[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a226535 -id:a226535
     Sort: relevance | references | number | modified | created      Format: long | short | data
Central binomial coefficients: binomial(2*n,n) = (2*n)!/(n!)^2.
(Formerly M1645 N0643)
+10
1082
1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, 2704156, 10400600, 40116600, 155117520, 601080390, 2333606220, 9075135300, 35345263800, 137846528820, 538257874440, 2104098963720, 8233430727600, 32247603683100, 126410606437752, 495918532948104, 1946939425648112
OFFSET
0,2
COMMENTS
Devadoss refers to these numbers as type B Catalan numbers (cf. A000108).
Equal to the binomial coefficient sum Sum_{k=0..n} binomial(n,k)^2.
Number of possible interleavings of a program with n atomic instructions when executed by two processes. - Manuel Carro (mcarro(AT)fi.upm.es), Sep 22 2001
Convolving a(n) with itself yields A000302, the powers of 4. - T. D. Noe, Jun 11 2002
Number of ordered trees with 2n+1 edges, having root of odd degree and nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
Also number of directed, convex polyominoes having semiperimeter n+2.
Also number of diagonally symmetric, directed, convex polyominoes having semiperimeter 2n+2. - Emeric Deutsch, Aug 03 2002
The second inverse binomial transform of this sequence is this sequence with interpolated zeros. Its g.f. is (1 - 4*x^2)^(-1/2), with n-th term C(n,n/2)(1+(-1)^n)/2. - Paul Barry, Jul 01 2003
Number of possible values of a 2n-bit binary number for which half the bits are on and half are off. - Gavin Scott (gavin(AT)allegro.com), Aug 09 2003
Ordered partitions of n with zeros to n+1, e.g., for n=4 we consider the ordered partitions of 11110 (5), 11200 (30), 13000 (20), 40000 (5) and 22000 (10), total 70 and a(4)=70. See A001700 (esp. Mambetov Bektur's comment). - Jon Perry, Aug 10 2003
Number of nondecreasing sequences of n integers from 0 to n: a(n) = Sum_{i_1=0..n} Sum_{i_2=i_1..n}...Sum_{i_n=i_{n-1}..n}(1). - J. N. Bearden (jnb(AT)eller.arizona.edu), Sep 16 2003
Number of peaks at odd level in all Dyck paths of semilength n+1. Example: a(2)=6 because we have U*DU*DU*D, U*DUUDD, UUDDU*D, UUDUDD, UUU*DDD, where U=(1,1), D=(1,-1) and * indicates a peak at odd level. Number of ascents of length 1 in all Dyck paths of semilength n+1 (an ascent in a Dyck path is a maximal string of up steps). Example: a(2)=6 because we have uDuDuD, uDUUDD, UUDDuD, UUDuDD, UUUDDD, where an ascent of length 1 is indicated by a lower case letter. - Emeric Deutsch, Dec 05 2003
a(n-1) = number of subsets of 2n-1 distinct elements taken n at a time that contain a given element. E.g., n=4 -> a(3)=20 and if we consider the subsets of 7 taken 4 at a time with a 1 we get (1234, 1235, 1236, 1237, 1245, 1246, 1247, 1256, 1257, 1267, 1345, 1346, 1347, 1356, 1357, 1367, 1456, 1457, 1467, 1567) and there are 20 of them. - Jon Perry, Jan 20 2004
The dimension of a particular (necessarily existent) absolutely universal embedding of the unitary dual polar space DSU(2n,q^2) where q>2. - J. Taylor (jt_cpp(AT)yahoo.com), Apr 02 2004.
Number of standard tableaux of shape (n+1, 1^n). - Emeric Deutsch, May 13 2004
Erdős, Graham et al. conjectured that a(n) is never squarefree for sufficiently large n (cf. Graham, Knuth, Patashnik, Concrete Math., 2nd ed., Exercise 112). Sárközy showed that if s(n) is the square part of a(n), then s(n) is asymptotically (sqrt(2)-2)*(sqrt(n))*(Riemann Zeta Function(1/2)). Granville and Ramare proved that the only squarefree values are a(1)=2, a(2)=6 and a(4)=70. - Jonathan Vos Post, Dec 04 2004 [For more about this conjecture, see A261009. - N. J. A. Sloane, Oct 25 2015]
The MathOverflow link contains the following comment (slightly edited): The Erdős squarefree conjecture (that a(n) is never squarefree for n>4) was proved in 1980 by Sárközy, A. (On divisors of binomial coefficients. I. J. Number Theory 20 (1985), no. 1, 70-80.) who showed that the conjecture holds for all sufficiently large values of n, and by A. Granville and O. Ramaré (Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients. Mathematika 43 (1996), no. 1, 73-107) who showed that it holds for all n>4. - Fedor Petrov, Nov 13 2010. [From N. J. A. Sloane, Oct 29 2015]
p divides a((p-1)/2)-1=A030662(n) for prime p=5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, ... = A002144(n) Pythagorean primes: primes of form 4n+1. - Alexander Adamchuk, Jul 04 2006
The number of direct routes from my home to Granny's when Granny lives n blocks south and n blocks east of my home in Grid City. To obtain a direct route, from the 2n blocks, choose n blocks on which one travels south. For example, a(2)=6 because there are 6 direct routes: SSEE, SESE, SEES, EESS, ESES and ESSE. - Dennis P. Walsh, Oct 27 2006
Inverse: With q = -log(log(16)/(pi a(n)^2)), ceiling((q + log(q))/log(16)) = n. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 26 2007
Number of partitions with Ferrers diagrams that fit in an n X n box (including the empty partition of 0). Example: a(2) = 6 because we have: empty, 1, 2, 11, 21 and 22. - Emeric Deutsch, Oct 02 2007
So this is the 2-dimensional analog of A008793. - William Entriken, Aug 06 2013
The number of walks of length 2n on an infinite linear lattice that begins and ends at the origin. - Stefan Hollos (stefan(AT)exstrom.com), Dec 10 2007
The number of lattice paths from (0,0) to (n,n) using steps (1,0) and (0,1). - Joerg Arndt, Jul 01 2011
Integral representation: C(2n,n)=1/Pi Integral [(2x)^(2n)/sqrt(1 - x^2),{x,-1, 1}], i.e., C(2n,n)/4^n is the moment of order 2n of the arcsin distribution on the interval (-1,1). - N-E. Fahssi, Jan 02 2008
Also the Catalan transform of A000079. - R. J. Mathar, Nov 06 2008
Straub, Amdeberhan and Moll: "... it is conjectured that there are only finitely many indices n such that C_n is not divisible by any of 3, 5, 7 and 11." - Jonathan Vos Post, Nov 14 2008
Equals INVERT transform of A081696: (1, 1, 3, 9, 29, 97, 333, ...). - Gary W. Adamson, May 15 2009
Also, in sports, the number of ordered ways for a "Best of 2n-1 Series" to progress. For example, a(2) = 6 means there are six ordered ways for a "best of 3" series to progress. If we write A for a win by "team A" and B for a win by "team B" and if we list the played games chronologically from left to right then the six ways are AA, ABA, BAA, BB, BAB, and ABB. (Proof: To generate the a(n) ordered ways: Write down all a(n) ways to designate n of 2n games as won by team A. Remove the maximal suffix of identical letters from each of these.) - Lee A. Newberg, Jun 02 2009
Number of n X n binary arrays with rows, considered as binary numbers, in nondecreasing order, and columns, considered as binary numbers, in nonincreasing order. - R. H. Hardin, Jun 27 2009
Hankel transform is 2^n. - Paul Barry, Aug 05 2009
It appears that a(n) is also the number of quivers in the mutation class of twisted type BC_n for n>=2.
Central terms of Pascal's triangle: a(n) = A007318(2*n,n). - Reinhard Zumkeller, Nov 09 2011
Number of words on {a,b} of length 2n such that no prefix of the word contains more b's than a's. - Jonathan Nilsson, Apr 18 2012
From Pascal's triangle take row(n) with terms in order a1,a2,..a(n) and row(n+1) with terms b1,b2,..b(n), then 2*(a1*b1 + a2*b2 + ... + a(n)*b(n)) to get the terms in this sequence. - J. M. Bergot, Oct 07 2012. For example using rows 4 and 5: 2*(1*(1) + 4*(5) + 6*(10) + 4*(10) + 1*(5)) = 252, the sixth term in this sequence.
Take from Pascal's triangle row(n) with terms b1, b2, ..., b(n+1) and row(n+2) with terms c1, c2, ..., c(n+3) and find the sum b1*c2 + b2*c3 + ... + b(n+1)*c(n+2) to get A000984(n+1). Example using row(3) and row(5) gives sum 1*(5)+3*(10)+3*(10)+1*(5) = 70 = A000984(4). - J. M. Bergot, Oct 31 2012
a(n) == 2 mod n^3 iff n is a prime > 3. (See Mestrovic link, p. 4.) - Gary Detlefs, Feb 16 2013
Conjecture: For any positive integer n, the polynomial sum_{k=0}^n a(k)x^k is irreducible over the field of rational numbers. In general, for any integer m>1 and n>0, the polynomial f_{m,n}(x) = Sum_{k=0..n} (m*k)!/(k!)^m*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 23 2013
This comment generalizes the comment dated Oct 31 2012 and the second of the sequence's original comments. For j = 1 to n, a(n) = Sum_{k=0..j} C(j,k)* C(2n-j, n-k) = 2*Sum_{k=0..j-1} C(j-1,k)*C(2n-j, n-k). - Charlie Marion, Jun 07 2013
The differences between consecutive terms of the sequence of the quotients between consecutive terms of this sequence form a sequence containing the reciprocals of the triangular numbers. In other words, a(n+1)/a(n)-a(n)/a(n-1) = 2/(n*(n+1)). - Christian Schulz, Jun 08 2013
Number of distinct strings of length 2n using n letters A and n letters B. - Hans Havermann, May 07 2014
From Fung Lam, May 19 2014: (Start)
Expansion of G.f. A(x) = 1/(1+q*x*c(x)), where parameter q is positive or negative (except q=-1), and c(x) is the g.f. of A000108 for Catalan numbers. The case of q=-1 recovers the g.f. of A000108 as xA^2-A+1=0. The present sequence A000984 refers to q=-2. Recurrence: (1+q)*(n+2)*a(n+2) + ((q*q-4*q-4)*n + 2*(q*q-q-1))*a(n+1) - 2*q*q*(2*n+1)*a(n) = 0, a(0)=1, a(1)=-q. Asymptotics: a(n) ~ ((q+2)/(q+1))*(q^2/(-q-1))^n, q<=-3, a(n) ~ (-1)^n*((q+2)/(q+1))*(q^2/(q+1))^n, q>=5, and a(n) ~ -Kq*2^(2*n)/sqrt(Pi*n^3), where the multiplicative constant Kq is given by K1=1/9 (q=1), K2=1/8 (q=2), K3=3/25 (q=3), K4=1/9 (q=4). These formulas apply to existing sequences A126983 (q=1), A126984 (q=2), A126982 (q=3), A126986 (q=4), A126987 (q=5), A127017 (q=6), A127016 (q=7), A126985 (q=8), A127053 (q=9), and to A007854 (q=-3), A076035 (q=-4), A076036 (q=-5), A127628 (q=-6), A126694 (q=-7), A115970 (q=-8). (End)
a(n)*(2^n)^(j-2) equals S(n), where S(n) is the n-th number in the self-convolved sequence which yields the powers of 2^j for all integers j, n>=0. For example, when n=5 and j=4, a(5)=252; 252*(2^5)^(4-2) = 252*1024 = 258048. The self-convolved sequence which yields powers of 16 is {1, 8, 96, 1280, 17920, 258048, ...}; i.e., S(5) = 258048. Note that the convolved sequences will be composed of numbers decreasing from 1 to 0, when j<2 (exception being j=1, where the first two numbers in the sequence are 1 and all others decreasing). - Bob Selcoe, Jul 16 2014
The variance of the n-th difference of a sequence of pairwise uncorrelated random variables each with variance 1. - Liam Patrick Roche, Jun 04 2015
Number of ordered trees with n edges where vertices at level 1 can be of 2 colors. Indeed, the standard decomposition of ordered trees leading to the equation C = 1 + zC^2 (C is the Catalan function), yields this time G = 1 + 2zCG, from where G = 1/sqrt(1-4z). - Emeric Deutsch, Jun 17 2015
Number of monomials of degree at most n in n variables. - Ran Pan, Sep 26 2015
Let V(n, r) denote the volume of an n-dimensional sphere with radius r, then V(n, 2^n) / Pi = V(n-1, 2^n) * a(n/2) for all even n. - Peter Luschny, Oct 12 2015
a(n) is the number of sets {i1,...,in} of length n such that n >= i1 >= i2 >= ... >= in >= 0. For instance, a(2) = 6 as there are only 6 such sets: (2,2) (2,1) (2,0) (1,1) (1,0) (0,0). - Anton Zakharov, Jul 04 2016
From Ralf Steiner, Apr 07 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums such as:
Sum_{k>=0} a(k)/(-2)^k = 1/sqrt(3).
