[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a286718 -id:a286718
     Sort: relevance | references | number | modified | created      Format: long | short | data
Column k=2 of the triangle A286718; Sheffer ((1 - 3*x)^(-1/3), (-1/3)*log(1 - 3*x)).
+20
0
1, 12, 159, 2485, 45474, 959070, 22963996, 616224492, 18331744896, 599061555136, 21339235262784, 823098817664448, 34183157124707200, 1520908498941532800, 72182781516370886400, 3640264913563748243200, 194408478299496756556800, 10961007293837647131724800
OFFSET
0,2
COMMENTS
a(n) is, for n >= 1, the total volume of the binomial(n+2, n) rectangular polytopes (hyper-cuboids) built from n orthogonal vectors with lengths of the sides from the set {1 + 3*j | j=0..n+1}. See the formula a(n) = sigma[3,1]^{(n+2)}_n and an example below.
FORMULA
a(n) = A286718(n+2, 2), n >= 0.
E.g.f.: (d^2/dx^2)((1 - 3*x)^(-1/3)*((-1/3)*log(1 - 3*x))^2/2!) = (2*(log(1-3*x))^2 - 15*log(1-3*x) + 9)/(3^2*(1-3*x)^(7/3)).
a(n) = sigma[3,1]^{(n+2)}_n, n >= 0, with the elementary symmetric function sigma[3,1]^{n+2}_n of degree n of the n+2 numbers 1, 4, 7, ..., (1 + 3*(n+1)).
EXAMPLE
a(2) = 159 because sigma[3,1]^{(4)}_2 = 1*(4 + 7 + 10) + 4*(7 + 10) + 7*10 = 159. There are six rectangles (2D rectangular polytopes) built from two orthogonal vectors of different lengths from the set of {1,4,7,10} of total area 159.
CROSSREFS
Cf. A007559 (k=0), A024216 (k=1), A286718.
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, May 29 2017
STATUS
approved
Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A286718 (|S1hat[3,1]| generalized Stirling 1), for n >= 0.
+20
0
1, 1, 2, 4, 19, 4, 28, 222, 147, 8, 280, 3194, 4128, 887, 16, 3640, 55024, 113566, 52538, 4835, 32, 58240, 1107336, 3268788, 2562676, 555684, 25167, 64, 1106560, 25526192, 100544412, 117517960, 45415640, 5301150, 128203, 128, 24344320, 663605680, 3325767376, 5352311764, 3189383200, 695714590, 47537320, 646519, 256, 608608000, 19213911360, 118361719296, 248493947496, 208996478388, 72479948400, 9696965250, 410038434, 3245139, 512
OFFSET
0,3
COMMENTS
The ordinary generating function (o.g.f.) of the (n+1)-th diagonal sequence of the Sheffer triangle A286718 = ((1 - 3*x)^(-1/3), -log(1 - 3*x)/3), called |S1hat[3,1]|, is GD(3,1;n,x) = P(n, x)/(1 - x)^(2*n+1), with the row polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k, n >= 0.
For the two parameter Sheffer case |S1hat[d,a]| = ((1 - d*x)^{-a/d}, -log(1 - d*x)/d) (with gcd(d,a) = 1, d >=0, a >= 0, and for d = 1 one takes a = 0) the e.g.f. ED(t, x) of the o.g.f.s {GD(d,a;n,x)}_{n>=0} of the diagonal sequences with elements D(d,a;n,m) = |S1hat[d,a]|(n+m, m) (n=0 for the main diagonal) is of interest. It can be computed via Lagrange's theorem. For the special Sheffer case (1, f(x)) this has been done by P. Bala (see the link). This method can be generalized for Sheffer (g(x), f(x)), as shown in the W. Lang link.
FORMULA
T(n, k) = [x^k] P(n, x) with the numerator polynomials of the o.g.f. GD(n, x) = P(n, x)/(1-x)^(2*n+1) of the (n+1)-th diagonal sequence of the triangle A286718. See a comment above.
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 2
2: 4 19 4
3: 28 222 147 8
4: 280 3194 4128 887 16
5: 3640 55024 113566 52538 4835 32
6: 58240 1107336 3268788 2562676 555684 25167 6
7: 1106560 25526192 100544412 117517960 45415640 5301150 128203 128
...
n = 8: 24344320 663605680 3325767376 5352311764 3189383200 695714590 47537320 646519 256,
n = 9: 608608000 19213911360 118361719296 248493947496 208996478388 72479948400 9696965250 410038434 3245139 512.
n = 3: The o.g.f. of the 4th diagonal sequence of A286718, [28, 418, 2485, ...] = A024213(n+1), n >= 0, is P(3, x) = (28 + 222*x + 147*x^2 + 8*x^3)/(1 - 3*x)^7.
CROSSREFS
Cf. A024213, A286718, A288875 ([2,1] case).
KEYWORD
nonn,tabl
AUTHOR
Wolfdieter Lang, Aug 08 2017
STATUS
approved
Triangle of unsigned Stirling numbers of the first kind (see A048994), read by rows, T(n,k) for 0 <= k <= n.
+10
121
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1
OFFSET
0,8
COMMENTS
Another name: Triangle of signless Stirling numbers of the first kind.
Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
A094645*A007318 as infinite lower triangular matrices.
Row sums are the factorial numbers. - Roger L. Bagula, Apr 18 2008
Exponential Riordan array [1/(1-x), log(1/(1-x))]. - Ralf Stephan, Feb 07 2014
Also the Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015
This is the lower triagonal Sheffer matrix of the associated or Jabotinsky type |S1| = (1, -log(1-x)) (see the W. Lang link under A006232 for the notation and references). This implies the e.g.f.s given below. |S1| is the transition matrix from the monomial basis {x^n} to the rising factorial basis {risefac(x,n)}, n >= 0. - Wolfdieter Lang, Feb 21 2017
T(n, k), for n >= k >= 1, is also the total volume of the n-k dimensional cell (polytope) built from the n-k orthogonal vectors of pairwise different lengths chosen from the set {1, 2, ..., n-1}. See the elementary symmetric function formula for T(n, k) and an example below. - Wolfdieter Lang, May 28 2017
From Wolfdieter Lang, Jul 20 2017: (Start)
The compositional inverse w.r.t. x of y = y(t;x) = x*(1 - t(-log(1-x)/x)) = x + t*log(1-x) is x = x(t;y) = ED(y,t) := Sum_{d>=0} D(d,t)*y^(d+1)/(d+1)!, the e.g.f. of the o.g.f.s D(d,t) = Sum_{m>=0} T(d+m, m)*t^m of the diagonal sequences of the present triangle. See the P. Bala link for a proof (there d = n-1, n >= 1, is the label for the diagonals).
