[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

On Approximations of Data-Driven Chance Constrained Programs over Wasserstein Balls

Distributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affecting the safety condition(s) is only known to belong to some ambiguity set. We study two popular approximation schemes for distributionally robust … Read more

Distributionally Robust Chance Constrained $p$-Hub Center Problem

The $p$-hub center problem is a fundamental model for the strategic design of hub location. It aims at constructing $p$ fully interconnected hubs and links from nodes to hubs so that the longest path between any two nodes is minimized. Existing literature on the $p$-hub center problem under uncertainty often assumes a joint distribution of … Read more

Data-Driven Chance Constrained Programs over Wasserstein Balls

We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the $1$-norm or the $\infty$-norm, the cone is the nonnegative … Read more

Convex Approximations of Chance Constrained Programs

We consider a chance constrained problem, where one seeks to minimize a convex objective over solutions satisfying, with a given (close to one) probability, a system of randomly perturbed convex constraints. Our goal is to build a computationally tractable approximation of this (typically intractable) problem, i.e., an explicitly given convex optimization program with the feasible … Read more