Sum_{k>=0} a(k)/(-1)^k = 1/sqrt(5).
Sum_{k>=0} a(k)/(-1/2)^k = 1/3.
Sum_{k>=0} a(k)/(1/2)^k = -1/sqrt(7)i.
Sum_{k>=0} a(k)/(1)^k = -1/sqrt(3)i.
Sum_{k>=0} a(k)/2^k = -i. (End)
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) > e(j). [Martinez and Savage, 2.18] - Eric M. Schmidt, Jul 17 2017
The o.g.f. for the sequence equals the diagonal of any of the following the rational functions: 1/(1 - (x + y)), 1/(1 - (x + y*z)), 1/(1 - (x + x*y + y*z)) or 1/(1 - (x + y + y*z)). - Peter Bala, Jan 30 2018
From Colin Defant, Sep 16 2018: (Start)
Let s denote West's stack-sorting map. a(n) is the number of permutations pi of [n+1] such that s(pi) avoids the patterns 132, 231, and 321. a(n) is also the number of permutations pi of [n+1] such that s(pi) avoids the patterns 132, 312, and 321.
a(n) is the number of permutations of [n+1] that avoid the patterns 1342, 3142, 3412, and 3421. (End)
All binary self-dual codes of length 4n, for n>0, must contain at least a(n) codewords of weight 2n. More to the point, there will always be at least one, perhaps unique, binary self-dual code of length 4n that will contain exactly a(n) codewords that have a hamming weight equal to half the length of the code (2n). This code can be constructed by direct summing the unique binary self-dual code of length 2 (up to permutation equivalence) to itself an even number of times. A permutation equivalent code can be constructed by augmenting two identity matrices of length 2n together. - Nathan J. Russell, Nov 25 2018
From Isaac Saffold, Dec 28 2018: (Start)
Let [b/p] denote the Legendre symbol and 1/b denote the inverse of b mod p. Then, for m and n, where n is not divisible by p,
[(m+n)/p] == [n/p]*Sum_{k=0..(p-1)/2} (-m/(4*n))^k * a(k) (mod p).
Evaluating this identity for m = -1 and n = 1 demonstrates that, for all odd primes p, Sum_{k=0..(p-1)/2} (1/4)^k * a(k) is divisible by p. (End)
Number of vertices of the subgraph of the (2n-1)-dimensional hypercube induced by all bitstrings with n-1 or n many 1s. The middle levels conjecture asserts that this graph has a Hamilton cycle. - Torsten Muetze, Feb 11 2019
a(n) is the number of walks of length 2n from the origin with steps (1,1) and (1,-1) that stay on or above the x-axis. Equivalently, a(n) is the number of walks of length 2n from the origin with steps (1,0) and (0,1) that stay in the first octant. - Alexander Burstein, Dec 24 2019
Number of permutations of length n>0 avoiding the partially ordered pattern (POP) {3>1, 1>2} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second element but smaller than the third elements. - Sergey Kitaev, Dec 08 2020
From Gus Wiseman, Jul 21 2021: (Start)
Also the number of integer compositions of 2n+1 with alternating sum 1, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. For example, the a(0) = 1 through a(2) = 6 compositions are:
(1) (2,1) (3,2)
(1,1,1) (1,2,2)
(2,2,1)
(1,1,2,1)
(2,1,1,1)
(1,1,1,1,1)
The following relate to these compositions:
- The unordered version is A000070.
- The alternating sum -1 version is counted by A001791, ranked by A345910/A345912.
- The alternating sum 0 version is counted by A088218, ranked by A344619.
- Including even indices gives A126869.
- The complement is counted by A202736.
- Ranked by A345909 (reverse: A345911).
Equivalently, a(n) counts binary numbers with 2n+1 digits and one more 1 than 0's. For example, the a(2) = 6 binary numbers are: 10011, 10101, 10110, 11001, 11010, 11100.
(End)
From Michael Wallner, Jan 25 2022: (Start)
a(n) is the number of nx2 Young tableaux with a single horizontal wall between the first and second column. If there is a wall between two cells, the entries may be decreasing; see [Banderier, Wallner 2021].
Example for a(2)=6:
3 4 2 4 3 4 3|4 4|3 2|4
1|2, 1|3, 2|1, 1 2, 1 2, 1 3
a(n) is also the number of nx2 Young tableaux with n "walls" between the first and second column.
Example for a(2)=6:
3|4 2|4 4|3 3|4 4|3 4|2
1|2, 1|3, 1|2, 2|1, 2|1, 3|1 (End)
From Shel Kaphan, Jan 12 2023: (Start)
a(n)/4^n is the probability that a fair coin tossed 2n times will come up heads exactly n times and tails exactly n times, or that a random walk with steps of +-1 will return to the starting point after 2n steps (not necessarily for the first time). As n becomes large, this number asymptotically approaches 1/sqrt(n*Pi), using Stirling's approximation for n!.
a(n)/(4^n*(2n-1)) is the probability that a random walk with steps of +-1 will return to the starting point for the first time after 2n steps. The absolute value of the n-th term of A144704 is denominator of this fraction.
Considering all possible random walks of exactly 2n steps with steps of +-1, a(n)/(2n-1) is the number of such walks that return to the starting point for the first time after 2n steps. See the absolute values of A002420 or A284016 for these numbers. For comparison, as mentioned by Stefan Hollos, Dec 10 2007, a(n) is the number of such walks that return to the starting point after 2n steps, but not necessarily for the first time. (End)
p divides a((p-1)/2) + 1 for primes p of the form 4*k+3 (A002145). - Jules Beauchamp, Feb 11 2023
Also the size of the shuffle product of two words of length n, such that the union of the two words consist of 2n distinct elements. - Robert C. Lyons, Mar 15 2023
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 160.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 575, line -3, with a=b=n.
E. Deutsch and L. Shapiro, Seventeen Catalan identities, Bulletin of the Institute of Combinatorics and its Applications, 31, 31-38, 2001.
H. W. Gould, Combinatorial Identities, Morgantown, 1972, (3.66), page 30.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, Second Ed., see Exercise 112.
M. Griffiths, The Backbone of Pascal's Triangle, United Kingdom Mathematics Trust (2008), 3-124.
Leonard Lipshitz and A. van der Poorten. "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990): 339-358.
J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe and Edward Jiang, Table of n, a(n) for n = 0..500 (Previously 0..200 by T. D. Noe)
J. Abate and W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011) # 11.2.6, example section 3.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abrate, S. Barbero, U. Cerruti, and N. Murru, Fixed Sequences for a Generalization of the Binomial Interpolated Operator and for some Other Operators, J. Int. Seq. 14 (2011) # 11.8.1.
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
Michael Anshelevich, Product formulas on posets, Wick products, and a correction for the q-Poisson process, arXiv:1708.08034 [math.OA], 2017, See Proposition 34 p. 25.
D. H. Bailey, J. M. Borwein and D. M. Bradley, Experimental determination of Apéry-like identities for zeta(4n+2), arXiv:math/0505124 [math.CA], 2005.
Cyril Banderier and Michael Wallner, Young Tableaux with Periodic Walls: Counting with the Density Method, Séminaire Lotharingien de Combinatoire, 85B (2021), Art. 47, 12 pp.
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 2012, #12.8.2.
Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.
Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.
Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
Paul Barry, On the Central Antecedents of Integer (and Other) Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.
Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.
Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages.
A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007) # 07.9.7.
Robert J. Betts, Lack of Divisibility of {2N choose N} by three fixed odd primes infinitely often, through the Extension of a Result by P. Erdős, et al., arXiv:1010.3070 [math.NT], 2010. [It is not clear if the results in this paper have been confirmed. There appears to be no mention of this work in MathSciNet, for example. - N. J. A. Sloane, Oct 29 2015]
J. Borwein and D. Bradley, Empirically determined Apéry-like formulas for zeta(4n+3), arXiv:math/0505124 [math.CA], 2005.
Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, 2010.
Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine integrals.
Marie-Louise Bruner, Central binomial coefficients also count (2431,4231,1432,4132)-avoiders, arXiv:1505.04929 [math.CO], 2015.
Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, and André Schulz, The Number of Convex Polyominoes with Given Height and Width, arXiv:1903.01095 [math.CO], 2019.
N. T. Cameron, Random walks, trees and extensions of Riordan group techniques, Dissertation, Howard University, 2002.
G. Chatel and V. Pilaud, The Cambrian and Baxter-Cambrian Hopf Algebras, arXiv preprint arXiv:1411.3704 [math.CO], 2014-2015.
Hongwei Chen, Evaluations of Some Variant Euler Sums, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.3.
G.-S. Cheon, H. Kim, and L. W. Shapiro, Mutation effects in ordered trees, arXiv preprint arXiv:1410.1249 [math.CO], 2014.
J. Cigler, Some nice Hankel determinants, arXiv:1109.1449 [math.CO], 2011.
Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
CombOS - Combinatorial Object Server, Generate middle levels Gray codes
B. N. Cooperstein and E. E. Shult, A note on embedding and generating dual polar spaces. Adv. Geom. 1 (2001), 37-48. See Theorem 5.4.
Kristina Crona, Mengming Luo, and Devin Greene, An Uncertainty Law for Microbial Evolution, Journal of Theoretical Biology (2020) Vol. 489, Article No. 110155.
D. Daly and L. Pudwell, Pattern avoidance in rook monoids, 2013.
Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8.
Thierry Dana-Picard, Sequences of Definite Integrals, Factorials and Double Factorials, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.6.
Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
E. Delaygue, Arithmetic properties of Apéry-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013.
Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
Emeric Deutsch, Enumerating symmetric directed convex polyominoes, Discrete Math., 280 (2004), 225-231.
Satyan L. Devadoss, A realization of graph associahedra, Discrete Math. 309 (2009), no. 1, 271-276.
J. C. F. de Winter, Using the Student's t-test with extremely small sample sizes, Practical Assessment, Research & Evaluation, 18(10), 2013.
Phan Thuan Do, Thi Thu Huong Tran, and Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [cs.DM], 2018.
R. Duarte and A. G. de Oliveira, Short note on the convolution of binomial coefficients, arXiv preprint arXiv:1302.2100 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.7.6.
