Greco et al., 2017 - Google Patents
Conduction mechanisms at interface of AlN/SiN dielectric stacks with AlGaN/GaN heterostructures for normally-off high electron mobility transistors: Correlating device …Greco et al., 2017
- Document ID
- 5012878561559106590
- Author
- Greco G
- Fiorenza P
- Iucolano F
- Severino A
- Giannazzo F
- Roccaforte F
- Publication year
- Publication venue
- ACS applied materials & interfaces
External Links
Snippet
In this work, the conduction mechanisms at the interface of AlN/SiN dielectric stacks with AlGaN/GaN heterostructures have been studied combining different macroscopic and nanoscale characterizations on bare materials and devices. The AlN/SiN stacks grown on …
- 229910002704 AlGaN 0 title abstract description 218
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/40—Electrodes; Multistep manufacturing processes therefor
- H01L29/41—Electrodes; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/40—Electrodes; Multistep manufacturing processes therefor
- H01L29/41—Electrodes; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/40—Electrodes; Multistep manufacturing processes therefor
- H01L29/43—Electrodes; Multistep manufacturing processes therefor characterised by the materials of which they are formed
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions; characterised by the concentration or distribution of impurities within semiconductor regions
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Greco et al. | Conduction mechanisms at interface of AlN/SiN dielectric stacks with AlGaN/GaN heterostructures for normally-off high electron mobility transistors: Correlating device behavior with nanoscale interfaces properties | |
US11417759B2 (en) | Semiconductor device and method for reduced bias threshold instability | |
Fiorenza et al. | Channel mobility in GaN hybrid MOS-HEMT using SiO 2 as gate insulator | |
Meneghesso et al. | Trapping and reliability issues in GaN-based MIS HEMTs with partially recessed gate | |
Giannazzo et al. | High-performance graphene/AlGaN/GaN Schottky junctions for hot electron transistors | |
Zhong et al. | Effect of thermal cleaning prior to p-GaN gate regrowth for normally off high-electron-mobility transistors | |
Douglas et al. | Investigation of the effect of temperature during off-state degradation of AlGaN/GaN high electron mobility transistors | |
Zhao et al. | Understanding the impact of annealing on interface and border traps in the Cr/HfO2/Al2O3/MoS2 system | |
Hua et al. | Enhanced gate reliability in GaN MIS-FETs by converting the GaN channel into crystalline gallium oxynitride | |
Moens et al. | Intrinsic reliability assessment of 650V rated AlGaN/GaN based power devices: An industry perspective | |
Latrach et al. | Trap states analysis in AlGaN/AlN/GaN and InAlN/AlN/GaN high electron mobility transistors | |
Hellenbrand et al. | Effects of traps in the gate stack on the small-signal RF response of III-V nanowire MOSFETs | |
Zhang et al. | Observation of threshold voltage instabilities in AlGaN/GaN MIS HEMTs | |
Besnard et al. | Reliability of ultra-thin buried oxides for multi-VT FDSOI technology | |
Jiang et al. | Nonuniform mechanism for positive and negative bias stress instability in β-Ga 2 O 3 MOSFET | |
Viey et al. | Study on the difference between ID (VG) and C (VG) pBTI shifts in GaN-on-Si E-mode MOSc-HEMT | |
Kumar et al. | Interface traps at Al2O3/InAlN/GaN MOS-HEMT-on-200 mm Si | |
Zagni et al. | Physical insights into trapping effects on vertical GaN-on-Si trench MOSFETs from TCAD | |
Tang et al. | Temperature dependent border trap response produced by a defective interfacial oxide layer in Al2O3/InGaAs gate stacks | |
Chandrasekar et al. | High current density SmTiO3/SrTiO3 field-effect transistors | |
Zhao et al. | Analysis of the device characteristics of AlGaN/GaN HEMTs over a wide temperature range | |
Wang et al. | Multilayer SiNx passivated Al2O3 gate dielectric featuring a robust interface for ultralong-lifetime AlGaN/GaN HEMT | |
Fiorenza et al. | Electrical characterization of trapping phenomena at SiO2/SiC and SiO2/GaN in MOS‐based devices | |
Rejaiba et al. | Series and parallel resistance effects on the C–V and G–V characteristics of Al/SiO _ 2 Al/SiO 2/Si structure | |
Bayer et al. | Channel hot-carriers degradation in MOSFETs: A conductive AFM study at the nanoscale |