This inversion gives D(d,t) = P(d, t)/(1-t)^(2*d+1), with the numerator polynomials P(d, t) = Sum_{m=0..d} A288874(d, m)*t^m. See an example below. See also the P. Bala formula in A112007. (End)
For n > 0, T(n,k) is the number of permutations of the integers from 1 to n which have k visible digits when viewed from a specific end, in the sense that a higher value hides a lower one in a subsequent position. - Ian Duff, Jul 12 2019
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 31, 187, 441, 996.
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Table 259, p. 259.
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150
LINKS
Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
Eli Bagno and David Garber, Combinatorics of q,r-analogues of Stirling numbers of type B, arXiv:2401.08365 [math.CO], 2024. See page 5.
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Preprint, 2016.
Jean-Luc Baril and Sergey Kirgizov, Transformation à la Foata for special kinds of descents and excedances, arXiv:2101.01928 [math.CO], 2021.
Jean-Luc Baril and José L. Ramírez, Some distributions in increasing and flattened permutations, arXiv:2410.15434 [math.CO], 2024. See p. 9.
Ricky X. F. Chen, A Note on the Generating Function for the Stirling Numbers of the First Kind, Journal of Integer Sequences, 18 (2015), #15.3.8.
W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
John M. Holte, Carries, Combinatorics and an Amazing Matrix, The American Mathematical Monthly, Vol. 104, No. 2 (Feb., 1997), pp. 138-149.
Tanya Khovanova and J. B. Lewis, Skyscraper Numbers, J. Int. Seq. 16 (2013) #13.7.2.
Sergey Kitaev and Philip B. Zhang, Distributions of mesh patterns of short lengths, arXiv:1811.07679 [math.CO], 2018.
Shuzhen Lv and Philip B. Zhang, Joint equidistributions of mesh patterns 123 and 321 with symmetric and antipodal shadings, arXiv:2501.00357 [math.CO], 2024. See p. 11.
Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012. - From N. J. A. Sloane, Aug 21 2012
Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
E. G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas, arXiv:2411.16492 [math.CO], 2024. See p. 2.
X.-T. Su, D.-Y. Yang, and W.-W. Zhang, A note on the generalized factorial, Australasian Journal of Combinatorics, Volume 56 (2013), Pages 133-137.
Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024. See p. 37.
FORMULA
T(n,k) = T(n-1,k-1)+(n-1)*T(n-1,k), n,k>=1; T(n,0)=T(0,k); T(0,0)=1.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 13 2007
Expand 1/(1-t)^x = Sum_{n>=0}p(x,n)*t^n/n!; then the coefficients of the p(x,n) produce the triangle. - Roger L. Bagula, Apr 18 2008
Sum_{k=0..n} T(n,k)*2^k*x^(n-k) = A000142(n+1), A000165(n), A008544(n), A001813(n), A047055(n), A047657(n), A084947(n), A084948(n), A084949(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 18 2008
a(n) = Sum_{k=0..n} T(n,k)*3^k*x^(n-k) = A001710(n+2), A001147(n+1), A032031(n), A008545(n), A047056(n), A011781(n), A144739(n), A144756(n), A144758(n) for x=1,2,3,4,5,6,7,8,9,respectively. - Philippe Deléham, Sep 20 2008
Sum_{k=0..n} T(n,k)*4^k*x^(n-k) = A001715(n+3), A002866(n+1), A007559(n+1), A047053(n), A008546(n), A049308(n), A144827(n), A144828(n), A144829(n) for x=1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 21 2008
Sum_{k=0..n} x^k*T(n,k) = x*(1+x)*(2+x)*...*(n-1+x), n>=1. - Philippe Deléham, Oct 17 2008
From Wolfdieter Lang, Feb 21 2017: (Start)
E.g.f. k-th column: (-log(1 - x))^k, k >= 0.
E.g.f. triangle (see the Apr 18 2008 Baluga comment): exp(-x*log(1-z)).
E.g.f. a-sequence: x/(1 - exp(-x)). See A164555/A027642. The e.g.f. for the z-sequence is 0. (End)
From Wolfdieter Lang, May 28 2017: (Start)
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, for n >= 0, are R(n, x) = risefac(x,n-1) := Product_{j=0..n-1} x+j, with the empty product for n=0 put to 1. See the Feb 21 2017 comment above. This implies:
T(n, k) = sigma^{(n-1)}_(n-k), for n >= k >= 1, with the elementary symmetric functions sigma^{(n-1))_m of degree m in the n-1 symbols 1, 2, ..., n-1, with binomial(n-1, m) terms. See an example below.(End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!*k/(n - k)) * Sum_{p=k..n-1} beta(n-1-p)*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
T(n,k) = Sum_{j=k..n} j^(j-k)*binomial(j-1, k-1)*A354795(n,j) for n > 0. - Mélika Tebni, Mar 02 2023
n-th row polynomial: n!*Sum_{k = 0..2*n} (-1)^k*binomial(-x, k)*binomial(-x, 2*n-k) = n!*Sum_{k = 0..2*n} (-1)^k*binomial(1-x, k)*binomial(-x, 2*n-k). - Peter Bala, Mar 31 2024
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 6, 11, 6, 1;
0, 24, 50, 35, 10, 1;
0, 120, 274, 225, 85, 15, 1;
0, 720, 1764, 1624, 735, 175, 21, 1;
0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1;
...
