Li et al., 2022 - Google Patents
A 24-30 GHz Balanced PA With High Linearity for mm-Wave 5G in 130 nm SiGe BiCMOSLi et al., 2022
- Document ID
- 8341317548662494567
- Author
- Li Z
- Chen J
- Hou D
- Wang L
- Xiang Y
- Publication year
- Publication venue
- 2022 IEEE MTT-S International Wireless Symposium (IWS)
External Links
Snippet
In this paper, a balanced power amplifier (PA) which was fabricated in a 130 nm SiGe BiCMOS technology is presented for millimeter-wave (mm-wave) fifth generation (5G) application. In the phase array systems, the impedance of the antenna varies as the beam …
- 229910000577 Silicon-germanium 0 title abstract description 11
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0261—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0277—Selecting one or more amplifiers from a plurality of amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0288—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0294—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/60—Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
- H03F3/602—Combinations of several amplifiers
- H03F3/604—Combinations of several amplifiers using FET's
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/191—Tuned amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/211—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/204—A hybrid coupler being used at the output of an amplifier circuit
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/387—A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/372—Noise reduction and elimination in amplifier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q23/00—Aerials with active circuits or circuit elements integrated within them or attached to them
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1763921B1 (en) | Integrated doherty type amplifier arrangement with high power efficiency | |
Li et al. | A 24–30-GHz TRX front-end with high linearity and load-variation insensitivity for mm-wave 5G in 0.13-μm SiGe BiCMOS | |
Fan et al. | A broadband transformer-based power amplifier achieving 24.5-dBm output power over 24–41 GHz in 65-nm CMOS process | |
Lee et al. | A 24–30 GHz 31.7% fractional bandwidth power amplifier with an adaptive capacitance linearizer | |
Kim et al. | A Switchless, $ Q $-Band Bidirectional Transceiver in 0.12-$\mu $ m SiGe BiCMOS Technology | |
Pashaeifar et al. | 14.4 A 24-to-30GHz double-quadrature direct-upconversion transmitter with mutual-coupling-resilient series-Doherty balanced PA for 5G MIMO arrays | |
CN112543002A (en) | Broadband differential Doherty power amplifier and design method and application thereof | |
Zhou et al. | Broadband highly efficient Doherty power amplifiers | |
Alhamed et al. | A global multi-standard/multi-band 17.1-52.4 GHz Tx phased array beamformer with 14.8 dBm OP1dB supporting 5G NR FR2 bands with multi-Gb/s 64-QAM for massive MIMO arrays | |
Malmqvist et al. | A W-band single-chip receiver in a 60 nm GaN-on-silicon foundry process | |
Pashaeifar et al. | A 24-to-32GHz series-Doherty PA with two-step impedance inverting power combiner achieving 20.4 dBm P sat and 38%/34% PAE at P sat/6dB PBO for 5G applications | |
Li et al. | A 24-30 GHz Balanced PA With High Linearity for mm-Wave 5G in 130 nm SiGe BiCMOS | |
Sarkar et al. | A power-efficient 4-element beamformer in 120-nm SiGe BiCMOS for 28-GHz cellular communications | |
Esmael et al. | A 19-43 GHz linear power amplifier in 28nm bulk CMOS for 5G phased array | |
Pashaeifar et al. | 32.7 A 25.2 dBm P SAT, 35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor | |
Zhu et al. | A Packaged 90-to-96GHz 16-Element Phased Array with 18.8/15.8 dBm Psat/OP1dB, 14.8% TX PAE in 65nm CMOS Process and+ 51dBm Array EIRP | |
Hanna et al. | A wideband highly efficient class-J integrated power amplifier for 5G applications | |
Öjefors et al. | An 8-way power-combining E-band amplifier in a SiGe HBT technology | |
Ding et al. | A 23 G Hz RF-beamforming Transmitter with> 15.5 dBm $\mathrm {P} _ {\text {sat}} $ and> 21.7% Peak Efficiency for Inter-satellite Communications | |
Sahlabadi et al. | A Compact, High Tuning Accuracy and Enhanced Linearity 37-43 GHz Digitally-Controlled Vector Sum Phase Shifter | |
Wang et al. | A 45 GHz Low-Voltage Cascode Power Amplifier Based on Capacitor Coupling Technology | |
Dettmann et al. | Comparison of a single-ended class AB, a balance and a doherty power amplifier | |
Liu et al. | A 60 GHz edge-coupled 4-way balun power amplifier with 22.7 dBm output power and 27.7% peak efficiency | |
Karnaty et al. | Reconfigurable millimeter-wave power amplifiers in gan and soi using passive load modulation | |
Kantanen et al. | Two-way vector modulator SiGe MMIC for millimeter-wave phased array applications |