[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Yu et al., 2020 - Google Patents

Single-carrier advanced modulation formats

Yu et al., 2020

Document ID
9937759587370731080
Author
Yu J
Chi N
Yu J
Chi N
Publication year
Publication venue
Digital Signal Processing In High-Speed Optical Fiber Communication Principle and Application

External Links

Snippet

To build a flexible, low-cost, high-capacity optical routing-based wavelength division multiplexing fiber network, choosing the right modulation format is crucial. Currently, the commercially available 40 Gb/s optical communication systems are all based on the binary …
Continue reading at link.springer.com (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5051Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/676Optical arrangements in the receiver for all-optical demodulation of the input optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5162Return-to-zero modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5167Duo-binary; Alternative mark inversion; Phase shaped binary transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers i.e., optical receivers using an optical local oscillator
    • H04B10/613Coherent receivers i.e., optical receivers using an optical local oscillator including phase diversity, e.g., having in-phase and quadrature branches, as in QPSK coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying includes continuous phase systems
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems

Similar Documents

Publication Publication Date Title
Seimetz High-order modulation for optical fiber transmission
US8676060B2 (en) Quadrature amplitude modulation signal generating device
Yu et al. Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems
US7116460B2 (en) Modulation control
US8072669B2 (en) Methods and apparatus for generating 16-QAM-modulated optical signal
Chandrasekhar et al. Enabling components for future high-speed coherent communication systems
CN101895495A (en) Method and system for transmitting and receiving by orthogonally dual-polarized differential quaternary phase shift keying
CN101977076A (en) Transmitter for generating various 16QAM (Quadrature Amplitude Modulation) code types
Yu et al. Digital Signal Processing in High-Speed Optical Fiber Communication Principle and Application
US8077375B2 (en) Method and apparatus for generating 8-QAM-modulated optical signal
WO2011023083A1 (en) Optical transmitter and method for generating optical signals
Yamazaki et al. Multilevel optical modulator with PLC and LiNbO3 hybrid integrated circuit
Yu et al. Single-carrier advanced modulation formats
Zhang et al. Photonic generation of M-QAM/M-ASK signals at microwave/millimeter-wave band using dual-drive Mach–Zehnder modulators with unequal amplitudes
Ibrahim et al. Performance of 20 Gb/s quaternary intensity modulation based on binary or duobinary modulation in two quadratures with unequal amplitudes
Raybon et al. Single-carrier and dual-carrier 400-Gb/s and 1.0-Tb/s transmission systems
Lu et al. Flexible high-order QAM transmitters for elastic optical networks
Ali et al. Modeling and analysis of the receiver performance in external OFDM-RoF network using QAM modulation
Yamazaki et al. Modulation-level-selectable optical modulator with a hybrid configuration of silica PLCs and LiNbO 3 phase modulators
Yang et al. GeSi EAM-based 160 Gb/s nyquist half-cycle subcarrier modulation transmission
Yang et al. Single-sideband (SSB) transmission with a quasi-linear modulator based on double-side electro-absorption modulated laser (DS-EML)
Shi et al. 84 GHz millimeter-wave PAM4 signal generation based on one PDM-MZM modulator and one polarizer without DAC and filters
Li et al. Pump-free and reconfigurable all-optical modulation format conversion for MQAM signals by parallel nonlinear Mach-Zehnder interferometers
Tong et al. Photonics-aided Multi-subcarrier Phase-insensitive/Sensitive PAM-4 Multiplexing Wireless Transmission System at 100 GHz
Winzer et al. Evolution of digital optical modulation formats