Jiang et al., 2010 - Google Patents
A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubesJiang et al., 2010
View PDF- Document ID
- 4240319176599884623
- Author
- Jiang K
- Fu S
- Shum P
- Lin C
- Publication year
- Publication venue
- IEEE Photonics Technology Letters
External Links
Snippet
We propose and demonstrate a wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes. When the pumping power of 980-nm laser diode is 60 mW, passive mode-locking (PML) of a soliton …
- 238000005086 pumping 0 title abstract description 25
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/1106—Mode locking
- H01S3/1112—Passive mode locking
- H01S3/1115—Passive mode locking using a saturable absorber
- H01S3/1118—Solid state absorber, e.g. SESAM
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/0675—Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1608—Solid materials characterised by an active (lasing) ion rare earth erbium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/1106—Mode locking
- H01S3/1121—Harmonically mode-locked lasers, e.g. modulation frequency equals multiple integers or a fraction of the resonator roundtrip time
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/1063—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency, amplitude
- H01S3/131—Stabilisation of laser output parameters, e.g. frequency, amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10038—Amplitude control
- H01S3/10046—Pulse repetition rate control
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sobon et al. | All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber | |
Zhang et al. | SESAM mode-locked, environmentally stable, and compact dissipative soliton fiber laser | |
Luo et al. | Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation | |
Zhao et al. | Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser | |
Yang et al. | Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser | |
Song et al. | A SESAM passively mode-locked fiber laser with a long cavity including a band pass filter | |
Cheng et al. | Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber | |
Jiang et al. | A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes | |
Guo et al. | Environmentally stable Er-fiber mode-locked pulse generation and amplification by spectrally filtered and phase-biased nonlinear amplifying long-loop mirror | |
Wang et al. | L-band efficient dissipative soliton erbium-doped fiber laser with a pulse energy of 6.15 nJ and 3 dB bandwidth of 47.8 nm | |
Nicholson et al. | High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes | |
Ahmad et al. | A passively mode-locked erbium-doped fiber laser based on a single-wall carbon nanotube polymer | |
Zhao et al. | Dissipative soliton resonances in a mode-locked holmium-doped fiber laser | |
Luo et al. | $ L $-Band Noise-Like Pulse Generation in a Bidirectional Mode-Locked Fiber Laser | |
Kuan et al. | 0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser | |
Latiff et al. | Switchable soliton mode-locked and multi-wavelength operation in thulium-doped all-fiber ring laser | |
Zhao et al. | High fundamental repetition rate fiber lasers operated in strong normal dispersion regime | |
Gao et al. | Dark-square-pulse generation in a ring cavity with a tellurite single-mode fiber | |
Lee et al. | Q-switched mode-locking of an erbium-doped fiber laser through subharmonic cavity modulation | |
Li et al. | Tunable active harmonic mode-locking Yb-doped fiber laser with all-normal dispersion | |
Liang et al. | Stable nanosecond-pulse fiber lasers mode-locked with molybdenum diselenide | |
Zhao et al. | Peak-power-clamped passive Q-switching of a thulium/holmium co-doped fiber laser | |
Liu et al. | Switchable SP dual-wavelength mode-locked TDFL incorporating a PM-FBG and SESAM | |
Zhang et al. | NOLM-based mode-locked Yb-doped fiber laser with wide-spectrum | |
Shi et al. | Self-starting simple structured dual-wavelength mode-locked erbium-doped fiber laser using a transmission-type semiconductor saturable absorber |