---------------------------------------------------
Production matrix is
0, 1
0, 1, 1
0, 1, 2, 1
0, 1, 3, 3, 1
0, 1, 4, 6, 4, 1
0, 1, 5, 10, 10, 5, 1
0, 1, 6, 15, 20, 15, 6, 1
0, 1, 7, 21, 35, 35, 21, 7, 1
...
From Wolfdieter Lang, May 09 2017: (Start)
Three term recurrence: 50 = T(5, 2) = 1*6 + (5-1)*11 = 50.
Recurrence from the Sheffer a-sequence [1, 1/2, 1/6, 0, ...]: 50 = T(5, 2) = (5/2)*(binomial(1, 1)*1*6 + binomial(2, 1)*(1/2)*11 + binomial(3, 1)*(1/6)*6 + 0) = 50. The vanishing z-sequence produces the k=0 column from T(0, 0) = 1. (End)
Elementary symmetric function T(4, 2) = sigma^{(3)}_2 = 1*2 + 1*3 + 2*3 = 11. Here the cells (polytopes) are 3 rectangles with total area 11. - Wolfdieter Lang, May 28 2017
O.g.f.s of diagonals: d=2 (third diagonal) [0, 6, 50, ...] has D(2,t) = P(2, t)/(1-t)^5, with P(2, t) = 2 + t, the n = 2 row of A288874. - Wolfdieter Lang, Jul 20 2017
Boas-Buck recurrence for column k = 2 and n = 5: T(5, 2) = (5!*2/3)*((3/8)*T(2,2)/2! + (5/12)*T(3,2)/3! + (1/2)*T(4,2)/4!) = (5!*2/3)*(3/16 + (5/12)*3/3! + (1/2)*11/4!) = 50. The beta sequence begins: {1/2, 5/12, 3/8, ...}. - Wolfdieter Lang, Aug 11 2017
MAPLE
a132393_row := proc(n) local k; seq(coeff(expand(pochhammer (x, n)), x, k), k=0..n) end: # Peter Luschny, Nov 28 2010
MATHEMATICA
p[t_] = 1/(1 - t)^x; Table[ ExpandAll[(n!)SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[(n!)* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 18 2008 *)
Flatten[Table[Abs[StirlingS1[n, i]], {n, 0, 10}, {i, 0, n}]] (* Harvey P. Dale, Feb 04 2014 *)
PROG
(Maxima) create_list(abs(stirling1(n, k)), n, 0, 12, k, 0, n); /* Emanuele Munarini, Mar 11 2011 */
(Haskell)
a132393 n k = a132393_tabl !! n !! k
a132393_row n = a132393_tabl !! n
a132393_tabl = map (map abs) a048994_tabl
-- Reinhard Zumkeller, Nov 06 2013
CROSSREFS
Essentially a duplicate of A048994. Cf. A008275, A008277, A112007, A130534, A288874, A354795.
KEYWORD
nonn,tabl,easy,changed
AUTHOR
Philippe Deléham, Nov 10 2007, Oct 15 2008, Oct 17 2008
STATUS
approved
Triple factorial numbers (3*n-2)!!! with leading 1 added.
(Formerly M3627)
+10
120
1, 1, 4, 28, 280, 3640, 58240, 1106560, 24344320, 608608000, 17041024000, 528271744000, 17961239296000, 664565853952000, 26582634158080000, 1143053268797440000, 52580450364682240000, 2576442067869429760000, 133974987529210347520000, 7368624314106569113600000
OFFSET
0,3
COMMENTS
a(n) is the number of increasing quaternary trees on n vertices. (See A001147 for ternary and A000142 for binary trees.) - David Callan, Mar 30 2007
a(n) is the product of the positive integers k <= 3*n that have k modulo 3 = 1. - Peter Luschny, Jun 23 2011
See A094638 for connections to differential operators. - Tom Copeland, Sep 20 2011
Partial products of A016777. - Reinhard Zumkeller, Sep 20 2013
For n > 2, a(n) is a Zumkeller number. - Ivan N. Ianakiev, Jan 28 2020
a(n) is the number of generalized permutations of length n related to the degenerate Eulerian numbers (see arXiv:2007.13205), cf. A336633. - Orli Herscovici, Jul 28 2020
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
P. Codara, O. M. D'Antona and P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
S. Goodenough and C. Lavault, On subsets of Riordan subgroups and Heisenberg--Weyl algebra, arXiv preprint arXiv:1404.1894 [cs.DM], 2014.
S. Goodenough and C. Lavault, Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16.
Orli Herscovici, Generalized permutations related to the degenerate Eulerian numbers, arXiv preprint arXiv:2007.13205 [math.CO], 2020.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
M. D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications, J. Int. Seq. 13 (2010), 10.6.7, Table 6.3.
FORMULA
a(n) = Product_{k=0..n-1} (3*k + 1).
a(n) = (3*n - 2)!!!.
a(n) = A007661(3*n-2).
E.g.f.: (1-3*x)^(-1/3).
a(n) ~ sqrt(2*Pi)/Gamma(1/3)*n^(-1/6)*(3*n/e)^n*(1 - (1/36)/n - ...). - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
a(n) = 3^n*Pochhammer(1/3, n).
a(n) = Sum_{k=0..n} (-3)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
a(n) = n!*(1+Sum_{m=1..n} (m/n)*Sum_{k=1..n-m} binomial(k, n-m-k)*(-1/3)^(n-m-k)*binomial(k+n-1, n-1)), n>1. - Vladimir Kruchinin, Aug 09 2010
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term in M^n, M = a variant of Pascal (1,3) triangle (Cf. A095660); as an infinite square production matrix:
1, 3, 0, 0, 0,...
1, 4, 3, 0, 0,...
1, 5, 7, 3, 0,...
