Kelényi et al., 2010 - Google Patents
BitTorrent on mobile phones-energy efficiency of a distributed proxy solutionKelényi et al., 2010
View PDF- Document ID
- 9894299754617518551
- Author
- Kelényi I
- Ludányi
- Nurminen J
- Publication year
- Publication venue
- International Conference on Green Computing
External Links
Snippet
Using proxy servers to cache and shape network traffic can significantly improve the energy efficiency of the participating clients. Introducing a proxy-based solution has a dual implication to the energy consumption. First, how much battery can we save in the mobile …
- 238000005265 energy consumption 0 abstract description 48
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/104—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks
- H04L67/1087—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks involving cross functional networking aspects
- H04L67/1093—Some peer nodes performing special functions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/104—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks
- H04L67/1074—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks for supporting resource transmission mechanisms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/104—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks
- H04L67/1042—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks involving topology management mechanisms
- H04L67/1044—Group management mechanisms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/104—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks
- H04L67/1061—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks involving node-based peer discovery mechanisms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/28—Network-specific arrangements or communication protocols supporting networked applications for the provision of proxy services, e.g. intermediate processing or storage in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W52/00—Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/32—Network-specific arrangements or communication protocols supporting networked applications for scheduling or organising the servicing of application requests, e.g. requests for application data transmissions involving the analysis and optimisation of the required network resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/02—Network-specific arrangements or communication protocols supporting networked applications involving the use of web-based technology, e.g. hyper text transfer protocol [HTTP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L29/00—Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
- H04L29/02—Communication control; Communication processing contains provisionally no documents
- H04L29/06—Communication control; Communication processing contains provisionally no documents characterised by a protocol
- H04L29/08—Transmission control procedure, e.g. data link level control procedure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Application independent communication protocol aspects or techniques in packet data networks
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—High level architectural aspects of 7-layer open systems interconnection [OSI] type protocol stacks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/08—Configuration management of network or network elements
- H04L41/0803—Configuration setting of network or network elements
- H04L41/0823—Configuration optimization
- H04L41/0833—Configuration optimization to reduce network energy consumption
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/30—Techniques for reducing energy-consumption in wire-line communication networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/50—Techniques for reducing energy-consumption in wireless communication networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/40—High level techniques for reducing energy-consumption in communication networks
- Y02B60/46—Application modification for reducing energy-consumption, e.g. green peer-to-peer
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xiao et al. | Practical power modeling of data transmission over 802.11 g for wireless applications | |
US8532074B2 (en) | Energy-efficient on-the-fly Wi-Fi hotspot using mobile devices | |
Brienza et al. | A survey on energy efficiency in P2P systems: File distribution, content streaming, and epidemics | |
Mavromoustakis et al. | Context-oriented opportunistic cloud offload processing for energy conservation in wireless devices | |
Kelényi et al. | Cloudtorrent-energy-efficient bittorrent content sharing for mobile devices via cloud services | |
Charalambous et al. | A resource intensive traffic-aware scheme for cluster-based energy conservation in wireless devices | |
Raj et al. | Energy adaptive mechanism for P2P file sharing protocols | |
Jassal et al. | Unity: Collaborative downloading content using co-located socially connected peers | |
Giannetti et al. | Energy-efficient P2P file sharing for residential BitTorrent users | |
Enokido et al. | Computation and Transmission Rate Based Algorithm for Reducing the Total Power Consumption. | |
Kelényi et al. | BitTorrent on mobile phones-energy efficiency of a distributed proxy solution | |
Kapoor et al. | Techniques for allocation of sensors in shared wireless sensor networks | |
Kelényi et al. | Optimizing energy consumption of mobile nodes in heterogeneous kademlia-based distributed hash tables | |
Kelényi et al. | Modeling resource constrained BitTorrent proxies for energy efficient mobile content sharing | |
Mavromoustakis et al. | Real‐time performance evaluation of asynchronous time division traffic‐aware and delay‐tolerant scheme in ad hoc sensor networks | |
Enokido et al. | Laxity based algorithm for reducing power consumption in distributed systems | |
Baccaglini et al. | A study of an hybrid CDN–P2P system over the PlanetLab network | |
Kelényi et al. | Energy-efficient BitTorrent downloads to mobile phones through memory-limited proxies | |
Kelényi et al. | Bursty content sharing mechanism for energy-limited mobile devices | |
Kelényi et al. | Using home routers as proxies for energy-efficient bittorrent downloads to mobile phones | |
Verma et al. | Greening the internet: energy-optimal file distribution | |
Forshaw et al. | A novel approach to energy efficient content distribution with BitTorrent | |
Kelényi et al. | Energy-efficient mobile bittorrent with broadband router hosted proxies | |
Harjula et al. | Energy-aware load monitoring for improving battery life of mobile peer-to-peer nodes | |
Koskela et al. | RADE: Resource-aware distributed browser-to-browser 3D graphics delivery in the web |