[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Raj et al., 2013 - Google Patents

Energy adaptive mechanism for P2P file sharing protocols

Raj et al., 2013

View PDF
Document ID
5348460593983298760
Author
Raj M
Kant K
Das S
Publication year
Publication venue
Euro-Par 2012: Parallel Processing Workshops: BDMC, CGWS, HeteroPar, HiBB, OMHI, Paraphrase, PROPER, Resilience, UCHPC, VHPC, Rhodes Islands, Greece, August 27-31, 2012. Revised Selected Papers 18

External Links

Snippet

Peer to peer (P2P) file sharing applications have gained considerable popularity and are quite bandwidth and energy intensive. With the increased usage of P2P applications on mobile devices, its battery life has become of significant concern. In this paper, we propose a …
Continue reading at www.kkant.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/104Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks
    • H04L67/1087Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks involving cross functional networking aspects
    • H04L67/1093Some peer nodes performing special functions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/104Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks
    • H04L67/1074Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks for supporting resource transmission mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/104Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks
    • H04L67/1061Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks involving node-based peer discovery mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/10Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
    • H04L67/1097Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for distributed storage of data in a network, e.g. network file system [NFS], transport mechanisms for storage area networks [SAN] or network attached storage [NAS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/28Network-specific arrangements or communication protocols supporting networked applications for the provision of proxy services, e.g. intermediate processing or storage in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/02Network-specific arrangements or communication protocols supporting networked applications involving the use of web-based technology, e.g. hyper text transfer protocol [HTTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organizing networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L29/00Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
    • H04L29/02Communication control; Communication processing contains provisionally no documents
    • H04L29/06Communication control; Communication processing contains provisionally no documents characterised by a protocol
    • H04L29/08Transmission control procedure, e.g. data link level control procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/24Presence management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32High level architectural aspects of 7-layer open systems interconnection [OSI] type protocol stacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Similar Documents

Publication Publication Date Title
Toldinas et al. MQTT quality of service versus energy consumption
Salim et al. IBLEACH: intra-balanced LEACH protocol for wireless sensor networks
Sheng et al. Energy efficient cooperative computing in mobile wireless sensor networks
Brienza et al. A survey on energy efficiency in P2P systems: File distribution, content streaming, and epidemics
Enokido et al. Power consumption-based server selection algorithms for communication-based systems
CN110392079A (en) The node calculating task dispatching method and its equipment calculated towards mist
Tao et al. Efficient computation offloading strategies for mobile cloud computing
Kelényi et al. Cloudtorrent-energy-efficient bittorrent content sharing for mobile devices via cloud services
Anastasi et al. A bittorrent proxy for green internet file sharing: Design and experimental evaluation
Kosta et al. Clonedoc: exploiting the cloud to leverage secure group collaboration mechanisms for smartphones
Raj et al. Energy adaptive mechanism for P2P file sharing protocols
Kim et al. Cost modeling for analyzing network performance of IoT protocols in blockchain-based IoT
Charalambous et al. A resource intensive traffic-aware scheme for cluster-based energy conservation in wireless devices
Mertens et al. MGM-4-FL: Combining federated learning and model gossiping in WSNs
Arun et al. Design of long-term evolution based mobile edge computing systems to improve 5G systems
Tysowski et al. Peer to peer content sharing on ad hoc networks of smartphones
Giannetti et al. Energy-efficient P2P file sharing for residential BitTorrent users
Kelényi et al. BitTorrent on mobile phones-energy efficiency of a distributed proxy solution
Wang et al. A study on key strategies in P2P file sharing systems and ISPs’ P2P traffic management
Kelényi et al. Energy-efficient BitTorrent downloads to mobile phones through memory-limited proxies
Nasr et al. The “droplet”: A new personal device to enable fog computing
Caviglione et al. Design of a peer-to-peer system for optimized content replication
Anilkumar et al. Towards efficient resource provisioning in vehicular networks
Chen et al. Energy-efficient load-balanced heterogeneous mobile cloud
Chandrasekar et al. Smc: an energy conserving p2p file sharing model for mobile devices