...
a(n+1) = sum of top row terms of M^n. (End)
a(n) = (-2)^n*Sum_{k=0..n} (3/2)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(3*k+1)/( 1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 21 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k+1)/(x*(3*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
E.g.f.: E(0)/2, where E(k)= 1 + 1/(1 - x*(3*k+1)/(x*(3*k+1) + (k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
Let D(x) = 1/sqrt(1 - 2*x) be the e.g.f. for the sequence of double factorial numbers A001147. Then the e.g.f. A(x) for the triple factorial numbers satisfies D( Integral_{t=0..x} A(t) dt ) = A(x). Cf. A007696 and A008548. - Peter Bala, Jan 02 2015
O.g.f.: hypergeom([1, 1/3], [], 3*x). - Peter Luschny, Oct 08 2015
a(n) = 3^n * Gamma(n + 1/3)/Gamma(1/3). - Artur Jasinski, Aug 23 2016
a(n) = sigma[3,1]^{(n)}_n, n >= 0, with the elementary symmetric function of degree n in the n numbers 1, 4, 7, ..., 1+3*(n-1), with sigma[3,1]^{(n)}_0 := 1. See the first formula. - Wolfdieter Lang, May 29 2017
a(n) = (-1)^n / A008544(n), 0 = a(n)*(+3*a(n+1) -a(n+2)) +a(n+1)*a(n+1) for all n in Z. - Michael Somos, Sep 30 2018
D-finite with recurrence: a(n) +(-3*n+2)*a(n-1)=0, n>=1. - R. J. Mathar, Feb 14 2020
Sum_{n>=1} 1/a(n) = (e/9)^(1/3) * (Gamma(1/3) - Gamma(1/3, 1/3)). - Amiram Eldar, Jun 29 2020
EXAMPLE
G.f. = 1 + x + 4*x^2 + 28*x^3 + 280*x^4 + 3640*x^5 + 58240*x^6 + ...
a(3) = 28 and a(4) = 280; with top row of M^3 = (28, 117, 108, 27), sum = 280.
MAPLE
A007559 := n -> mul(k, k = select(k-> k mod 3 = 1, [$1 .. 3*n])): seq(A007559(n), n = 0 .. 17); # Peter Luschny, Jun 23 2011
# second Maple program:
b:= proc(n) option remember; `if`(n<1, 1, n*b(n-3)) end:
a:= n-> b(3*n-2):
seq(a(n), n=0..20); # Alois P. Heinz, Dec 18 2024
MATHEMATICA
a[ n_] := If[ n < 0, 1 / Product[ k, {k, - 2, 3 n - 1, -3}],
Product[ k, {k, 1, 3 n - 2, 3}]]; (* Michael Somos, Oct 14 2011 *)
FoldList[Times, 1, Range[1, 100, 3]] (* Harvey P. Dale, Jul 05 2013 *)
Range[0, 19]! CoefficientList[Series[((1 - 3 x)^(-1/3)), {x, 0, 19}], x] (* Vincenzo Librandi, Oct 08 2015 *)
PROG
(Maxima) a(n):=if n=1 then 1 else (n)!*(sum(m/n*sum(binomial(k, n-m-k)*(-1/3)^(n-m-k)* binomial (k+n-1, n-1), k, 1, n-m), m, 1, n)+1); /* Vladimir Kruchinin, Aug 09 2010 */
(PARI) {a(n) = if( n<0, (-1)^n / prod(k=0, -1-n, 3*k + 2), prod(k=0, n-1, 3*k + 1))}; /* Michael Somos, Oct 14 2011 */
(PARI) my(x='x+O('x^33)); Vec(serlaplace((1-3*x)^(-1/3))) /* Joerg Arndt, Apr 24 2011 */
(Sage)
def A007559(n) : return mul(j for j in range(1, 3*n, 3))
[A007559(n) for n in (0..17)] # Peter Luschny, May 20 2013
(Haskell)
a007559 n = a007559_list !! n
a007559_list = scanl (*) 1 a016777_list
-- Reinhard Zumkeller, Sep 20 2013
(Magma)
b:= func< n | (n lt 2) select n else (3*n-2)*Self(n-1) >;
[1] cat [b(n): n in [1..20]]; // G. C. Greubel, Aug 20 2019
(GAP) List([0..20], n-> Product([0..n-1], k-> 3*k+1 )); # G. C. Greubel, Aug 20 2019
CROSSREFS
a(n)= A035469(n, 1), n >= 1, (first column of triangle A035469(n, m)).
Cf. A107716. - Gary W. Adamson, Oct 22 2009
Cf. A095660. - Gary W. Adamson, Jul 19 2011
Subsequence of A007661. A007696, A008548.
a(n) = A286718(n,0), n >= 0.
Row sums of A336633.
KEYWORD
nonn,nice,easy
EXTENSIONS
Better description from Wolfdieter Lang
STATUS
approved
Triangle of coefficients in expansion of (x+1)*(x+3)*...*(x + 2n - 1) in rising powers of x.
+10
27
1, 1, 1, 3, 4, 1, 15, 23, 9, 1, 105, 176, 86, 16, 1, 945, 1689, 950, 230, 25, 1, 10395, 19524, 12139, 3480, 505, 36, 1, 135135, 264207, 177331, 57379, 10045, 973, 49, 1, 2027025, 4098240, 2924172, 1038016, 208054, 24640, 1708, 64, 1, 34459425, 71697105, 53809164, 20570444, 4574934, 626934, 53676, 2796, 81, 1
OFFSET
0,4
COMMENTS
Exponential Riordan array (1/sqrt(1-2*x), log(1/sqrt(1-2*x))). - Paul Barry, May 09 2011
The o.g.f.s D(d, x) of the column sequences, for d, d >= 0,(d=0 for the main diagonal) are P(d, x)/(1 - x)^(2*d+1), with the row polynomial P(d, x) = Sum_{m=0..d} A288875(d, m)*x^m. See A288875 for details. - Wolfdieter Lang, Jul 21 2017
LINKS
Priyavrat Deshpande, Krishna Menon, and Anurag Singh, A combinatorial statistic for labeled threshold graphs, arXiv:2103.03865 [math.CO], 2021.