P. Erdős, R. L. Graham, I. Z. Russa and E. G. Straus, On the prime factors of C(2n,n), Math. Comp. 29 (1975), 83-92.
Gennady Eremin, Factoring Middle Binomial Coefficients, arXiv:2003.01494 [math.CO], 2020.
A. Erickson and F. Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv preprint arXiv:1304.0070 [math.CO], 2013.
Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5.
Francesc Fité and Andrew V. Sutherland, Sato-Tate distributions of twists of y^2= x^5-x and y^2= x^6+1, arXiv preprint arXiv:1203.1476 [math.NT], 2012.
Francesc Fité, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv:1110.6638 [math.NT], 2011.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 77.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
H. W. Gould, Tables of Combinatorial Identities, Vol. 7, Edited by J. Quaintance.
A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107, [DOI].
T. Halverson and M. Reeks, Gelfand Models for Diagram Algebras, arXiv preprint arXiv:1302.6150 [math.RT], 2013.
Oktay Haracci (timetunnel3(AT)hotmail.com), Regular Polygons
P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003, Pages 7,252-282,338-393.
Anders Hyllengren, Four integer sequences, Oct 04 1985. Observes essentially that A000984 and A002426 are inverse binomial transforms of each other, as are A000108 and A001006.
Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
C. Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
Sergey Kitaev and Jeffrey Remmel, Simple marked mesh patterns, arXiv preprint arXiv:1201.1323 [math.CO], 2012.
V. V. Kruchinin and D. V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, arXiv:1206.0877 [math.CO], 2012.
D. Kruchinin and V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, Journal of Integer Sequence, Vol. 15 (2012), article 12.9.3.
Jean-Philippe Labbé and Carsten Lange, Cambrian acyclic domains: counting c-singletons, arXiv:1802.07978 [math.CO], 2018.
Marie-Louise Lackner and M. Wallner, An invitation to analytic combinatorics and lattice path counting; Preprint, Dec 2015.
C. Lanczos, Applied Analysis (Annotated scans of selected pages)
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
D. H. Lehmer, Interesting series involving the Central Binomial Coefficient, Am. Math. Monthly 92, no 7 (1985) 449-457.
Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 19.
L. Lipshitz and A. J. van der Poorten, Rational functions, diagonals, automata and arithmetic
T. Manneville and V. Pilaud, Compatibility fans for graphical nested complexes, arXiv preprint arXiv:1501.07152 [math.CO], 2015.
Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
W. Mlotkowski and K. A. Penson, Probability distributions with binomial moments, arXiv preprint arXiv:1309.0595 [math.PR], 2013.
T. Motzkin, The hypersurface cross ratio, Bull. Amer. Math. Soc., 51 (1945), 976-984.
Torsten Mütze, Proof of the middle levels conjecture, arXiv preprint arXiv:1404.4442 [math.CO], 2014.
Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From N. J. A. Sloane, Sep 16 2012
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
Valentin Ovsienko, Shadow sequences of integers, from Fibonacci to Markov and back, arXiv:2111.02553 [math.CO], 2021.
Ran Pan, Exercise I, Project P.
P. Peart and W.-J. Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
M. A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory 27 (1987), pp. 304-309.
A. Petojevic and N. Dapic, The vAm(a,b,c;z) function, Preprint 2013.
C. Pomerance, Divisors of the middle binomial coefficient, Amer. Math. Monthly, 112 (2015), 636-644.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
T. M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
D. P. Roberts and A. Venkatesh, Hurwitz monodromy and full number fields, 2014. Also arXiv:1401:7379, 2014.
A. Sárközy, On Divisors of Binomial Coefficients. I., J. Number Th. 20, 70-80, 1985.
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012.
Armin Straub, Tewodros Amdeberhan and Victor H. Moll, The p-adic valuation of k-central binomial coefficients, arXiv:0811.2028 [math.NT], 2008, pp. 10-11.
V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), #00.1.
Hua Sun and Yi Wang, A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers, J. Int. Seq. 17 (2014) # 14.5.2.
Michael Torpey, Semigroup congruences: computational techniques and theoretical applications, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).
H. A. Verrill, Sums of squares of binomial coefficients, ..., arXiv:math/0407327 [math.CO], 2004.
M. Wallner, Lattice Path Combinatorics, Diplomarbeit, Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien, 2013.
Eric Weisstein's World of Mathematics, Binomial Sums
Eric Weisstein's World of Mathematics, Central Binomial Coefficient
Eric Weisstein's World of Mathematics, Staircase Walk
Eric Weisstein's World of Mathematics, Circle Line Picking.
Wikipedia, Shuffle product.
Herbert S. Wilf, Generatingfunctionology, Academic Press, NY, 1990. See p. 50.
FORMULA
a(n)/(n+1) = A000108(n), the Catalan numbers.
G.f.: A(x) = (1 - 4*x)^(-1/2) = 1F0(1/2;;4x).
a(n+1) = 2*A001700(n) = A030662(n) + 1. a(2*n) = A001448(n), a(2*n+1) = 2*A002458(n) =A099976.
D-finite with recurrence: n*a(n) + 2*(1-2*n)*a(n-1)=0.
a(n) = 2^n/n! * Product_{k=0..n-1} (2*k+1).
a(n) = a(n-1)*(4-2/n) = Product_{k=1..n} (4-2/k) = 4*a(n-1) + A002420(n) = A000142(2*n)/(A000142(n)^2) = A001813(n)/A000142(n) = sqrt(A002894(n)) = A010050(n)/A001044(n) = (n+1)*A000108(n) = -A005408(n-1)*A002420(n). - Henry Bottomley, Nov 10 2000
Using Stirling's formula in A000142 it is easy to get the asymptotic expression a(n) ~ 4^n / sqrt(Pi * n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
Integral representation as n-th moment of a positive function on the interval [0, 4]: a(n) = Integral_{x=0..4}(x^n*((x*(4-x))^(-1/2))/Pi), n=0, 1, ... This representation is unique. - Karol A. Penson, Sep 17 2001
Sum_{n>=1} 1/a(n) = (2*Pi*sqrt(3) + 9)/27. [Lehmer 1985, eq. (15)] - Benoit Cloitre, May 01 2002 (= A073016. - Bernard Schott, Jul 20 2022)
a(n) = Max_{ (i+j)!/(i!j!) | 0<=i,j<=n }. - Benoit Cloitre, May 30 2002
a(n) = Sum_{k=0..n} binomial(n+k-1,k), row sums of A059481. - Vladeta Jovovic, Aug 28 2002
E.g.f.: exp(2*x)*I_0(2x), where I_0 is Bessel function. - Michael Somos, Sep 08 2002
E.g.f.: I_0(2*x) = Sum a(n)*x^(2*n)/(2*n)!, where I_0 is Bessel function. - Michael Somos, Sep 09 2002
a(n) = Sum_{k=0..n} binomial(n, k)^2. - Benoit Cloitre, Jan 31 2003
Determinant of n X n matrix M(i, j) = binomial(n+i, j). - Benoit Cloitre, Aug 28 2003
Given m = C(2*n, n), let f be the inverse function, so that f(m) = n. Letting q denote -log(log(16)/(m^2*Pi)), we have f(m) = ceiling( (q + log(q)) / log(16) ). - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Oct 30 2003
a(n) = 2*Sum_{k=0..(n-1)} a(k)*a(n-k+1)/(k+1). - Philippe Deléham, Jan 01 2004
a(n+1) = Sum_{j=n..n*2+1} binomial(j, n). E.g., a(4) = C(7,3) + C(6,3) + C(5,3) + C(4,3) + C(3,3) = 35 + 20 + 10 + 4 + 1 = 70. - Jon Perry, Jan 20 2004
a(n) = (-1)^(n)*Sum_{j=0..(2*n)} (-1)^j*binomial(2*n, j)^2. - Helena Verrill (verrill(AT)math.lsu.edu), Jul 12 2004
a(n) = Sum_{k=0..n} binomial(2n+1, k)*sin((2n-2k+1)*Pi/2). - Paul Barry, Nov 02 2004
a(n-1) = (1/2)*(-1)^n*Sum_{0<=i, j<=n}(-1)^(i+j)*binomial(2n, i+j). - Benoit Cloitre, Jun 18 2005
a(n) = C(2n, n-1) + C(n) = A001791(n) + A000108(n). - Lekraj Beedassy, Aug 02 2005
G.f.: c(x)^2/(2*c(x)-c(x)^2) where c(x) is the g.f. of A000108. - Paul Barry, Feb 03 2006
a(n) = A006480(n) / A005809(n). - Zerinvary Lajos, Jun 28 2007
a(n) = Sum_{k=0..n} A106566(n,k)*2^k. - Philippe Deléham, Aug 25 2007
a(n) = Sum_{k>=0} A039599(n, k). a(n) = Sum_{k>=0} A050165(n, k). a(n) = Sum_{k>=0} A059365(n, k)*2^k, n>0. a(n+1) = Sum_{k>=0} A009766(n, k)*2^(n-k+1). - Philippe Deléham, Jan 01 2004
a(n) = 4^n*Sum_{k=0..n} C(n,k)(-4)^(-k)*A000108(n+k). - Paul Barry, Oct 18 2007
a(n) = Sum_{k=0..n} A039598(n,k)*A059841(k). - Philippe Deléham, Nov 12 2008
A007814(a(n)) = A000120(n). - Vladimir Shevelev, Jul 20 2009
From Paul Barry, Aug 05 2009: (Start)
G.f.: 1/(1-2x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction);
G.f.: 1/(1-2x/(1-x/(1-x/(1-x/(1-... (continued fraction). (End)
If n>=3 is prime, then a(n) == 2 (mod 2*n). - Vladimir Shevelev, Sep 05 2010
Let A(x) be the g.f. and B(x) = A(-x), then B(x) = sqrt(1-4*x*B(x)^2). - Vladimir Kruchinin, Jan 16 2011
a(n) = (-4)^n*sqrt(Pi)/(gamma((1/2-n))*gamma(1+n)). - Gerry Martens, May 03 2011
a(n) = upper left term in M^n, M = the infinite square production matrix:
2, 2, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ....
