3N4/Si Metal Ferroelectric Insulator Semiconductor Structure for FET-Type Ferroelectric Memory Applications | |
Lin et al. | Growth and polarization features of highly (100) oriented Pb (Zr 0.53 Ti 0.47) O 3 films on Si with ultrathin SiO 2 buffer layer | |
Ramesh et al. | Template approaches to growth of oriented oxide heterostructures on SiO 2/Si | |
Bhatt et al. | Novel high temperature multilayer electrode-barrier structure for high-density ferroelectric memories | |
Dhote et al. | Low temperature growth and reliability of ferroelectric memory cell integrated on Si with conducting barrier stack | |
Auciello et al. | A review of composition-structure-property relationships for PZT-based heterostructure capacitors | |
Aggarwal et al. | Conducting barriers for vertical integration of ferroelectric capacitors on Si |