Thomas Godland and Zakhar Kabluchko, Projections and angle sums of permutohedra and other polytopes, arXiv:2009.04186 [math.MG], 2020.
Thomas Godland and Zakhar Kabluchko, Projections and Angle Sums of Belt Polytopes and Permutohedra, Res. Math. (2023) Vol. 78, Art. No. 140.
Z. Kabluchko, V. Vysotsky, and D. Zaporozhets, Convex hulls of random walks, hyperplane arrangements, and Weyl chambers, arXiv preprint arXiv:1510.04073 [math.PR], 2015.
Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
Bruce E. Sagan and Joshua P. Swanson, q-Stirling numbers in type B, arXiv:2205.14078 [math.CO], 2022.
FORMULA
Triangle T(n, k), read by rows, given by [1, 2, 3, 4, 5, 6, 7, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 20 2005
T(n, k) = Sum_{i=k..n} (-2)^(n-i) * binomial(i, k) * s(n, i) where s(n, k) are signed Stirling numbers of the first kind. - Francis Woodhouse (fwoodhouse(AT)gmail.com), Nov 18 2005
G.f. of row polynomials in y: 1/(1-(x+x*y)/(1-2*x/(1-(3*x+x*y)/(1-4*x/(1-(5*x+x*y)/(1-6*x*y/(1-... (continued fraction). - Paul Barry, Feb 07 2009
T(n, m) = (2*n-1)*T(n-1,m) + T(n-1,m-1) with T(n, 0) = (2*n-1)!! and T(n, n) = 1. - Johannes W. Meijer, Jun 08 2009
From Wolfdieter Lang, May 09 2017: (Start)
E.g.f. of row polynomials in y: (1/sqrt(1-2*x))*exp(-y*log(sqrt(1-2*x))) = exp(-(1+y)*log(sqrt(1-2*x))) = 1/sqrt(1-2*x)^(1+y).
E.g.f. of column m sequence: (1/sqrt(1-2*x))* (-log(sqrt(1-2*x)))^m/m!. For the special Sheffer, also known as exponential Riordan array, see a comment above. (End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 2^(n-1-p)*(1 + 2*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 09 2017
EXAMPLE
G.f. for n = 4: (x + 1)*(x + 3)*(x + 5)*(x + 7) = 105 + 176*x + 86*x^2 + 16*x^3 + x^4.
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9
0: 1
1: 1 1
2: 3 4 1
3: 15 23 9 1
4: 105 176 86 16 1
5: 945 1689 950 230 25 1
6: 10395 19524 12139 3480 505 36 1
7: 135135 264207 177331 57379 10045 973 49 1
8: 2027025 4098240 2924172 1038016 208054 24640 1708 64 1
9: 34459425 71697105 53809164 20570444 4574934 626934 53676 2796 81 1
...
row n = 10: 654729075 1396704420 1094071221 444647600 107494190 16486680 1646778 106800 4335 100 1.
... reformatted and extended. - Wolfdieter Lang, May 09 2017
O.g.f.s of diagonals d >= 0: D(2, x) = (3 + 8*x + x^2)/(1 - x)^5 generating [3, 23, 86, ...] = A024196(n+1), from the row d=2 entries of A288875 [3, 8, 1]. - Wolfdieter Lang, Jul 21 2017
Boas-Buck recurrence for column k=2 and n=4: T(4, 2) = (4!/2)*(2*(1+4*(5/12))*T(2,2)/2! + 1*(1 + 4*(1/2))*T(3,2)/3!) = (4!/2)*(8/3*1 + 3*9/3!) = 86. - Wolfdieter Lang, Aug 11 2017
MAPLE
nmax:=8; for n from 0 to nmax do a(n, 0) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, n) := 1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := (2*n-1)*a(n-1, m) + a(n-1, m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012
MATHEMATICA
T[n_, k_] := Sum[(-2)^(n-i) Binomial[i, k] StirlingS1[n, i], {i, k, n}] (* Woodhouse *)
Join[{1}, Flatten[Table[CoefficientList[Expand[Times@@Table[x+i, {i, 1, 2n+1, 2}]], x], {n, 0, 10}]]] (* Harvey P. Dale, Jan 29 2013 *)
CROSSREFS
A039757 is signed version.
Row sums: A000165.
Diagonals: A000012, A000290(n+1), A024196(n+1), A024197(n+1), A024198(n+1).
A161198 is a scaled triangle version and A109692 is a transposed triangle version.
Central terms: A293318.
Cf. A286718, A002208(n+1)/A002209(n+1).
KEYWORD
tabl,nonn,easy,nice
AUTHOR
STATUS
approved
Sheffer triangle (exp(x), exp(3*x) - 1). Named S2[3,1].
+10
22
1, 1, 3, 1, 15, 9, 1, 63, 108, 27, 1, 255, 945, 594, 81, 1, 1023, 7380, 8775, 2835, 243, 1, 4095, 54729, 109890, 63180, 12393, 729, 1, 16383, 395388, 1263087, 1151010, 387828, 51030, 2187, 1, 65535, 2816865, 13817034, 18752391, 9658278, 2133054, 201204, 6561, 1, 262143, 19914660, 146620935, 285232185, 210789621, 69502860, 10825650, 767637, 19683
OFFSET
0,3
COMMENTS
For Sheffer triangles (infinite lower triangular exponential convolution matrices) see the W. Lang link under A006232, with references).
The e.g.f. for the sequence of column m is (Sheffer property) exp(x)*(exp(3*x) - 1)^m/m!.
This is a generalization of the Sheffer triangle Stirling2(n, m) = A048993(n, m) denoted by (exp(x), exp(x)-1), which could be named S2[1,0].
The a-sequence for this Sheffer triangle has e.g.f. 3*x/log(1+x) and is 3*A006232(n)/ A006233(n) (Cauchy numbers of the first kind).
The z-sequence has e.g.f. (3/(log(1+x)))*(1 - 1/(1+x)^(1/3)) and is A284857(n) / A284858(n).
The main diagonal gives A000244.
The row sums give A284859. The alternating row sums give A284860.