- Gary W. Adamson, Jul 14 2011
a(n) = Hypergeometric([-n,-n],[1],1). - Peter Luschny, Nov 01 2011
E.g.f.: hypergeometric([1/2],[1],4*x). - Wolfdieter Lang, Jan 13 2012
a(n) = 2*Sum_{k=0..n-1} a(k)*A000108(n-k-1). - Alzhekeyev Ascar M, Mar 09 2012
G.f.: 1 + 2*x/(U(0)-2*x) where U(k) = 2*(2*k+1)*x + (k+1) - 2*(k+1)*(2*k+3)*x/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jun 28 2012
a(n) = Sum_{k=0..n} binomial(n,k)^2*H(k)/(2*H(n)-H(2*n)), n>0, where H(n) is the n-th harmonic number. - Gary Detlefs, Mar 19 2013
G.f.: Q(0)*(1-4*x), where Q(k) = 1 + 4*(2*k+1)*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)^2/(2*k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
Special values of Jacobi polynomials, in Maple notation: a(n) = 4^n*JacobiP(n,0,-1/2-n,-1). - Karol A. Penson, Jul 27 2013
a(n) = 2^(4*n)/((2*n+1)*Sum_{k=0..n} (-1)^k*C(2*n+1,n-k)/(2*k+1)). - Mircea Merca, Nov 12 2013
a(n) = C(2*n-1,n-1)*C(4*n^2,2)/(3*n*C(2*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
Sum_{n>=0} a(n)/n! = A234846. - Richard R. Forberg, Feb 10 2014
0 = a(n)*(16*a(n+1) - 6*a(n+2)) + a(n+1)*(-2*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 17 2014
a(n+1) = 4*a(n) - 2*A000108(n). Also a(n) = 4^n*Product_{k=1..n}(1-1/(2*k)). - Stanislav Sykora, Aug 09 2014
G.f.: Sum_{n>=0} x^n/(1-x)^(2*n+1) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014
a(n) = (-4)^n*binomial(-1/2,n). - Jean-François Alcover, Feb 10 2015
a(n) = 4^n*hypergeom([-n,1/2],[1],1). - Peter Luschny, May 19 2015
a(n) = Sum_{k=0..floor(n/2)} C(n,k)*C(n-k,k)*2^(n-2*k). - Robert FERREOL, Aug 29 2015
a(n) ~ 4^n*(2-2/(8*n+2)^2+21/(8*n+2)^4-671/(8*n+2)^6+45081/(8*n+2)^8)/sqrt((4*n+1) *Pi). - Peter Luschny, Oct 14 2015
A(-x) = 1/x * series reversion( x*(2*x + sqrt(1 + 4*x^2)) ). Compare with the o.g.f. B(x) of A098616, which satisfies B(-x) = 1/x * series reversion( x*(2*x + sqrt(1 - 4*x^2)) ). See also A214377. - Peter Bala, Oct 19 2015
a(n) = GegenbauerC(n,-n,-1). - Peter Luschny, May 07 2016
a(n) = gamma(1+2*n)/gamma(1+n)^2. - Andres Cicuttin, May 30 2016
Sum_{n>=0} (-1)^n/a(n) = 4*(5 - sqrt(5)*log(phi))/25 = 0.6278364236143983844442267..., where phi is the golden ratio. - Ilya Gutkovskiy, Jul 04 2016
From Peter Bala, Jul 22 2016: (Start)
This sequence occurs as the closed-form expression for several binomial sums:
a(n) = Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n,k)*binomial(2*n + 1,k).
a(n) = 2*Sum_{k = 0..2*n-1} (-1)^(n+k)*binomial(2*n - 1,k)*binomial(2*n,k) for n >= 1.
a(n) = 2*Sum_{k = 0..n-1} binomial(n - 1,k)*binomial(n,k) for n >= 1.
a(n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(x + k,n)*binomial(y + k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(x - k,n)*binomial(y - k,n) for arbitrary x and y.
For m = 3,4,5,... both Sum_{k = 0..m*n} (-1)^k*binomial(m*n,k)*binomial(x + k,n)*binomial(y + k,n) and Sum_{k = 0..m*n} (-1)^k*binomial(m*n,k)*binomial(x - k,n)*binomial(y - k,n) appear to equal Kronecker's delta(n,0).
a(n) = (-1)^n*Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(x + k,n)*binomial(y - k,n) for arbitrary x and y.
For m = 3,4,5,... Sum_{k = 0..m*n} (-1)^k*binomial(m*n,k)*binomial(x + k,n)*binomial(y - k,n) appears to equal Kronecker's delta(n,0).
a(n) = Sum_{k = 0..2n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)^2 = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)* binomial(n + k,n)^2. (Gould, Vol. 7, 5.23).
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n,n + k)*binomial(n + k,n)^2. (End)
From Ralf Steiner, Apr 07 2017: (Start)
Sum_{k>=0} a(k)/(p/q)^k = sqrt(p/(p-4q)) for q in N, p in Z/{-4q< (some p) <-2}.
...
Sum_{k>=0} a(k)/(-4)^k = 1/sqrt(2).
Sum_{k>=0} a(k)/(17/4)^k = sqrt(17).
Sum_{k>=0} a(k)/(18/4)^k = 3.
Sum_{k>=0} a(k)/5^k = sqrt(5).
Sum_{k>=0} a(k)/6^k = sqrt(3).
Sum_{k>=0} a(k)/8^k = sqrt(2).
...
Sum_{k>=0} a(k)/(p/q)^k = sqrt(p/(p-4q)) for p>4q.(End)
Boas-Buck recurrence: a(n) = (2/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n, 0). See a comment there. - Wolfdieter Lang, Aug 10 2017
a(n) = Sum_{k = 0..n} (-1)^(n-k) * binomial(2*n+1, k) for n in N. - Rene Adad, Sep 30 2017
a(n) = A034870(n,n). - Franck Maminirina Ramaharo, Nov 26 2018
From Jianing Song, Apr 10 2022: (Start)
G.f. for {1/a(n)}: 4*(sqrt(4-x) + sqrt(x)*arcsin(sqrt(x)/2)) / (4-x)^(3/2).
E.g.f. for {1/a(n)}: 1 + exp(x/4)*sqrt(Pi*x)*erf(sqrt(x)/2)/2.
Sum_{n>=0} (-1)^n/a(n) = 4*(1/5 - arcsinh(1/2)/(5*sqrt(5))). (End)
From Peter Luschny, Sep 08 2022: (Start)
a(n) = 2^(2*n)*Product_{k=1..2*n} k^((-1)^(k+1)) = A056040(2*n).
a(n) = A001316(n) * A356637(n) * A261130(n) for n >= 2. (End)
a(n) = 4^n*binomial(n-1/2,-1/2) = 4^n*GegenbauerC(n,1/4,1). - Gerry Martens, Oct 19 2022
Occurs on the right-hand side of the binomial sum identities Sum_{k = -n..n} (-1)^k * (n + x - k) * binomial(2*n, n+k)^2 = (x + n)*a(n) and Sum_{k = -n..n} (-1)^k * (n + x - k)^2 * binomial(2*n, n+k)^3 = x*(x + 2*n)*a(n) (x arbitrary). Compare with the identity: Sum_{k = -n..n} (-1)^k * binomial(2*n, n+k)^2 = a(n). - Peter Bala, Jul 31 2023
From Peter Bala, Mar 31 2024: (Start)
4^n*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
16^n = Sum_{k = 0..2*n} a(k)*a(2*n-k). (End)
From Gary Detlefs, May 28 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2k)*binomial(2*k,k)*2^(n-2*k). (H. W. Gould) - Gary Detlefs, May 28 2024
a(n) = Sum_{k=0..2*n} (-1)^k*binomial(2n,k)*binomial(2*n+2*k,n+k)*3^(2*n-k). (H. W. Gould) (End)
a(n) = Product_{k>=n+1} k^2/(k^2 - n^2). - Antonio Graciá Llorente, Sep 08 2024
EXAMPLE
G.f.: 1 + 2*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 + 924*x^6 + ...
For n=2, a(2) = 4!/(2!)^2 = 24/4 = 6, and this is the middle coefficient of the binomial expansion (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4. - Michael B. Porter, Jul 06 2016
MAPLE
A000984 := n-> binomial(2*n, n); seq(A000984(n), n=0..30);
with(combstruct); [seq(count([S, {S=Prod(Set(Z, card=i), Set(Z, card=i))}, labeled], size=(2*i)), i=0..20)];
with(combstruct); [seq(count([S, {S=Sequence(Union(Arch, Arch)), Arch=Prod(Epsilon, Sequence(Arch), Z)}, unlabeled], size=i), i=0..25)];
with(combstruct):bin := {B=Union(Z, Prod(B, B))}: seq (count([B, bin, unlabeled], size=n)*n, n=1..25); # Zerinvary Lajos, Dec 05 2007
A000984List := proc(m) local A, P, n; A := [1, 2]; P := [1];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), 2*P[-1]]);
A := [op(A), 2*P[-1]] od; A end: A000984List(28); # Peter Luschny, Mar 24 2022
MATHEMATICA
Table[Binomial[2n, n], {n, 0, 24}] (* Alonso del Arte, Nov 10 2005 *)
CoefficientList[Series[1/Sqrt[1-4x], {x, 0, 25}], x] (* Harvey P. Dale, Mar 14 2011 *)
PROG
(Magma) a:= func< n | Binomial(2*n, n) >; [ a(n) : n in [0..10]];
(PARI) A000984(n)=binomial(2*n, n) \\ much more efficient than (2n)!/n!^2. \\ M. F. Hasler, Feb 26 2014
(PARI) fv(n, p)=my(s); while(n\=p, s+=n); s
a(n)=prodeuler(p=2, 2*n, p^(fv(2*n, p)-2*fv(n, p))) \\ Charles R Greathouse IV, Aug 21 2013
(PARI) fv(n, p)=my(s); while(n\=p, s+=n); s
a(n)=my(s=1); forprime(p=2, 2*n, s*=p^(fv(2*n, p)-2*fv(n, p))); s \\ Charles R Greathouse IV, Aug 21 2013
(Haskell)
a000984 n = a007318_row (2*n) !! n -- Reinhard Zumkeller, Nov 09 2011
(Maxima) A000984(n):=(2*n)!/(n!)^2$ makelist(A000984(n), n, 0, 30); /* Martin Ettl, Oct 22 2012 */
(Python)
from __future__ import division
A000984_list, b = [1], 1
for n in range(10**3):
b = b*(4*n+2)//(n+1)
A000984_list.append(b) # Chai Wah Wu, Mar 04 2016
(GAP) List([1..1000], n -> Binomial(2*n, n)); # Muniru A Asiru, Jan 30 2018
CROSSREFS
Cf. A000108, A002420, A002457, A030662, A002144, A135091, A081696, A182400. Differs from A071976 at 10th term.
Bisection of A001405 and of A226302. See also A025565, the same ordered partitions but without all in which are two successive zeros: 11110 (5), 11200 (18), 13000 (2), 40000 (0) and 22000 (1), total 26 and A025565(4)=26.
Cf. A226078, A051924 (first differences).
Cf. A258290 (arithmetic derivative). Cf. A098616, A214377.
See A261009 for a conjecture about this sequence.
Cf. A046521 (first column).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
KEYWORD
nonn,easy,core,nice,walk,frac,changed
STATUS
approved
The Franel number a(n) = Sum_{k = 0..n} binomial(n,k)^3.
(Formerly M1971 N0781)
+10
137
1, 2, 10, 56, 346, 2252, 15184, 104960, 739162, 5280932, 38165260, 278415920, 2046924400, 15148345760, 112738423360, 843126957056, 6332299624282, 47737325577620, 361077477684436, 2739270870994736, 20836827035351596, 158883473753259752, 1214171997616258240
OFFSET
0,2
COMMENTS
Cusick gives a general method of deriving recurrences for the r-th order Franel numbers (this is the sequence of third-order Franel numbers), with floor((r+3)/2) terms.
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
An identity of V. Strehl states that a(n) = Sum_{k = 0..n} C(n,k)^2 * binomial(2*k,n). Zhi-Wei Sun conjectured that for every n = 2,3,... the polynomial f_n(x) = Sum_{k = 0..n} binomial(n,k)^2 * binomial(2*k,n) * x^(n-k) is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
Conjecture: a(n) == 2 (mod n^3) iff n is prime. - Gary Detlefs, Mar 22 2013
a(p) == 2 (mod p^3) for any prime p since p | C(p,k) for all k = 1,...,p-1. - Zhi-Wei Sun, Aug 14 2013
a(n) is the maximal number of totally mixed Nash equilibria in games of 3 players, each with n+1 pure options. - Raimundas Vidunas, Jan 22 2014
This is one of the Apéry-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Diagonal of rational functions 1/(1 - x*y - y*z - x*z - 2*x*y*z), 1/(1 - x - y - z + 4*x*y*z), 1/(1 + y + z + x*y + y*z + x*z + 2*x*y*z), 1/(1 + x + y + z + 2*(x*y + y*z + x*z) + 4*x*y*z). - Gheorghe Coserea, Jul 04 2018
a(n) is the constant term in the expansion of ((1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 27 2019
Diagonal of rational function 1 / ((1-x)*(1-y)*(1-z) - x*y*z). - Seiichi Manyama, Jul 11 2020
Named after the Swiss mathematician Jérôme Franel (1859-1939). - Amiram Eldar, Jun 15 2021
It appears that a(n) is equal to the coefficient of (x*y*z)^n in the expansion of (1 + x + y - z)^n * (1 + x - y + z)^n * (1 - x + y + z)^n. Cf. A036917. - Peter Bala, Sep 20 2021
REFERENCES
Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
Jérôme Franel, On a question of Laisant, Intermédiaire des Mathématiciens, vol 1 1894 pp 45-47
H. W. Gould, Combinatorial Identities, Morgantown, 1972, (X.14), p. 56.
Murray Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 148-149.
