[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zhu et al., 2022 - Google Patents

A Packaged 90-to-96GHz 16-Element Phased Array with 18.8/15.8 dBm Psat/OP1dB, 14.8% TX PAE in 65nm CMOS Process and+ 51dBm Array EIRP

Zhu et al., 2022

Document ID
11316535781254995589
Author
Zhu W
Zhang J
Wang J
Wang R
Li C
Wang K
Wang Y
Publication year
Publication venue
2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)

External Links

Snippet

This work presents a packaged 90-to-96GHz 16-Element transceiver phased array. It is constructed using 4-channel silicon beamformers in 65nm CMOS process, external power amplifiers (PAs) and low noise amplifiers in 100nm GaN process as well as Vivaldi antennas …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • H03F3/604Combinations of several amplifiers using FET's
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/605Distributed amplifiers
    • H03F3/607Distributed amplifiers using FET's
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/204A hybrid coupler being used at the output of an amplifier circuit
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/198A hybrid coupler being used as coupling circuit between stages of an amplifier circuit
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45361Indexing scheme relating to differential amplifiers the AAC comprising multiple transistors parallel coupled at their drains only, e.g. in a cascode dif amp, only those forming the composite common source transistor
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q23/00Aerials with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems

Similar Documents

Publication Publication Date Title
US7486136B2 (en) Power amplifier
Yoon et al. A highly linear 28GHz 16-element phased-array receiver with wide gain control for 5G NR application
Lee et al. 28 GHz RF front-end structure using CG LNA as a switch
Kim et al. A Switchless, $ Q $-Band Bidirectional Transceiver in 0.12-$\mu $ m SiGe BiCMOS Technology
Zhu et al. 14.5 A 1V W-Band Bidirectional Transceiver Front-End with< 1dB T/R Switch Loss,< 1°/dB Phase/Gain Resolution and 12.3% TX PAE at 15.1 dBm Output Power in 65nm CMOS Technology
Pashaeifar et al. 14.4 A 24-to-30GHz double-quadrature direct-upconversion transmitter with mutual-coupling-resilient series-Doherty balanced PA for 5G MIMO arrays
Rachakh et al. A Novel Configuration of a Microstrip Microwave Wideband Power Amplifier for Wireless Application
Zhu et al. A Packaged 90-to-96GHz 16-Element Phased Array with 18.8/15.8 dBm Psat/OP1dB, 14.8% TX PAE in 65nm CMOS Process and+ 51dBm Array EIRP
Alhamed et al. A multi-standard 15-57 GHz 4-channel receive beamformer with 4.8 dB midband NF for 5G applications
Alhamed et al. A global multi-standard/multi-band 17.1-52.4 GHz Tx phased array beamformer with 14.8 dBm OP1dB supporting 5G NR FR2 bands with multi-Gb/s 64-QAM for massive MIMO arrays
Zhu et al. A 1V 32.1 dBm 92-to-102GHz power amplifier with a scalable 128-to-1 power combiner achieving 15% peak PAE in a 65nm bulk CMOS process
Huang et al. 28 GHz compact LNAs with 1.9 dB NF using folded three-coil transformer and dual-feedforward techniques in 65nm CMOS
Hu et al. A quad-band RX phased-array receive beamformer with two simultaneous beams, polarization diversity, and 2.1–2.3 dB NF for C/X/Ku/Ka-band SATCOM
Min et al. SiGe T/R modules for Ka-band phased arrays
Lu et al. A 24-GHz patch array with a power amplifier/low-noise amplifier MMIC
Testa et al. 200 GHz power-efficient BiCMOS phased-array receiver frontend
Hossain et al. A W-band transceiver chip for future 5G communications in InP-DHBT technology
Li et al. A 24-30 GHz Balanced PA With High Linearity for mm-Wave 5G in 130 nm SiGe BiCMOS
Dinç et al. X-band, high performance, SiGe-heterojunction bipolar transistors-low noise amplifier for phased array radar applications
Doki et al. Balanced amplifier technique for lna in uhf band
Guan et al. A 33.5-37.5 GHz 4-Element Phased-Array Transceiver Front-End with High-Accuracy Low-Variation 6-bit Resolution 360° Phase Shift and 0~ 31.5 dB Gain Control in 65 nm CMOS
Somesanu et al. A highly compact, 16.8 dBm Pgat Ka-band power amplifier in 250 nm SiGe: C BiCMOS
Kazan et al. A 5-33 GHz 8-Channel Transmit Beamformer with Peak Power of 14 dBm for X/Ku/Ka-band SATCOM Applications
Pantoli et al. An ultra-wideband monolitic active balun
Zhang et al. A Ka-Band Mutual Coupling Resilient Balanced PA with Magnetic Coupling Self-Cancelling Inductor Achieving 21.2 dBm OP 1dB and 27.6% PAE 1dB