The triangle appears in the o.g.f. G(n, x) of the sequence {(1 + 3*m)^n}_{m>=0}, as G(n, x) = Sum_{m=0..n} T(n, m)*m!*x^m/(1-x)^(m+1), n >= 0. Hence the corresponding e.g.f. is, by the linear inverse Laplace transform, E(n, t) = Sum_{m >=0}(1 + 3*m)^n t^m/m! = exp(t)*Sum_{m=0..n} T(n, m)*t^m.
The corresponding Euler triangle with reversed rows is rEu(n, k) = Sum_{m=0..k} (-1)^(k-m)*binomial(n-m, k-m)*T(n, k)*k!, 0 <= k <= n. This is A225117 with row reversion.
The first column k sequences divided by 3^k are A000012, A002450 (with a leading 0), A016223, A021874. For the e.g.f.s and o.g.f.s see below. - Wolfdieter Lang, Apr 09 2017
From Wolfdieter Lang, Aug 09 2017: (Start)
The general row polynomials R(d,a;n,x) = Sum_{k=0..n} T(d,a;n,m)*x^m of the Sheffer triangle S2[d,a] satisfy, as special polynomials of the Boas-Buck class, the identity (see the reference, and we use the notation of Rainville, Theorem 50, p. 141, adapted to an exponential generating function)
(E_x - n*1)*R(d,a;n,x) = - n*a*R(d,a;n-1,x) - Sum_{k=0..n-1} binomial(n, k+1)*(-d)^(k+1)*Bernoulli(k+1)*E_x*R(d,a;n-1-k,x), with E_x = x*d/dx (Euler operator).
This entails a recurrence for the sequence of column m, for n > m:
T(d,a;n,m) = (1/(n - m))*[(n/2)*(2*a + d*m)*T(d,a;n-1,m) + m*Sum_{p=m..n-2} binomial(n,p)(-d)^(n-p)*Bernoulli(n-p)*T(d,a;p,m)], with input T(d,a;n,n) = d^n. For the present [d,a] = [3,1] case see the formula and example sections below. - Wolfdieter Lang, Aug 09 2017 (End)
The inverse of this triangular Sheffer matrix S2[3,1] is S1[3,1] with rational elements S1[3,1](n, k) = (-1)^(n-k)*A286718(n, k)/3^k. - Wolfdieter Lang, Nov 15 2018
Named after the American mathematician Isador Mitchell Sheffer (1901-1992). - Amiram Eldar, Jun 19 2021
REFERENCES
Ralph P. Boas, Jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475, rows n = 0..150, flattened.
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
FORMULA
A nontrivial recurrence for the column m=0 entries T(n, 0) = 1 from the z-sequence given above: T(n,0) = n*Sum_{j=0..n-1} z(j)*T(n-1,j), n >= 1, T(0, 0) = 1.
Recurrence for column m >= 1 entries from the a-sequence given above: T(n, m) = (n/m)*Sum_{j=0..n-m} binomial(m-1+j, m-1)*a(j)*T(n-1, m-1+j), m >= 1.
Recurrence for row polynomials R(n, x) (Meixner type): R(n, x) = ((3*x+1) + 3*x*d_x)*R(n-1, x), with differentiation d_x, for n >= 1, with input R(0, x) = 1.
T(n, m) = Sum_{k=0..m} binomial(m,k)*(-1)^(k-m)*(1 + 3*k)^n/m!, 0 <= m <= n.
E.g.f. of triangle: exp(z)*exp(x*(exp(3*z)-1)) (Sheffer type).
E.g.f. for sequence of column m is exp(x)*((exp(3*x) - 1)^m)/m! (Sheffer property).
From Wolfdieter Lang, Apr 09 2017: (Start)
Standard three-term recurrence: T(n, m) = 0 if n < m, T(n,-1) = 0, T(0, 0) = 1, T(n, m) = 3*T(n-1, m-1) + (1+3*m)*T(n-1, m) for n >= 1. From the T(n, m) formula. Compare with the recurrence of S2[3,2] given in A225466.
The o.g.f. for sequence of column m is 3^m*x^m/Product_{j=0..m} (1 - (1+3*j)*x). (End)
In terms of Stirling2 = A048993: T(n, m) = Sum_{k=0..n} binomial(n, k)* 3^k*Stirling2(k, m), 0 <= m <= n. - Wolfdieter Lang, Apr 13 2017
Boas-Buck recurrence for column sequence m: T(n, m) = (1/(n - m))*[(n/2)*(2 + 3*m)*T(n-1, m) + m*Sum_{p=m..n-2} binomial(n,p)(-3)^(n-p)*Bernoulli(n-p)*T(p, m)], for n > m >= 0, with input T(m, m) = 3^m. See a comment above. - Wolfdieter Lang, Aug 09 2017
EXAMPLE
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: 1 3
2: 1 15 9
3: 1 63 108 27
4: 1 255 945 594 81
5: 1 1023 7380 8775 2835 243
6: 1 4095 54729 109890 63180 12393 729
7: 1 16383 395388 1263087 1151010 387828 51030 2187
8: 1 65535 2816865 13817034 18752391 9658278 2133054 201204 6561
9: 1 262143 19914660 146620935 285232185 210789621 69502860 10825650 767637 19683
...
------------------------------------------------------------------------------------
Nontrivial recurrence for m=0 column from z-sequence:T(4,0) = 4*(1*1 + 63*(-1/6) + 108*(11/54) + 27*(-49/108)) = 1.
Recurrence for m=2 column from a-sequence: T(4, 2) = (4/2)*(1*63*3 + 2*108*(3/2) + 3*27*(-3/6)) = 945.
Recurrence for row polynomial R(3, x) (Meixner type): ((3*x + 1) + 3*x*d_x)*(1 + 15*x + 9*x^2) = 1 + 63*x + 108*x^2 + 27*x^3.
