Yang et al., 2013 - Google Patents
Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laserYang et al., 2013
View PDF- Document ID
- 10361453345630778231
- Author
- Yang J
- Guo C
- Ruan S
- Ouyang D
- Lin H
- Wu Y
- Wen R
- Publication year
- Publication venue
- IEEE Photonics Journal
External Links
Snippet
High-energy square pulses operating in dissipative soliton resonance region are experimentally observed in an erbium-doped figure-of-eight fiber laser with large net-normal dispersion for the first time to our knowledge. The dissipative soliton resonance is achieved …
- 239000000835 fiber 0 title abstract description 35
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1618—Solid materials characterised by an active (lasing) ion rare earth ytterbium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/0675—Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Pulse generation, e.g. Q-switching, mode locking
- H01S3/1106—Mode locking
- H01S3/1112—Passive mode locking
- H01S3/1115—Passive mode locking using a saturable absorber
- H01S3/1118—Solid state absorber, e.g. SESAM
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/14—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1616—Solid materials characterised by an active (lasing) ion rare earth thulium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
- H01S3/1063—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/05—Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10038—Amplitude control
- H01S3/10046—Pulse repetition rate control
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/30—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves using scattering effects, e.g. stimulated Brillouin or Raman effects
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser | |
Sobon et al. | All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber | |
Guo et al. | Observation of bright-dark soliton pair in a fiber laser with topological insulator | |
Luo et al. | Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter | |
Luo et al. | Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation | |
Zhang et al. | SESAM mode-locked, environmentally stable, and compact dissipative soliton fiber laser | |
Gao et al. | High energy all-fiber Tm-doped femtosecond soliton laser mode-locked by nonlinear polarization rotation | |
Peng et al. | Passive harmonic mode-locking of dissipative solitons in a normal-dispersion Er-doped fiber laser | |
Liu et al. | Generation of microseconds-duration square pulses in a passively mode-locked fiber laser | |
Wang et al. | L-band efficient dissipative soliton erbium-doped fiber laser with a pulse energy of 6.15 nJ and 3 dB bandwidth of 47.8 nm | |
Shang et al. | Harmonic dissipative soliton resonance in an Yb-doped fiber laser | |
Zhu et al. | Tunable high-order harmonic mode-locking in Yb-doped fiber laser with all-normal dispersion | |
Lin et al. | Bound states of dispersion-managed solitons from single-mode Yb-doped fiber laser at net-normal dispersion | |
Lin et al. | High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode‐locked Yb‐doped fiber laser in all normal dispersion cavity | |
Peng et al. | Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion Er-doped laser | |
CN107910735A (en) | The inclined mode locked fiber laser of all risk insurance based on a variety of soliton state outputs of chirped fiber Bragg grating | |
Gao et al. | Dark-square-pulse generation in a ring cavity with a tellurite single-mode fiber | |
Mao et al. | Pulse-state switchable fiber laser mode-locked by carbon nanotubes | |
Kuang et al. | Up to the 1552nd order passively harmonic mode-locked Raman fiber laser | |
Yang et al. | High-energy rectangular pulse dissipative soliton generation in a long-cavity sigma-shaped configuration mode-locked fiber laser | |
Liu et al. | Square nanosecond mode-locked laser based on nonlinear amplifying loop mirror | |
Chen et al. | High-repetition-rate pulsed fiber laser based on virtually imaged phased array | |
Wang et al. | Environmentally stable pulse energy-tunable picosecond fiber laser | |
Zhang et al. | Bright-Dark Pulse Pair in a Passively Mode-Locked Fiber Laser Based on Thulium-Doped Fiber | |
Li et al. | 980 nm all-fiber NPR mode-locking Yb-doped phosphate fiber oscillator and its amplifier |