[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Maheswari et al., 2014 - Google Patents

Enhanced low complex double error correction coding with crosstalk avoidance for reliable on-chip interconnection link

Maheswari et al., 2014

Document ID
15320821736991577785
Author
Maheswari M
Seetharaman G
Publication year
Publication venue
Journal of Electronic Testing

External Links

Snippet

As the technology scales down, shrinking geometry and layout dimension, on-chip interconnects are exposed to different noise sources such as crosstalk coupling, supply voltage fluctuation and temperature variation that cause random and burst errors. These …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1008Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
    • G06F11/1012Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices using codes or arrangements adapted for a specific type of error
    • G06F11/1016Error in accessing a memory location, i.e. addressing error
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1008Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
    • G06F11/1044Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices with specific ECC/EDC distribution
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
    • H03M13/2909Product codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link

Similar Documents

Publication Publication Date Title
Bertozzi et al. Error control schemes for on-chip communication links: the energy-reliability tradeoff
Fu et al. On hamming product codes with type-II hybrid ARQ for on-chip interconnects
Ejlali et al. Joint consideration of fault-tolerance, energy-efficiency and performance in on-chip networks
US20130086444A1 (en) Error detection code enhanced self-timed/asynchronous nanoelectronic circuits
Ganguly et al. Design of low power & reliable networks on chip through joint crosstalk avoidance and multiple error correction coding
Dutta et al. Reliable network-on-chip using a low cost unequal error protection code
Maheswari et al. Multi bit random and burst error correction code with crosstalk avoidance for reliable on chip interconnection links
Vinodhini et al. Reliable low power NoC interconnect
Ibrahim et al. An energy efficient and low overhead fault mitigation technique for internet of thing edge devices reliable on‐chip communication
Gangopadhyay et al. Multiple-bit parity-based concurrent fault detection architecture for parallel CRC computation
Maheswari et al. Enhanced low complex double error correction coding with crosstalk avoidance for reliable on-chip interconnection link
Gul et al. Joint crosstalk aware burst error fault tolerance mechanism for reliable on-chip communication
Dang et al. Parity-based ECC and mechanism for detecting and correcting soft errors in on-chip communication
Suma et al. Simulation and synthesis of efficient majority logic fault detector using EG-LDPC codes to reduce access time for memory applications
Rossi et al. Power consumption of fault tolerant busses
Flayyih et al. Adaptive multibit crosstalk-aware error control coding scheme for on-chip communication
Baskar et al. Error detection and correction enhanced decoding of differenceset codes for memory application
Chennakesavulu et al. Improved performance of error controlling codes using pass transistor logic
Velayudham et al. Power efficient error correction coding for on‐chip interconnection links
Maheswari et al. Design of a novel error correction coding with crosstalk avoidance for reliable on-chip interconnection link
Fu et al. Burst error detection hybrid ARQ with crosstalk-delay reduction for reliable on-chip interconnects
Ganguly et al. Addressing signal integrity in networks on chip interconnects through crosstalk-aware double error correction coding
Flayyih Crosstalk aware multi-bit error detection with limited error correction coding for reliable on-chip communication
Rossi et al. Power consumption of fault tolerant codes: The active elements
Himaja et al. Multi-bit low redundancy error control with parity sharing for NoC interconnects