E.g.f. and o.g.f. of n = 1 powers {(1 + 3*m)^1}_{m>=0} A016777: E(1, x) = exp(x) * (T(1, 0) + T(1, 1)*x) = exp(x)*(1+3*x). O.g.f.: G(1, x) = T(1, 0)*0!/(1-x) + T(1, 1)*1!*x/(1-x)^2 = (1+2*x)/(1-x)^2.
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) =(1/2)*[2*(2 + 3*2)*T(3, 2) + 2*6*(-3)^2*bernoulli(2)*T(2, 2))] = (1/2)*(16*108 + 12*9*(1/6)*9) = 945. - Wolfdieter Lang, Aug 09 2017
MATHEMATICA
Table[Sum[Binomial[m, k] (-1)^(k - m) (1 + 3 k)^n/m!, {k, 0, m}], {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 08 2017 *)
PROG
(PARI) T(n, m) = sum(k=0, m, binomial(m, k) * (-1)^(k - m) * (1 + 3*k)^n/m!);
for(n=0, 9, for(m=0, n, print1(T(n, m), ", "); ); print(); ) \\ Indranil Ghosh, Apr 08 2017
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Apr 03 2017
STATUS
approved
2nd elementary symmetric function of first n+1 positive integers congruent to 1 mod 3.
+10
10
4, 39, 159, 445, 1005, 1974, 3514, 5814, 9090, 13585, 19569, 27339, 37219, 49560, 64740, 83164, 105264, 131499, 162355, 198345, 240009, 287914, 342654, 404850, 475150, 554229, 642789, 741559, 851295, 972780, 1106824, 1254264, 1415964, 1592815, 1785735
OFFSET
1,1
FORMULA
a(n) = n*(n+1)*(9*n^2+9*n-2)/8.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Clark Kimberling, Aug 18 2012
G.f.: (4 + 19*x + 4*x^2)/(1 - x)^5. - Clark Kimberling, Aug 18 2012
From Wolfdieter Lang, Jul 30 2017: (Start)
E.g.f.: exp(x)*x*(32+124*x+72*x^2+9*x^3)/8 = exp(x)*x*(2 + x)*(16 + 54*x + 9*x^2)/8.
a(n) = A286718(n+1, n-1), n >= 1. (End)
MATHEMATICA
Table[n(n+1)(9n^2+9n-2)/8, {n, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {4, 39, 159, 445, 1005}, 40] (* Harvey P. Dale, Oct 16 2023 *)
PROG
(Magma) [n*(n+1)*(9*n^2+9*n-2)/8: n in [1..40]]; // Vincenzo Librandi, Oct 10 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
Triangle read by rows, s_3(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
+10
10
1, 2, 1, 10, 7, 1, 80, 66, 15, 1, 880, 806, 231, 26, 1, 12320, 12164, 4040, 595, 40, 1, 209440, 219108, 80844, 14155, 1275, 57, 1, 4188800, 4591600, 1835988, 363944, 39655, 2415, 77, 1, 96342400, 109795600, 46819324, 10206700, 1276009, 95200, 4186, 100, 1
OFFSET
0,2
COMMENTS
The Stirling-Frobenius subset numbers S_{m}(n,k), for m >= 1 fixed, regarded as an infinite lower triangular matrix, can be inverted by Sum_{k} S_{m}(n,k)*s_{m}(k,j)*(-1)^(n-k) = [j = n]. The inverse numbers s_{m}(k,j), which are unsigned, are the Stirling-Frobenius cycle numbers. For m = 1 this gives the classical Stirling cycle numbers A132393. The Stirling-Frobenius subset numbers are defined in A225468.
Triangle T(n,k), read by rows, given by (2, 3, 5, 6, 8, 9, 11, 12, 14, 15, ... (A007494)) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 14 2015
FORMULA
For a recurrence see the Maple program.
From Wolfdieter Lang, May 18 2017: (Start)
This is the Sheffer triangle (1/(1 - 3*x)^{-2/3}, -(1/3)*log(1-3*x)). See the P. Bala link where this is called exponential Riordan array, and the signed version is denoted by s_{(3,0,2)}.
E.g.f. of row polynomials in the variable x (i.e., of the triangle): (1 - 3*z)^{-(2+x)/3}.
E.g.f. of column k: (1-3*x)^(-2/3)*(-(1/3)*log(1-3*x))^k/k!, k >= 0.
Recurrence for row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k: R(n, x) = (x+2)*R(n-1,x+3), with R(0, x) = 1.
R(n, x) = risefac(3,2;x,n) := Product_{j=0..(n-1)} (x + (2 + 3*j)). (See the P. Bala link, eq. (16) for the signed s_{3,0,2} row polynomials.)
T(n, k) = Sum_{j=0..(n-m)} binomial(n-j, k)* S1p(n, n-j)*2^(n-k-j)*3^j, with S1p(n, m) = A132393(n, m). (End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 3^(n-1-p)*(2 + 3*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1), beginning {1/2, 5/12, 3/8, 251/720, ...}. See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
EXAMPLE
[n\k][ 0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 2, 1,
[2] 10, 7, 1,
[3] 80, 66, 15, 1,
[4] 880, 806, 231, 26, 1,
[5] 12320, 12164, 4040, 595, 40, 1,
[6] 209440, 219108, 80844, 14155, 1275, 57, 1.
...
From Wolfdieter Lang, Aug 11 2017: (Start)
Recurrence (see Maple program): T(4, 2) = T(3, 1) + (3*4 - 1)*T(3, 2) = 66 + 11*15 = 231.
Boas-Buck type recurrence for column k = 2 and n = 4: T(4, 2) = (4!/2)*(3*(2 + 6*(5/12))*T(2, 2)/2! + 1*(2 + 6*(1/2))*T(3,2)/3!) = (4!/2)*(3*9/4 + 5*15/3!) = 231. (End)
MAPLE
SF_C := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
SF_C(n-1, k-1, m) + (m*n-1)*SF_C(n-1, k, m) end:
seq(print(seq(SF_C(n, k, 3), k = 0..n)), n = 0..8);
MATHEMATICA
SFC[0, 0, _] = 1; SFC[n_, k_, _] /; (k > n || k < 0) = 0; SFC[n_, k_, m_] := SFC[n, k, m] = SFC[n-1, k-1, m] + (m*n-1)*SFC[n-1, k, m]; Table[SFC[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *)
CROSSREFS
Cf. A225468; A132393 (m=1), A028338 (m=2), A225471(m=4).