John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..1000 (terms 0..100 from T. D. Noe)
Boris Adamczewski, Jason P. Bell, and Eric Delaygue, Algebraic independence of G-functions and congruences à la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
Prarit Agarwal and June Nahmgoong, Singlets in the tensor product of an arbitrary number of Adjoint representations of SU(3), arXiv:2001.10826 [math.RT], 2020.
Richard Askey, Orthogonal Polynomials and Special Functions, SIAM, 1975; see p. 43.
P. Barrucand, A combinatorial identity, Problem 75-4, SIAM Rev., Vol. 17 (1975), p. 168. Solution by D. R. Breach, D. McCarthy, D. Monk and P. E. O'Neil, SIAM Rev., Vol. 18 (1976), p. 303.
P. Barrucand, Problem 75-4, A Combinatorial Identity, SIAM Rev., 17 (1975), 168. [Annotated scanned copy of statement of problem]
Arnaud Beauville, Les familles stables de courbes sur P_1 admettant quatre fibres singulières, Comptes Rendus, Académie Sciences Paris, Vol.. 294 (May 24 1982), pp. 657-660.
David Callan, A combinatorial interpretation for an identity of Barrucand, JIS, Vol. 11 (2008), Article 08.3.4.
Marc Chamberland and Armin Straub, Apéry Limits: Experiments and Proofs, arXiv:2011.03400 [math.NT], 2020.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023.
M. Coster, Email, Nov 1990
T. W. Cusick, Recurrences for sums of powers of binomial coefficients, J. Combin. Theory, Series A, Vol. 52, No. 1 (1989), pp. 77-83.
Eric Delaygue, Arithmetic properties of Apéry-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013.
Robert W. Donley Jr, Directed path enumeration for semi-magic squares of size three, arXiv:2107.09463 [math.CO], 2021.
Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math., Vol. 308, No. 11 (2008), pp. 2182--2212. MR2404544 (2009j:05019) - From N. J. A. Sloane, May 01 2012
Carsten Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., VOl. 43, No. 1 (2005), pp. 31-45.
Jeff D. Farmer and Steven C. Leth, An asymptotic formula for powers of binomial coefficients, Math. Gaz., Vol. 89, No. 516 (2005), pp. 385-391.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See A p. 2.
Darij Grinberg, Introduction to Modern Algebra (UMN Spring 2019 Math 4281 Notes), University of Minnesota (2019).
S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
Bradley Klee, Checking Weierstrass data, 2023.
Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 282.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, Vol. 2, No. 5 (2016).
Guo-Shuai Mao and Yan Liu, On a congruence conjecture of Z.-W. Sun involving Franel numbers, arXiv:2111.08775 [math.NT], 2021.
Guo-Shuai Mao, On three conjectural congruences involving Domb numbers and Franel numbers, preprint on ResearchGate, April 2024.
Romeo Meštrović, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
Marci A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory, Vo. 27 (1987), pp. 304-309.
Juan Pla, Problem H-505, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 33, No. 5 (1995), p. 473; Sum Formulae!, Solution to Problem H-505 by Paul S. Bruckman, ibid., Vol. 35, No. 1 (1997), pp. 93-95.
Armin Straub, and Wadim Zudilin, Sums of powers of binomials, their Apéry limits, and Franel's suspicions, arXiv:2112.09576 [math.NT], 2021.
Volker Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
Zhi-Wei Sun, Congruences for Franel numbers, arXiv preprint arXiv:1112.1034 [math.NT], 2011.
Zhi-Wei Sun, Connections between p = x^2+3y^2 and Franel numbers, J. Number Theory, Vol. 133 (2013), pp. 2919-2928.
Zhi-Wei Sun, Conjectures involving arithmetical sequences, arXiv:1208.2683v9 [math.CO] 2013; Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H. Li and J. Liu), Proc. the 6th China-Japan Sem. (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258.
Zhi-Wei Sun, Congruences involving g_n(x) = Sum_{k= 0..n} C(n,k)^2 C(2k,k) x^k, arXiv preprint arXiv:1407.0967 [math.NT], 2014.
Raimundas Vidunas, MacMahon's master theorem and totally mixed Nash equilibria, arxiv 1401.5400 [math.CO], 2014.
Eric Weisstein's World of Mathematics, Binomial Sums.
Eric Weisstein's World of Mathematics, Franel Number.
Eric Weisstein's World of Mathematics, Schmidt's Problem.
Jin Yuan, Zhi-Juan Lu, Asmus L. Schmidt, On recurrences for sums of powers of binomial coefficients, J. Numb. Theory 128 (2008) 2784-2794
Don Zagier, Integral solutions of Apéry-like recurrence equations. See line A in sporadic solutions table of page 5.
Bao-Xuan Zhu, Higher order log-monotonicity of combinatorial sequences, arXiv preprint arXiv:1309.6025 [math.CO], 2013.
FORMULA
A002893(n) = Sum_{m = 0..n} binomial(n, m)*a(m) [Barrucand].
Sum_{k = 0..n} C(n, k)^3 = (-1)^n*Integral_{x = 0..infinity} L_k(x)^3 exp(-x) dx. - from Askey's book, p. 43
D-finite with recurrence (n + 1)^2*a(n+1) = (7*n^2 + 7*n + 2)*a(n) + 8*n^2*a(n-1) [Franel]. - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jan 31 2001
a(n) ~ 2*3^(-1/2)*Pi^-1*n^-1*2^(3*n). - Joe Keane (jgk(AT)jgk.org), Jun 21 2002
O.g.f.: A(x) = Sum_{n >= 0} (3*n)!/n!^3 * x^(2*n)/(1 - 2*x)^(3*n+1). - Paul D. Hanna, Oct 30 2010
G.f.: hypergeom([1/3, 2/3], [1], 27 x^2 / (1 - 2x)^3) / (1 - 2x). - Michael Somos, Dec 17 2010
G.f.: Sum_{n >= 0} a(n)*x^n/n!^3 = [ Sum_{n >= 0} x^n/n!^3 ]^2. - Paul D. Hanna, Jan 19 2011
G.f.: A(x) = 1/(1-2*x)*(1+6*(x^2)/(G(0)-6*x^2)),
with G(k) = 3*(x^2)*(3*k+1)*(3*k+2) + ((1-2*x)^3)*((k+1)^2) - 3*(x^2)*((1-2*x)^3)*((k+1)^2)*(3*k+4)*(3*k+5)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 03 2011
In 2011 Zhi-Wei Sun found the formula Sum_{k = 0..n} C(2*k,n)*C(2*k,k)*C(2*(n-k),n-k) = (2^n)*a(n) and proved it via the Zeilberger algorithm. - Zhi-Wei Sun, Mar 20 2013
0 = a(n)*(a(n+1)*(-2048*a(n+2) - 3392*a(n+3) + 768*a(n+4)) + a(n+2)*(-1280*a(n+2) - 2912*a(n+3) + 744*a(n+4)) + a(n+3)*(+288*a(n+3) - 96*a(n+4))) + a(n+1)*(a(n+1)*(-704*a(n+2) - 1232*a(n+3) + 288*a(n+4)) + a(n+2)*(-560*a(n+2) - 1372*a(n+3) + 364*a(n+4)) + a(n+3)*(+154*a(n+3) - 53*a(n+4))) + a(n+2)*(a(n+2)*(+24*a(n+2) + 70*a(n+3) - 20*a(n+4)) + a(n+3)*(-11*a(n+3) + 4*a(n+4))) for all n in Z. - Michael Somos, Jul 16 2014
For r a nonnegative integer, Sum_{k = r..n} C(k,r)^3*C(n,k)^3 = C(n,r)^3*a(n-r), where we take a(n) = 0 for n < 0. - Peter Bala, Jul 27 2016
a(n) = (n!)^3 * [x^n] hypergeom([], [1, 1], x)^2. - Peter Luschny, May 31 2017
From Gheorghe Coserea, Jul 04 2018: (Start)
a(n) = Sum_{k=0..floor(n/2)} (n+k)!/(k!^3*(n-2*k)!) * 2^(n-2*k).
G.f. y=A(x) satisfies: 0 = x*(x + 1)*(8*x - 1)*y'' + (24*x^2 + 14*x - 1)*y' + 2*(4*x + 1)*y. (End)
a(n) = [x^n] (1 - x^2)^n*P(n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial. See Gould, p. 56. - Peter Bala, Mar 24 2022
a(n) = (2^n/(4*Pi^2)) * Integral_{x,y=0..2*Pi} (1+cos(x)+cos(y)+cos(x+y))^n dx dy = (8^n/(Pi^2)) * Integral_{x,y=0..Pi} (cos(x)*cos(y)*cos(x+y))^n dx dy (Pla, 1995). - Amiram Eldar, Jul 16 2022
a(n) = Sum_{k = 0..n} m^(n-k)*binomial(n,k)*binomial(n+2*k,n)*binomial(2*k,k) at m = -4. Cf. A081798 (m = 1), A006480 (m = 0), A124435 (m = -1), A318109 (m = -2) and A318108 (m = -3). - Peter Bala, Mar 16 2023
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=2*(1 + 4*x)*T(x) + (-1 + 14*x + 24*x^2)*T'(x) + x*(1 + x)*(-1 + 8*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = (4/243)*(1 - 8*x + 240*x^2 - 464*x^3 + 16*x^4);
g3 = -(8/19683)*(1 - 12*x - 480*x^2 + 3080*x^3 - 12072*x^4 + 4128*x^5 +
64*x^6);
which determine an elliptic surface with four singular fibers. (End)
From Peter Bala, Oct 31 2024: (Start)
For n >= 1, a(n) = 2 * Sum_{k = 0..n-1} binomial(n, k)^2 * binomial(n-1, k). Cf. A361716.
For n >= 1, a(n) = 2 * hypergeom([-n, -n, -n + 1], [1, 1], -1). (End)
EXAMPLE
O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 56*x^3 + 346*x^4 + 2252*x^5 + ...
