[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Gemmeke et al., 2012 - Google Patents

Variability aware cell library optimization for reliable sub-threshold operation

Gemmeke et al., 2012

View PDF
Document ID
10980904702316216538
Author
Gemmeke T
Ashouei M
Publication year
Publication venue
2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC)

External Links

Snippet

Standard cell libraries are designed focusing on the best performance-area trade-off for a technology at nominal supply. Scaling supply voltages emphasizes the effects of systematic or random variation. We revisit existing approaches and present two new design points in …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0016Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Complementary MIS field-effect transistors
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes; Multistep manufacturing processes therefor

Similar Documents

Publication Publication Date Title
Tajalli et al. Design trade-offs in ultra-low-power digital nanoscale CMOS
Sharma et al. PVT variations aware low leakage INDEP approach for nanoscale CMOS circuits
Abbas et al. Impact of technology scaling on leakage power in nano-scale bulk CMOS digital standard cells
Saini et al. Leakage power reduction in CMOS VLSI circuits
Lorenzo et al. Review of circuit level leakage minimization techniques in CMOS VLSI circuits
Zhou et al. A 40 nm inverse-narrow-width-effect-aware sub-threshold standard cell library
Kumar et al. Leakage power reduction in CMOS logic circuits using stack ONOFIC technique
Mushtaq et al. Performance analysis for reliable nanoscaled FinFET logic circuits
Ekekwe et al. Power dissipation sources and possible control techniques in ultra deep submicron CMOS technologies
Kam et al. Design requirements for steeply switching logic devices
Bansal et al. Asymmetric halo CMOSFET to reduce static power dissipation with improved performance
Gemmeke et al. Variability aware cell library optimization for reliable sub-threshold operation
Núñez et al. Comparative analysis of projected tunnel and CMOS transistors for different logic application areas
Hanson et al. Nanometer device scaling in subthreshold circuits
Narayan et al. A novel sleepy stack 6-T SRAM cell design for reducing leakage power in submicron technologies
Rai et al. Modelling, Design, and Performance Comparison of Triple Gate Cylindrical and Partially Cylindrical FinFETs for Low‐Power Applications
Baravelli et al. Fin shape fluctuations in FinFET: Correlation to electrical variability and impact on 6-T SRAM noise margins
Wei et al. Technology assessment methodology for complementary logic applications based on energy–delay optimization
Gupta et al. Design space exploration of FinFETs in sub-10nm technologies for energy-efficient near-threshold circuits
Singhal et al. A novel technique for static leakage reduction in 16 nm CMOS design
Priya et al. Design and Analysis of Nanoscaled Recessed‐S/D SOI MOSFET‐Based Pseudo‐NMOS Inverter for Low‐Power Electronics
Park et al. Low power gate diffusion input full adder using floating body
Berge et al. Benefits of decomposing wide CMOS transistors into minimum-size gates
Hemmat et al. Hybrid TFET-MOSFET circuits: An approach to design reliable ultra-low power circuits in the presence of process variation
Verma et al. A novel approach for noise tolerant energy efficient TSPC dynamic circuit design