T(n, 0) ~ A008544; T(n, 1) ~ A024395; T(n, n) ~ A000012;
T(n, n-1) ~ A005449; T(n, n-2) ~ A024391; T(n, n-3) ~ A024392.
row sums ~ A032031; alternating row sums ~ A007559.
Cf. A132393.
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Luschny, May 16 2013
STATUS
approved
Triangle read by rows, s_4(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
+10
7
1, 3, 1, 21, 10, 1, 231, 131, 21, 1, 3465, 2196, 446, 36, 1, 65835, 45189, 10670, 1130, 55, 1, 1514205, 1105182, 290599, 36660, 2395, 78, 1, 40883535, 31354119, 8951355, 1280419, 101325, 4501, 105, 1, 1267389585, 1012861224, 308846124, 48644344, 4421494, 240856, 7756, 136, 1
OFFSET
0,2
COMMENTS
The Stirling-Frobenius cycle numbers are defined in A225470.
Triangle T(n,k), read by rows, given by (3, 4, 7, 8, 11, 12, 15, 16, 19, 20, ... (A014601)) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 14 2015
FORMULA
For a recurrence see the Sage program.
T(n, 0) ~ A008545; T(n, n) ~ A000012; T(n, n-1) = A014105.
Row sums ~ A047053; alternating row sums ~ A001813.
From Wolfdieter Lang, May 29 2017: (Start)
This is the Sheffer triangle (1/(1 - 4*x)^{-3/4}, -(1/4)*log(1-4*x)). See the P. Bala link where this is called exponential Riordan array, and the signed version is denoted by s_{(4,0,3)}.
E.g.f. of row polynomials in the variable x (i.e., of the triangle): (1 - 4*z)^{-(3+x)/4}.
E.g.f. of column k: (1-4*x)^(-3/4)*(-(1/4)*log(1-4*x))^k/k!, k >= 0.
Recurrence for row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k: R(n, x) = (x+3)*R(n-1,x+4), with R(0, x) = 1.
R(n, x) = risefac(4,3;x,n) := Product_{j=0..(n-1)} (x + (3 + 4*j)). (See the P. Bala link, eq. (16) for the signed s_{4,0,3} row polynomials.)
T(n, k) = Sum_{j=0..(n-m)} binomial(n-j, k)* S1p(n, n-j)*3^(n-k-j)*4^j, with S1p(n, m) = A132393(n, m).
T(n, k) = sigma[4,3]^{(n)}_{n-k}, with the elementary symmetric functions sigma[4,3]^{(n)}_m of degree m in the n numbers 3, 7, 11, ..., 3+4*(n-1), with sigma[4,3]^{(n)}_0 := 1. (End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 4^(n-1-p)*(3 + 8*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1), beginning with {1/2, 5/12, 3/8, 251/720, ...}. See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
EXAMPLE
[n\k][ 0, 1, 2, 3, 4, 5, 6 ]
[0] 1,
[1] 3, 1,
[2] 21, 10, 1,
[3] 231, 131, 21, 1,
[4] 3465, 2196, 446, 36, 1,
[5] 65835, 45189, 10670, 1130, 55, 1,
[6] 1514205, 1105182, 290599, 36660, 2395, 78, 1.
...
From Wolfdieter Lang, Aug 11 2017: (Start)
Recurrence: T(4, 2) = T(3, 1) + (4*4 - 1)*T(3, 2) = 131 +15*21 = 446.
Boas-Buck recurrence for column k=2 and n=4: T(4, 2) = (4!/2)*(4*(3+8*(5/12)) *T(2, 2)/2! + 1*(3 + 8*(1/2))*T(3,2)/3!) = (4!/2)*(4*(19/3)/2 + 7*21/3!) = 446.
(End)
MATHEMATICA
T[0, 0] = 1; T[n_, k_] := Sum[Binomial[n - j, k]*Abs[StirlingS1[n, n - j]]* 3^(n - k - j)*4^j, {j, 0, n - k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Wolfdieter Lang *)
PROG
(Sage)
@CachedFunction
def SF_C(n, k, m):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return SF_C(n-1, k-1, m) + (m*n-1)*SF_C(n-1, k, m)
for n in (0..8): [SF_C(n, k, 4) for k in (0..n)]
CROSSREFS
Cf. A132393 (m=1), A028338 (m=2), A225470 (m=3).
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Luschny, May 17 2013
STATUS
approved
a(n) = 3rd elementary symmetric function of first n+2 positive integers congruent to 1 mod 3.
+10
6
28, 418, 2485, 9605, 28700, 72128, 159978, 322770, 604560, 1066450, 1790503, 2884063, 4484480, 6764240, 9936500, 14261028, 20050548, 27677490, 37581145, 50275225, 66355828, 86509808, 111523550, 142292150, 179829000, 225275778
OFFSET
1,1
LINKS
FORMULA
a(n) = n*(n+1)*(n+2)*(3n+5)*(9n^2+21*n-2)/48.
G.f. -x*(28+222*x+147*x^2+8*x^3) / (x-1)^7 . - R. J. Mathar, Oct 08 2011
From Wolfdieter Lang, Jul 30 2017: (Start)
E.g.f.: x*exp(x)*(1344 + 8688*x + 10520*x^2 + 4122*x^3 + 594*x^4 + 27*x^5)/48.
a(n) = A286718(n+2, n-1), n >= 1. (End)
PROG
(Magma) [n*(n+1)*(n+2)*(3*n+5)*(9*n^2+21*n-2)/48: n in [1..30]]; // Vincenzo Librandi, Oct 10 2011
CROSSREFS
Cf. A286718.
KEYWORD
nonn,easy
STATUS
approved

Search completed in 0.031 seconds