OFFSET
0,3
COMMENTS
a(n) is the number of increasing quaternary trees on n vertices. (See A001147 for ternary and A000142 for binary trees.) - David Callan, Mar 30 2007
a(n) is the product of the positive integers k <= 3*n that have k modulo 3 = 1. - Peter Luschny, Jun 23 2011
See A094638 for connections to differential operators. - Tom Copeland, Sep 20 2011
Partial products of A016777. - Reinhard Zumkeller, Sep 20 2013
For n > 2, a(n) is a Zumkeller number. - Ivan N. Ianakiev, Jan 28 2020
a(n) is the number of generalized permutations of length n related to the degenerate Eulerian numbers (see arXiv:2007.13205), cf. A336633. - Orli Herscovici, Jul 28 2020
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n=0..100
Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
P. Codara, O. M. D'Antona and P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
S. Goodenough and C. Lavault, On subsets of Riordan subgroups and Heisenberg--Weyl algebra, arXiv preprint arXiv:1404.1894 [cs.DM], 2014.
S. Goodenough and C. Lavault, Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16.
Orli Herscovici, Generalized permutations related to the degenerate Eulerian numbers, arXiv preprint arXiv:2007.13205 [math.CO], 2020.
Ivan N. Ianakiev, A simple proof that for n > 2, a(n) is a Zumkeller number
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
M. D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications, J. Int. Seq. 13 (2010), 10.6.7, Table 6.3.
FORMULA
a(n) = Product_{k=0..n-1} (3*k + 1).
a(n) = (3*n - 2)!!!, n >= 1, and a(0) = 1.
E.g.f.: (1-3*x)^(-1/3).
a(n) ~ sqrt(2*Pi)/Gamma(1/3)*n^(-1/6)*(3*n/e)^n*(1 - (1/36)/n - ...). - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
a(n) = 3^n*Pochhammer(1/3, n).
a(n) = Sum_{k=0..n} (-3)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
a(n) = n! *( Sum_{m=1..n} (m/n)*Sum_{k=1..n-m} (binomial(k, n-m-k) * (-1/3)^(n-m-k)*binomial(k+n-1,n-1) + 1 ), n>1. - Vladimir Kruchinin, Aug 09 2010
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term in M^n, M = a variant of Pascal (1,3) triangle (Cf. A095660); as an infinite square production matrix:
1, 3, 0, 0, 0,...
1, 4, 3, 0, 0,...
1, 5, 7, 3, 0,...
...
a(n+1) = sum of top row terms of M^n. (End)
a(n) = (-2)^n*Sum_{k=0..n} (3/2)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(3*k+1)/( 1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 21 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k+1)/(x*(3*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
E.g.f.: E(0)/2, where E(k)= 1 + 1/(1 - x*(3*k+1)/(x*(3*k+1) + (k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
Let D(x) = 1/sqrt(1 - 2*x) be the e.g.f. for the sequence of double factorial numbers A001147. Then the e.g.f. A(x) for the triple factorial numbers satisfies D( Integral_{t=0..x} A(t) dt ) = A(x). Cf. A007696 and A008548. - Peter Bala, Jan 02 2015
O.g.f.: hypergeom([1, 1/3], [], 3*x). - Peter Luschny, Oct 08 2015
a(n) = 3^n * Gamma(n + 1/3)/Gamma(1/3). - Artur Jasinski, Aug 23 2016
a(n) = sigma[3,1]^{(n)}_n, n >= 0, with the elementary symmetric function of degree n in the n numbers 1, 4, 7, ..., 1+3*(n-1), with sigma[3,1]^{(n)}_0 := 1. See the first formula. - Wolfdieter Lang, May 29 2017
a(n) = (-1)^n / A008544(n), 0 = a(n)*(+3*a(n+1) -a(n+2)) +a(n+1)*a(n+1) for all n in Z. - Michael Somos, Sep 30 2018
D-finite with recurrence: a(n) +(-3*n+2)*a(n-1)=0, n>=1. - R. J. Mathar, Feb 14 2020
Sum_{n>=1} 1/a(n) = (e/9)^(1/3) * (Gamma(1/3) - Gamma(1/3, 1/3)). - Amiram Eldar, Jun 29 2020
EXAMPLE
G.f. = 1 + x + 4*x^2 + 28*x^3 + 280*x^4 + 3640*x^5 + 58240*x^6 + ...
a(3) = 28 and a(4) = 280; with top row of M^3 = (28, 117, 108, 27), sum = 280.
MAPLE
A007559 := n -> mul(k, k = select(k-> k mod 3 = 1, [$1 .. 3*n])): seq(A007559(n), n = 0 .. 17); # Peter Luschny, Jun 23 2011
MATHEMATICA
a[ n_] := If[ n < 0, 1 / Product[ k, {k, - 2, 3 n - 1, -3}],
Product[ k, {k, 1, 3 n - 2, 3}]]; (* Michael Somos, Oct 14 2011 *)
FoldList[Times, 1, Range[1, 100, 3]] (* Harvey P. Dale, Jul 05 2013 *)
Range[0, 19]! CoefficientList[Series[((1 - 3 x)^(-1/3)), {x, 0, 19}], x] (* Vincenzo Librandi, Oct 08 2015 *)
PROG
(Maxima) a(n):=if n=1 then 1 else (n)!*(sum(m/n*sum(binomial(k, n-m-k)*(-1/3)^(n-m-k)* binomial (k+n-1, n-1), k, 1, n-m), m, 1, n)+1); \\ Vladimir Kruchinin, Aug 09 2010
(PARI) {a(n) = if( n<0, (-1)^n / prod(k=0, -1-n, 3*k + 2), prod(k=0, n-1, 3*k + 1))}; /* Michael Somos, Oct 14 2011 */
(PARI) x='x+O('x^33); Vec(serlaplace((1-3*x)^(-1/3))) /* Joerg Arndt, Apr 24 2011 */
(Sage)
def A007559(n) : return mul(j for j in range(1, 3*n, 3))
[A007559(n) for n in (0..17)] # Peter Luschny, May 20 2013
(Haskell)
a007559 n = a007559_list !! n
a007559_list = scanl (*) 1 a016777_list
-- Reinhard Zumkeller, Sep 20 2013
(Magma)
b:= func< n | (n lt 2) select n else (3*n-2)*Self(n-1) >;
[1] cat [b(n): n in [1..20]]; // G. C. Greubel, Aug 20 2019
(GAP) List([0..20], n-> Product([0..n-1], k-> 3*k+1 )); # G. C. Greubel, Aug 20 2019
CROSSREFS
Cf. A107716. - Gary W. Adamson, Oct 22 2009
Cf. A095660. - Gary W. Adamson, Jul 19 2011
a(n) = A286718(n,0), n >= 0.
Row sums of A336633.
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
Better description from Wolfdieter Lang
STATUS
approved