Freund et al., 2010 - Google Patents
Single-and multi-carrier techniques to build up Tb/s per channel transmission systemsFreund et al., 2010
- Document ID
- 10198502452828925709
- Author
- Freund R
- Nölle M
- Schmidt-Langhorst C
- Ludwig R
- Schubert C
- Bosco G
- Carena A
- Poggiolini P
- Oxenløwe L
- Galili M
- Mulvad H
- Winter M
- Hillerkuss D
- Schmogrow R
- Freude W
- Leuthold J
- Ellis A
- Gunning F
- Zhao J
- Frascella P
- Ibrahim S
- Mac Suibhne N
- Publication year
- Publication venue
- 2010 12th International Conference on Transparent Optical Networks
External Links
Snippet
In this paper, we review emerging technologies to build up Tb/s per channel transmission capacity. The different approaches, mainly based on various implementations of orthogonal frequency division multiplexing, Nyquist wavelength division multiplexing and optical time …
- 230000005540 biological transmission 0 title abstract description 31
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5053—Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5057—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
- H04B10/556—Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
- H04B10/5561—Digital phase modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/676—Optical arrangements in the receiver for all-optical demodulation of the input optical signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5167—Duo-binary; Alternative mark inversion; Phase shaped binary transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5162—Return-to-zero modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/532—Polarisation modulation, e.g. polarization switching or transmission of a single data stream on two orthogonal polarizations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
- H04J14/021—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
- H04J14/0212—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers i.e., optical receivers using an optical local oscillator
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2575—Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chandrasekhar et al. | OFDM based superchannel transmission technology | |
Lach et al. | Modulation formats for 100G and beyond | |
Yu et al. | Recent progress on high-speed optical transmission | |
Gringeri et al. | Technical considerations for supporting data rates beyond 100 Gb/s | |
Dong et al. | 6$\,\times\, $144-Gb/s Nyquist-WDM PDM-64QAM Generation and Transmission on a 12-GHz WDM Grid Equipped With Nyquist-Band Pre-Equalization | |
Huang et al. | Transmission of spectral efficient super-channels using all-optical OFDM and digital coherent receiver technologies | |
Chandrasekhar et al. | Terabit superchannels for high spectral efficiency transmission | |
Liu et al. | Superchannel for next-generation optical networks | |
Vujicic | Optical multicarrier sources for spectrally efficient optical networks | |
Wong et al. | Silicon IQ modulator for next-generation metro network | |
US20120263468A1 (en) | Generation of Optical Quadrature Duobinary Format Using Optical Delay | |
Tan et al. | Optical Nyquist filtering for elastic OTDM signals: Fundamentals and demonstrations | |
Kozicki et al. | Optical path aggregation for 1-Tb/s transmission in spectrum-sliced elastic optical path network | |
EP3105872B1 (en) | Transmitter apparatus and method | |
Miyamoto | Over 400 Gbit/s digital coherent channels for optical transport network | |
Freund et al. | Single-and multi-carrier techniques to build up Tb/s per channel transmission systems | |
WO2012003856A1 (en) | Method and device for data processing in an optical communication network | |
Huang et al. | Mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3560 km of field-installed fiber with filterless coherent receiver | |
Chandrasekhar et al. | Advances in Tb/s superchannels | |
Yu et al. | Digital Signal Processing for High-speed Optical Communication | |
Miyamoto | Ultra high capacity transmission for optical transport network | |
Mahdiraji et al. | Advanced modulation formats and multiplexing techniques for optical telecommunication systems | |
Gonem et al. | Experimental demonstration of soft-ROADMS with dual-arm drop elements for future optical-wireless converged access networks | |
Kasai et al. | Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique | |
Yamazaki et al. | Generation of 448-Gbps OTDM-PDM-16QAM signal with an integrated modulator using orthogonal CSRZ pulses |