O.g.f.: A(x) = 1/(1-2*x) + 3!*x^2/(1-2*x)^4 + (6!/2!^3)*x^4/(1-2*x)^7 + (9!/3!^3)*x^6/(1-2*x)^10 + (12!/4!^3)*x^8/(1-2*x)^13 + ... - Paul D. Hanna, Oct 30 2010
Let g.f. A(x) = Sum_{n >= 0} a(n)*x^n/n!^3, then
A(x) = 1 + 2*x + 10*x^2/2!^3 + 56*x^3/3!^3 + 346*x^4/4!^3 + ... where
A(x) = [1 + x + x^2/2!^3 + x^3/3!^3 + x^4/4!^3 + ...]^2. - Paul D. Hanna
MAPLE
A000172 := proc(n)
add(binomial(n, k)^3, k=0..n) ;
end proc:
seq(A000172(n), n=0..10) ; # R. J. Mathar, Jul 26 2014
A000172_list := proc(len) series(hypergeom([], [1, 1], x)^2, x, len);
seq((n!)^3*coeff(%, x, n), n=0..len-1) end:
A000172_list(21); # Peter Luschny, May 31 2017
MATHEMATICA
Table[Sum[Binomial[n, k]^3, {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Aug 24 2011 *)
Table[ HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -1], {n, 0, 20}] (* Jean-François Alcover, Jul 16 2012, after symbolic sum *)
a[n_] := Sum[ Binomial[2k, n]*Binomial[2k, k]*Binomial[2(n-k), n-k], {k, 0, n}]/2^n; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 20 2013, after Zhi-Wei Sun *)
a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/3, 2/3, 1, 27 x^2 / (1 - 2 x)^3] / (1 - 2 x), {x, 0, n}]; (* Michael Somos, Jul 16 2014 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (3*m)!/m!^3*x^(2*m)/(1-2*x+x*O(x^n))^(3*m+1)), n)} \\ Paul D. Hanna, Oct 30 2010
(PARI) {a(n)=n!^3*polcoeff(sum(m=0, n, x^m/m!^3+x*O(x^n))^2, n)} \\ Paul D. Hanna, Jan 19 2011
(Haskell)
a000172 = sum . map a000578 . a007318_row
-- Reinhard Zumkeller, Jan 06 2013
(Sage)
def A000172():
x, y, n = 1, 2, 1
while True:
yield x
n += 1
x, y = y, (8*(n-1)^2*x + (7*n^2-7*n + 2)*y) // n^2
a = A000172()
[next(a) for i in range(21)] # Peter Luschny, Oct 12 2013
(PARI) A000172(n)={sum(k=0, (n-1)\2, binomial(n, k)^3)*2+if(!bittest(n, 0), binomial(n, n\2)^3)} \\ M. F. Hasler, Sep 21 2015
CROSSREFS
Cf. A002893, A052144, A005260, A096191, A033581, A189791. Second row of array A094424.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
Column k=3 of A372307.
KEYWORD
nonn,easy,nice
STATUS
approved
Apery (Apéry) numbers: Sum_{k=0..n} (binomial(n,k)*binomial(n+k,k))^2.
(Formerly M4020)
+10
133
1, 5, 73, 1445, 33001, 819005, 21460825, 584307365, 16367912425, 468690849005, 13657436403073, 403676083788125, 12073365010564729, 364713572395983725, 11111571997143198073, 341034504521827105445, 10534522198396293262825, 327259338516161442321485
OFFSET
0,2
COMMENTS
Conjecture: For each n = 1,2,3,... the Apéry polynomial A_n(x) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
The expansions of exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 5*x + 49*x^2 + 685*x^3 + 11807*x^4 + 232771*x^5 + ... and exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + 3*x + 27*x^2 + 390*x^3 + 7038*x^4 + 144550*x^5 + ... both appear to have integer coefficients. See A267220. - Peter Bala, Jan 12 2016
Diagonal of the rational function R(x, y, z, w) = 1 / (1 - (w*x*y*z + w*x*y + w*z + x*y + x*z + y + z)); also diagonal of rational function H(x, y, z, w) = 1/(1 - w*(1+x)*(1+y)*(1+z)*(x*y*z + y*z + y + z + 1)). - Gheorghe Coserea, Jun 26 2018
Named after the French mathematician Roger Apéry (1916-1994). - Amiram Eldar, Jun 10 2021
REFERENCES
Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 137-153.
Wolfram Koepf, Hypergeometric Identities. Ch. 2 in Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 55, 119 and 146, 1998.
Maxim Kontsevich and Don Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
Leonard Lipshitz and Alfred van der Poorten, "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990), pp. 339-358.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..656 (first 101 terms from T. D. Noe)
Boris Adamczewski, Jason P. Bell and Eric Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
Jean-Paul Allouche, A remark on Apéry's numbers, J. Comput. Appl. Math., Vol. 83 (1997), pp. 123-125.
Roger Apéry, Irrationalité de zeta(2) et zeta(3), in Journées Arith. de Luminy. Colloque International du Centre National de la Recherche Scientifique (CNRS) held at the Centre Universitaire de Luminy, Luminy, Jun 20-24, 1978. Astérisque, Vol. 61 (1979), pp. 11-13.
Roger Apéry, Sur certaines séries entières arithmétiques, Groupe de travail d'analyse ultramétrique, Vol. 9, No. 1 (1981-1982), Exp. No. 16, 2 p.
Roger Apéry, Interpolation de fractions continues et irrationalité de certaines constantes, Bulletin de la section des sciences du C.T.H.S III (1981), pp. 37-53.
Thomas Baruchel and Carsten Elsner, On error sums formed by rational approximations with split denominators, arXiv preprint arXiv:1602.06445 [math.NT], 2016.
Frits Beukers, Another congruence for the Apéry numbers, J. Number Theory, Vol. 25, No. 2 (1987), pp. 201-210.
Frits Beukers, Consequences of Apéry's work on zeta(3), in "Zeta(3) irrationnel: les retombées", Rencontres Arithmétiques de Caen, June 2-3, 1995 [Mentions divisibility of a(n) by powers of 5 and powers of 11]
Francis Brown, Irrationality proofs for zeta values, moduli spaces and dinner parties, arXiv:1412.6508 [math.NT], 2014.
William Y. C. Chen, Qing-Hu Hou and Yan-Ping Mu, A telescoping method for double summations, J. Comp. Appl. Math., Vol. 196, No. 2 (2006), pp. 553-566, Example 4.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023. See Table 2 p. 7.
M. Coster, Email, Nov 1990
Eric Delaygue, Arithmetic properties of Apéry-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013.
Emeric Deutsch and Bruce E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004.
Emeric Deutsch and Bruce E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
Gerald A. Edgar, A formula with Legendre polynomials, Sci. Math. Research posting Mar 21 2005.
G. A. Edgar, The Apéry Numbers as a Stieltjes Moment Sequence, arXiv:2005.10733 [math.CA], 2020.
Carsten Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., Vol. 43, No. 1 (2005), pp. 31-45.
Stéphane Fischler, Irrationalité de valeurs de zeta, arXiv:math/0303066 [math.NT], 2003.
Scott Garrabrant and Igor Pak, Counting with irrational tiles, arXiv:1407.8222 [math.CO], 2014.
Ira Gessel, Some congruences for Apéry numbers, Journal of Number Theory, Vol. 14, No. 3 (1982) 362-368.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See gamma p. 3.
Leonard Lipshitz and Alfred J. van der Poorten, Rational functions, diagonals, automata and arithmetic, in: Richard A. Mollin (ed.), Number theory, Proceedings of the First Conference of the Canadian Number Theory Association Held at the Banff Center, Banff, Alberta, April 17-27, 1988, de Gruyter, 2016, pp. 339-358; alternative link; Wayback Machine copy.
Ji-Cai Liu, Supercongruences for the (p-1)th Apéry number, arXiv:1803.11442 [math.NT], 2018.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, Vol. 2 (2016), Article 5.
Stephen Melczer and Bruno Salvy, Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables, arXiv:1605.00402 [cs.SC], 2016.
Romeo Meštrović, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
Robert Osburn and Brundaban Sahu, A supercongruence for generalized Domb numbers, Funct. Approx. Comment. Math., Vol. 48, No. 1 (2013), pp. 29-36; alternative link.
Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, Journal de théorie des nombres de Bordeaux, Vol. 27, No. 1 (2015), pp. 245-288; arXiv preprint, arXiv:1310.8635 [math.NT], 2013-2014.
Eric Rowland, Reem Yassawi and Christian Krattenthaler, Lucas congruences for the Apéry numbers modulo p^2, arXiv:2005.04801 [math.NT], 2020.
Andrew Strangeway, A Reconstruction Theorem for Quantum Cohomology of Fano Bundles on Projective Space, arXiv preprint arXiv:1302.5089 [math.AG], 2013.
Andrew Strangeway, Quantum reconstruction for Fano bundles on projective space, Nagoya Math. J., Vol. 218 (2015), pp. 1-28.
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
Volker Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
Volker Strehl, Binomial identities -- combinatorial and algorithmic aspects, Discrete Mathematics, Vol. 136 (1994), 309-346.
Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
Zhi-Wei Sun, Congruences for Franel numbers, arXiv preprint arXiv:1112.1034 [math.NT], 2011.
Zhi-Wei Sun, On sums of Apéry polynomials and related congruences, J. Number Theory 132(2012), 2673-2699. [Zhi-Wei Sun, Mar 21 2013]
Zhi-Wei Sun. Sun, On sums of Apéry polynomials and related congruences, arXiv:1101.1946 [math.NT], 2011-2014. [Zhi-Wei Sun, Mar 21 2013]
Alfred van der Poorten, A proof that Euler missed ..., Math. Intelligencer, Vol. 1, No. 4 (December 1979), pp. 196-203, (b_n) after eq. (1.2), and Exercise 3.
Chen Wang, Two congruences concerning Apéry numbers, arXiv:1909.08983 [math.NT], 2019.
Eric Weisstein's World of Mathematics, Apéry Number.
Eric Weisstein's World of Mathematics, Strehl Identities.
Eric Weisstein's World of Mathematics, Schmidt's Problem.
Ernest X. W. Xia and Olivia X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, Vol. 20 (2013), #P3.
FORMULA
D-finite with recurrence (n+1)^3*a(n+1) = (34*n^3 + 51*n^2 + 27*n + 5)*a(n) - n^3*a(n-1), n >= 1.
Representation as a special value of the hypergeometric function 4F3, in Maple notation: a(n)=hypergeom([n+1, n+1, -n, -n], [1, 1, 1], 1), n=0, 1, ... - Karol A. Penson Jul 24 2002
a(n) = Sum_{k >= 0} A063007(n, k)*A000172(k). A000172 = Franel numbers. - Philippe Deléham, Aug 14 2003
G.f.: (-1/2)*(3*x - 3 + (x^2-34*x+1)^(1/2))*(x+1)^(-2)*hypergeom([1/3,2/3],[1],(-1/2)*(x^2 - 7*x + 1)*(x+1)^(-3)*(x^2 - 34*x + 1)^(1/2)+(1/2)*(x^3 + 30*x^2 - 24*x + 1)*(x+1)^(-3))^2. - Mark van Hoeij, Oct 29 2011
Let g(x, y) = 4*cos(2*x) + 8*sin(y)*cos(x) + 5 and let P(n,z) denote the Legendre polynomial of degree n. Then G. A. Edgar posted a conjecture of Alexandru Lupas that a(n) equals the double integral 1/(4*Pi^2)*int {y = -Pi..Pi} int {x = -Pi..Pi} P(n,g(x,y)) dx dy. (Added Jan 07 2015: Answered affirmatively in Math Overflow question 178790) - Peter Bala, Mar 04 2012; edited by G. A. Edgar, Dec 10 2016
a(n) ~ (1+sqrt(2))^(4*n+2)/(2^(9/4)*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Nov 01 2012
a(n) = Sum_{k=0..n} C(n,k)^2 * C(n+k,k)^2. - Joerg Arndt, May 11 2013
0 = (-x^2+34*x^3-x^4)*y''' + (-3*x+153*x^2-6*x^3)*y'' + (-1+112*x-7*x^2)*y' + (5-x)*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
From Peter Bala, Jan 18 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j) * C(n,k)^2 * C(n+k,k)^2 * C(n,j) * C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} C(n,k) * C(n+k,k) * C(k,j)^3 (see Koepf, p. 55).
a(n) = Sum_{0 <= j, k <= n} C(n,k)^2 * C(n,j)^2 * C(3*n-j-k,2*n) (see Koepf, p. 119).
