[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KS et al., 2009 - Google Patents

Quaternary CMOS combinational logic circuits

KS et al., 2009

Document ID
86984555755402360
Author
KS V
Gurumurthy K
Publication year
Publication venue
2009 International Conference on Information and Multimedia Technology

External Links

Snippet

Good characteristics and advantages of multi-valued logic (MVL) electronic systems and circuits are created great interest for its practical implementation. This paper presents voltage mode quaternary CMOS circuit design using 90 nm technology. Basic gates such as …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/096Synchronous circuits, i.e. using clock signals
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/1733Controllable logic circuits
    • H03K19/1735Controllable logic circuits by wiring, e.g. uncommitted logic arrays
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0016Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00315Modifications for increasing the reliability for protection in field-effect transistor circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits
    • H03K19/21EXCLUSIVE-OR circuits, i.e. giving output if input signal exists at only one input; COINCIDENCE circuits, i.e. giving output only if all input signals are identical
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/505Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
    • G06F7/506Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination with simultaneous carry generation for, or propagation over, two or more stages

Similar Documents

Publication Publication Date Title
KS et al. Quaternary CMOS combinational logic circuits
US7716625B2 (en) Logic circuit and method of logic circuit design
Morgenshtein et al. Gate-diffusion input (GDI)-a technique for low power design of digital circuits: analysis and characterization
US20100231263A1 (en) Logic Circuit and Method of Logic Circuit Design
Agarwal et al. A new design of low power high speed hybrid CMOS full adder
Vijay et al. A review of the 0.09 µm standard full adders
Nishad et al. Analysis of low power high performance XOR gate using GDI technique
Kavehei et al. Design of robust and high-performance 1-bit CMOS Full Adder for nanometer design
Musala et al. Implementation of a full adder circuit with new full swing EX-OR/EX-NOR gate
Kumre et al. Analysis of GDI Technique for digital circuit design
Reddy et al. An Energy Efficient Static Address Decoder for High-Speed Memory Applications
Mahendran CMOS full adder cells based on modified full swing restored complementary pass transistor logic for energy efficient high speed arithmetic applications
Imtiaz et al. Design of energy-efficient full adder using Hybrid-cmos logic style
Satheesan et al. A Design of Low Power and High Speed Encoder and Decoder Circuits by Re-Evaluating High Speed Design Values
Kontiala et al. Comparison of static logic styles for low-voltage digital design
Himabindu et al. Design of area and power efficient full adder in 180nm
Singh et al. An efficient full adder design using different logic styles
Ramireddy et al. Design of Ultra Lowpower Full Adder Using Modified Branch Based Logic Style
SRI et al. Design and performance Analysis of XOR and XNOR Functions at Low VDD Using 130nm Technology
Kio et al. Application of output prediction logic to differential CMOS
Verma et al. Design Of Radix-4 Booth Multiplier Using Mgdi And Ptl Techniques
Khare et al. Design A 1Bit Low Power Full Adder Using Cadence Tool
Munteanu et al. Single-ended pass transistor logic for low-power design
Mazumdar et al. Noise tolerance enhancement in low voltage dynamic circuits
Vardhan et al. Design and Implementation of Low Power NAND Gate Based Combinational Circuits Using FinFET Technique