Diagonal coefficients of the rational function 1/((1 - x - y)*(1 - z - t) - x*y*z*t) (Straub, 2014). (End)
a(n) = [x^n] 1/(1 - x)*( Legendre_P(n,(1 + x)/(1 - x)) )^m at m = 2. At m = 1 we get the Apéry numbers A005258. - Peter Bala, Dec 22 2020
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, k). - Peter Bala, Jul 18 2024
EXAMPLE
G.f. = 1 + 5*x + 73*x^2 + 1445*x^3 + 33001*x^4 + 819005*x^5 + 21460825*x^6 + ...
a(2) = (binomial(2,0) * binomial(2+0,0))^2 + (binomial(2,1) * binomial(2+1,1))^2 + (binomial(2,2) * binomial(2+2,2))^2 = (1*1)^2 + (2*3)^2 + (1*6)^2 = 1 + 36 + 36 = 73. - Michael B. Porter, Jul 14 2016
MAPLE
a := proc(n) option remember; if n=0 then 1 elif n=1 then 5 else (n^(-3))* ( (34*(n-1)^3 + 51*(n-1)^2 + 27*(n-1) +5)*a((n-1)) - (n-1)^3*a((n-1)-1)); fi; end;
# Alternative:
a := n -> hypergeom([-n, -n, 1+n, 1+n], [1, 1, 1], 1):
seq(simplify(a(n)), n=0..17); # Peter Luschny, Jan 19 2020
MATHEMATICA
Table[HypergeometricPFQ[{-n, -n, n+1, n+1}, {1, 1, 1}, 1], {n, 0, 13}] (* Jean-François Alcover, Apr 01 2011 *)
Table[Sum[(Binomial[n, k]Binomial[n+k, k])^2, {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Oct 15 2011 *)
a[ n_] := SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ 1 / (1 - t (1 + x ) (1 + y ) (1 + z ) (x y z + (y + 1) (z + 1))), {t, 0, n}], {x, 0, n}], {y, 0, n}], {z, 0, n}]; (* Michael Somos, May 14 2016 *)
PROG
(PARI) a(n)=sum(k=0, n, (binomial(n, k)*binomial(n+k, k))^2) \\ Charles R Greathouse IV, Nov 20 2012
(Haskell)
a005259 n = a005259_list !! n
a005259_list = 1 : 5 : zipWith div (zipWith (-)
(tail $ zipWith (*) a006221_list a005259_list)
(zipWith (*) (tail a000578_list) a005259_list)) (drop 2 a000578_list)
-- Reinhard Zumkeller, Mar 13 2014
(GAP) List([0..20], n->Sum([0..n], k->Binomial(n, k)^2*Binomial(n+k, k)^2)); # Muniru A Asiru, Sep 28 2018
(Magma) [&+[Binomial(n, k) ^2 *Binomial(n+k, k)^2: k in [0..n]]:n in [0..17]]; // Marius A. Burtea, Jan 20 2020
(Python)
def A005259(n):
m, g = 1, 0
for k in range(n+1):
g += m
m *= ((n+k+1)*(n-k))**2
m //=(k+1)**4
return g # Chai Wah Wu, Oct 02 2022
CROSSREFS
Apéry's number or Apéry's constant zeta(3) is A002117. - N. J. A. Sloane, Jul 11 2023
Related to diagonal of rational functions: A268545-A268555.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Cf. A092826 (prime terms).
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
Apéry numbers: a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k).
(Formerly M3057)
+10
114
1, 3, 19, 147, 1251, 11253, 104959, 1004307, 9793891, 96918753, 970336269, 9807518757, 99912156111, 1024622952993, 10567623342519, 109527728400147, 1140076177397091, 11911997404064793, 124879633548031009, 1313106114867738897, 13844511065506477501
OFFSET
0,2
COMMENTS
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
Equals the main diagonal of square array A108625. - Paul D. Hanna, Jun 14 2005
This sequence is t_5 in Cooper's paper. - Jason Kimberley, Nov 25 2012
Conjecture: For each n=1,2,3,... the polynomial a_n(x) = Sum_{k=0..n} C(n,k)^2*C(n+k,k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
Diagonal of rational functions 1/(1 - x - x*y - y*z - x*z - x*y*z), 1/(1 + y + z + x*y + y*z + x*z + x*y*z), 1/(1 - x - y - z + x*y + x*y*z), 1/(1 - x - y - z + y*z + x*z - x*y*z). - Gheorghe Coserea, Jul 07 2018
REFERENCES
Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
S. Melczer, An Invitation to Analytic Combinatorics, 2021; p. 129.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
R. Apéry, Irrationalité de zeta(2) et zeta(3), in Journées Arith. de Luminy. Colloque International du Centre National de la Recherche Scientifique (CNRS) held at the Centre Universitaire de Luminy, Luminy, Jun 20-24, 1978. Astérisque, 61 (1979), 11-13.
R. Apéry, Sur certaines séries entières arithmétiques, Groupe de travail d'analyse ultramétrique, 9 no. 1 (1981-1982), Exp. No. 16, 2 p.
Thomas Baruchel and C. Elsner, On error sums formed by rational approximations with split denominators, arXiv preprint arXiv:1602.06445 [math.NT], 2016.
Arnaud Beauville, Les familles stables de courbes sur P_1 admettant quatre fibres singulières, Comptes Rendus, Académie Sciences Paris, no. 294, May 24 1982, page 657.
F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), no. 2, 201-210.
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
Francis Brown, Irrationality proofs for zeta values, moduli spaces and dinner parties, arXiv:1412.6508 [math.NT], 2014.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023.
M. Coster, Email, Nov 1990
E. Delaygue, Arithmetic properties of Apéry-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013-2015.
E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory 117 (2006), 191-215.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See D p. 2.
S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
Michael D. Hirschhorn, A Connection Between Pi and Phi, Fibonacci Quart. 53 (2015), no. 1, 42-47.
Lalit Jain and Pavlos Tzermias, Beukers' integrals and Apéry's recurrences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.1.
Bradley Klee, Checking Weierstrass data, 2023.
Ji-Cai Liu, Supercongruences for the (p-1)th Apéry number, arXiv:1803.11442 [math.NT], 2018.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
Peter Paule and Carsten Schneider, Computer proofs of a new family of harmonic number identities, Advances in Applied Mathematics (31), 359-378, (2003).
E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013.
V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
A. van der Poorten, A proof that Euler missed ... Apéry's proof of the irrationality of zeta(3). An informal report. Math. Intelligencer 1 (1978/79), no 4, 195-203.
Eric Weisstein's World of Mathematics, Apéry Number.
D. Zagier, Integral solutions of Apéry-like recurrence equations. See line D in sporadic solutions table of page 5.
W. Zudilin, Approximations to -, di- and tri-logarithms, arXiv:math/0409023 [math.CA], 2004-2005.
FORMULA
a(n) = hypergeom([n+1, -n, -n], [1, 1], 1). - Vladeta Jovovic, Apr 24 2003
D-finite with recurrence: (n+1)^2 * a(n+1) = (11*n^2+11*n+3) * a(n) + n^2 * a(n-1). - Matthijs Coster, Apr 28 2004
Let b(n) be the solution to the above recurrence with b(0) = 0, b(1) = 5. Then the b(n) are rational numbers with b(n)/a(n) -> zeta(2) very rapidly. The identity b(n)*a(n-1) - b(n-1)*a(n) = (-1)^(n-1)*5/n^2 leads to a series acceleration formula: zeta(2) = 5 * Sum_{n >= 1} 1/(n^2*a(n)*a(n-1)) = 5*(1/(1*3) + 1/(2^2*3*19) + 1/(3^2*19*147) + ...). Similar results hold for the constant e: see A143413. - Peter Bala, Aug 14 2008
G.f.: hypergeom([1/12, 5/12],[1], 1728*x^5*(1-11*x-x^2)/(1-12*x+14*x^2+12*x^3+x^4)^3) / (1-12*x+14*x^2+12*x^3+x^4)^(1/4). - Mark van Hoeij, Oct 25 2011
a(n) ~ ((11+5*sqrt(5))/2)^(n+1/2)/(2*Pi*5^(1/4)*n). - Vaclav Kotesovec, Oct 05 2012
1/Pi = 5*(sqrt(47)/7614)*Sum_{n>=0} (-1)^n a(n)*binomial(2n,n)*(682n+71)/15228^n. [Cooper, equation (4)] - Jason Kimberley, Nov 26 2012
a(-1 - n) = (-1)^n * a(n) if n>=0. a(-1 - n) = -(-1)^n * a(n) if n<0. - Michael Somos, Sep 18 2013
0 = a(n)*(a(n+1)*(+4*a(n+2) + 83*a(n+3) - 12*a(n+4)) + a(n+2)*(+32*a(n+2) + 902*a(n+3) - 147*a(n+4)) + a(n+3)*(-56*a(n+3) + 12*a(n+4))) + a(n+1)*(a(n+1)*(+17*a(n+2) + 374*a(n+3) - 56*a(n+4)) + a(n+2)*(+176*a(n+2) + 5324*a(n+3) - 902*a(n+4) + a(n+3)*(-374*a(n+3) + 83*a(n+4))) + a(n+2)*(a(n+2)*(-5*a(n+2) - 176*a(n+3) + 32*a(n+4)) + a(n+3)*(+17*a(n+3) - 4*a(n+4))) for all n in Z. - Michael Somos, Aug 06 2016
a(n) = binomial(2*n, n)*hypergeom([-n, -n, -n],[1, -2*n], 1). - Peter Luschny, Feb 10 2018
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*binomial(n+k,k)^2. - Peter Bala, Feb 10 2018
G.f. y=A(x) satisfies: 0 = x*(x^2 + 11*x - 1)*y'' + (3*x^2 + 22*x - 1)*y' + (x + 3)*y. - Gheorghe Coserea, Jul 01 2018
From Peter Bala, Jan 15 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} (-1)^(j+k)*C(n,k)*C(n+k,k)^2*C(n,j)* C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j)*C(n,k)^2*C(n+k,k)*C(n,j)* C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} (-1)^j*C(n,k)^2*C(n,j)*C(3*n-j-k,2*n). (End)
a(n) = [x^n] 1/(1 - x)*( Legendre_P(n,(1 + x)/(1 - x)) )^m at m = 1. At m = 2 we get the Apéry numbers A005259. - Peter Bala, Dec 22 2020
a(n) = (-1)^n*Sum_{j=0..n} (1 - 5*j*H(j) + 5*j*H(n - j))*binomial(n, j)^5, where H(n) denotes the n-th harmonic number, A001008/A002805. (Paule/Schneider). - Peter Luschny, Jul 23 2021
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=(3 + x)*T(x) + (-1 + 22*x + 3*x^2)*T'(x) + x*(-1 + 11*x + x^2)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(1 - 12*x + 14*x^2 + 12*x^3 + x^4);
g3 = 1 - 18*x + 75*x^2 + 75*x^4 + 18*x^5 + x^6;
which determine an elliptic surface with four singular fibers. (End)
Conjecture: a(n)^2 = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A143007(n, k). - Peter Bala, Jul 08 2024
EXAMPLE
G.f. = 1 + 3*x + 19*x^2 + 147*x^3 + 1251*x^4 + 11253*x^5 + 104959*x^6 + ...
MAPLE
with(combinat): seq(add((multinomial(n+k, n-k, k, k))*binomial(n, k), k=0..n), n=0..18); # Zerinvary Lajos, Oct 18 2006
a := n -> binomial(2*n, n)*hypergeom([-n, -n, -n], [1, -2*n], 1):
seq(simplify(a(n)), n=0..20); # Peter Luschny, Feb 10 2018
MATHEMATICA
a[n_] := HypergeometricPFQ[ {n+1, -n, -n}, {1, 1}, 1]; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 20 2012, after Vladeta Jovovic *)
Table[Sum[Binomial[n, k]^2 Binomial[n+k, k], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Aug 25 2019 *)
PROG
(Haskell)
a005258 n = sum [a007318 n k ^ 2 * a007318 (n + k) k | k <- [0..n]]
-- Reinhard Zumkeller, Jan 04 2013
(PARI) {a(n) = if( n<0, -(-1)^n * a(-1-n), sum(k=0, n, binomial(n, k)^2 * binomial(n+k, k)))} /* Michael Somos, Sep 18 2013 */
(GAP) a:=n->Sum([0..n], k->(-1)^(n-k)*Binomial(n, k)*Binomial(n+k, k)^2);;
A005258:=List([0..20], n->a(n));; # Muniru A Asiru, Feb 11 2018
(GAP) List([0..20], n->Sum([0..n], k->Binomial(n, k)^2*Binomial(n+k, k))); # Muniru A Asiru, Jul 29 2018
(Magma) [&+[Binomial(n, k)^2 * Binomial(n+k, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Nov 28 2018
(Python)
def A005258(n):
m, g = 1, 0
for k in range(n+1):
g += m
m *= (n+k+1)*(n-k)**2
m //= (k+1)**3
return g # Chai Wah Wu, Oct 02 2022
CROSSREFS
Cf. A007318.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
KEYWORD
nonn,easy,nice
STATUS
approved
a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(2*k,k).
(Formerly M2998 N1214)
+10
89
1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, 17319837, 140668065, 1153462995, 9533639025, 79326566595, 663835030335, 5582724468093, 47152425626559, 399769750195965, 3400775573443089, 29016970072920387, 248256043372999089
OFFSET
0,2
COMMENTS
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
a(n) is the 2n-th moment of the distance from the origin of a 3-step random walk in the plane. - Peter M. W. Gill (peter.gill(AT)nott.ac.uk), Feb 27 2004
a(n) is the number of Abelian squares of length 2n over a 3-letter alphabet. - Jeffrey Shallit, Aug 17 2010
Consider 2D simple random walk on honeycomb lattice. a(n) gives number of paths of length 2n ending at origin. - Sergey Perepechko, Feb 16 2011
Row sums of A318397 the square of A008459. - Peter Bala, Mar 05 2013
Conjecture: For each n=1,2,3,... the polynomial g_n(x) = Sum_{k=0..n} binomial(n,k)^2*binomial(2k,k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
a(n) is the sum of the squares of the coefficients of (x + y + z)^n. - Michael Somos, Aug 25 2018
a(n) is the constant term in the expansion of (1 + (1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 28 2019
REFERENCES
Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1051 (terms 0..100 from T. D. Noe)
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences à la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
P. Barrucand, A combinatorial identity, Problem 75-4, SIAM Rev., 17 (1975), 168. Solution by D. R. Breach, D. McCarthy, D. Monk and P. E. O'Neil, SIAM Rev. 18 (1976), 303.
P. Barrucand, Problem 75-4, A Combinatorial Identity, SIAM Rev., 17 (1975), 168. [Annotated scanned copy of statement of problem]
Arnaud Beauville, Les familles stables de courbes sur P_1 admettant quatre fibres singulières, Comptes Rendus, Académie Sciences Paris, no. 294, May 24 1982.
Frits Beukers and Jan Stienstra, On the Picard-Fuchs Equation and the Formal Brauer Group of Certain Elliptic K3-Surfaces, Mathematische Annalen (1985), Vol. 271, pp. 269-304 (see Part III).
Artur Bille, Victor Buchstaber, Simon Coste, Satoshi Kuriki, and Evgeny Spodarev, Random eigenvalues of graphenes and the triangulation of plane, arXiv:2306.01462 [math.SP], 2023.
Jonathan M. Borwein, A short walk can be beautiful, 2015.
Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, 2010.
Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine integrals.
Jonathan M. Borwein, Armin Straub and Christophe Vignat, Densities of short uniform random walks, Part II: Higher dimensions, Preprint, 2015
Jonathan M. Borwein, Armin Straub and James Wan, Three-Step and Four-Step Random Walk Integrals, Exper. Math., 22 (2013), 1-14.
Charles Burnette and Chung Wong, Abelian Squares and Their Progenies, arXiv:1609.05580 [math.CO], 2016.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023.
M. Coster, Email, Nov 1990
Eric Delaygue, Arithmetic properties of Apery-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013.
C. Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361.
Jeffrey S. Geronimo, Hugo J. Woerdeman, and Chung Y. Wong, The autoregressive filter problem for multivariable degree one symmetric polynomials, arXiv:2101.00525 [math.CA], 2021.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See C p. 2.
Victor J. W. Guo, Proof of two conjectures of Z.-W. Sun on congruences for Franel numbers, arXiv preprint arXiv:1201.0617 [math.NT], 2012.
Victor J. W. Guo, Guo-Shuai Mao and Hao Pan, Proof of a conjecture involving Sun polynomials, arXiv preprint arXiv:1511.04005 [math.NT], 2015.
E. Hallouin and M. Perret, A Graph Aided Strategy to Produce Good Recursive Towers over Finite Fields, arXiv preprint arXiv:1503.06591 [math.NT], 2015.
J. A. Hendrickson, Jr., On the enumeration of rectangular (0,1)-matrices, Journal of Statistical Computation and Simulation, 51 (1995), 291-313.
S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
Tanya Khovanova and Konstantin Knop, Coins of three different weights, arXiv:1409.0250 [math.HO], 2014.
Murray S. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 148-149.
Bradley Klee, Checking Weierstrass data, 2023.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5
Mathematics Stack Exchange, sum involving the product of binomial coefficients, Nov 10 2016.
L. B. Richmond and Jeffrey Shallit, Counting abelian squares, Electronic J. Combinatorics 16 (1), #R72, June 2009. [From Jeffrey Shallit, Aug 17 2010]
Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012. - From N. J. A. Sloane, Dec 16 2012
Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
Zhi-Wei Sun, Connections between p = x^2+3y^2 and Franel numbers, J. Number Theory 133(2013), 2919-2928.
Zhi-Wei Sun, Congruences involving g_n(x)=sum_{k=0..n}binom(n,k)^2*binom(2k,k)*x^k, Ramanujan J., in press. Doi: 10.1007/s11139-015-9727-3.
Brani Vidakovic, All roads lead to Rome--even in the honeycomb world, Amer. Statist., 48 (1994) no. 3, 234-236.
Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595 [math.CO], 2013.
D. Zagier, Integral solutions of Apery-like recurrence equations. See line C in sporadic solutions table of page 5.
FORMULA
a(n) = Sum_{m=0..n} binomial(n, m) * A000172(m). [Barrucand]
D-finite with recurrence: (n+1)^2 a(n+1) = (10*n^2+10*n+3) * a(n) - 9*n^2 * a(n-1). - Matthijs Coster, Apr 28 2004
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^3. - Vladeta Jovovic, Mar 11 2003
a(n) = Sum_{p+q+r=n} (n!/(p!*q!*r!))^2 with p, q, r >= 0. - Michael Somos, Jul 25 2007
a(n) = 3*A087457(n) for n>0. - Philippe Deléham, Sep 14 2008
a(n) = hypergeom([1/2, -n, -n], [1, 1], 4). - Mark van Hoeij, Jun 02 2010
G.f.: 2*sqrt(2)/Pi/sqrt(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z))) * EllipticK(8*z^(3/2)/(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z)))). - Sergey Perepechko, Feb 16 2011
G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1-x)^n / (1-3*x)^(3*n+1). - Paul D. Hanna, Feb 26 2012
Asymptotic: a(n) ~ 3^(2*n+3/2)/(4*Pi*n). - Vaclav Kotesovec, Sep 11 2012
G.f.: 1/(1-3*x)*(1-6*x^2*(1-x)/(Q(0)+6*x^2*(1-x))), where Q(k) = (54*x^3 - 54*x^2 + 9*x -1)*k^2 + (81*x^3 - 81*x^2 + 18*x -2)*k + 33*x^3 - 33*x^2 +9*x - 1 - 3*x^2*(1-x)*(1-3*x)^3*(k+1)^2*(3*k+4)*(3*k+5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/(2*(1-9*x)^(2/3)), where G(k) = 1 + 1/(1 - 3*(3*k+1)^2*x*(1-x)^2/(3*(3*k+1)^2*x*(1-x)^2 - (k+1)^2*(1-9*x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = [x^(2n)] 1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)). - Gheorghe Coserea, Aug 17 2016
0 = +a(n)*(+a(n+1)*(+729*a(n+2) -1539*a(n+3) +243*a(n+4)) +a(n+2)*(-567*a(n+2) +1665*a(n+3) -297*a(n+4)) +a(n+3)*(-117*a(n+3) +27*a(n+4))) +a(n+1)*(+a(n+1)*(-324*a(n+2) +720*a(n+3) -117*a(n+4)) +a(n+2)*(+315*a(n+2) -1000*a(n+3) +185*a(n+4)) +a(n+3)*(+80*a(n+3) -19*a(n+4))) +a(n+2)*(+a(n+2)*(-9*a(n+2) +35*a(n+3) -7*a(n+4)) +a(n+3)*(-4*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Oct 30 2017
G.f. y=A(x) satisfies: 0 = x*(x - 1)*(9*x - 1)*y'' + (27*x^2 - 20*x + 1)*y' + 3*(3*x - 1)*y. - Gheorghe Coserea, Jul 01 2018
Sum_{k>=0} binomial(2*k,k) * a(k) / 6^(2*k) = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=3*(-1 + 3*x)*T(x) + (1 - 20*x + 27*x^2)*T'(x) + x*(-1 + x)*(-1 + 9*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = (3/64)*(1 + 3*x)*(1 - 15*x + 75*x^2 + 3*x^3);
g3 = -(1/512)*(-1 + 6*x + 3*x^2)*(1 - 12*x + 30*x^2 - 540*x^3 + 9*x^4);
which determine an elliptic surface with four singular fibers. (End)
EXAMPLE
G.f.: A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 639*x^4 + 4653*x^5 + 35169*x^6 + ...
G.f.: A(x) = 1/(1-3*x) + 6*x^2*(1-x)/(1-3*x)^4 + 90*x^4*(1-x)^2/(1-3*x)^7 + 1680*x^6*(1-x)^3/(1-3*x)^10 + 34650*x^8*(1-x)^4/(1-3*x)^13 + ... - Paul D. Hanna, Feb 26 2012
MAPLE
series(1/GaussAGM(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)), x=0, 42) # Gheorghe Coserea, Aug 17 2016
A002893 := n -> hypergeom([1/2, -n, -n], [1, 1], 4):
seq(simplify(A002893(n)), n=0..20); # Peter Luschny, May 23 2017
MATHEMATICA
Table[Sum[Binomial[n, k]^2 Binomial[2k, k], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Aug 19 2011 *)
a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {1/2, -n, -n}, {1, 1}, 4]]; (* Michael Somos, Oct 16 2013 *)
a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^3, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 30 2013 *)
a[ n_] := If[ n < 0, 0, Block[ {x, y, z}, Expand[(x + y + z)^n] /. {t_Integer -> t^2, x -> 1, y -> 1, z -> 1}]]; (* Michael Somos, Aug 25 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, n!^2 * polcoeff( besseli(0, 2*x + O(x^(2*n+1)))^3, 2*n))};
(PARI) {a(n) = sum(k=0, n, binomial(n, k)^2 * binomial(2*k, k))}; /* Michael Somos, Jul 25 2007 */
(PARI) {a(n)=polcoeff(sum(m=0, n, (3*m)!/m!^3 * x^(2*m)*(1-x)^m / (1-3*x+x*O(x^n))^(3*m+1)), n)} \\ Paul D. Hanna, Feb 26 2012
(PARI) N = 42; x='x + O('x^N); v = Vec(1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3))); vector((#v+1)\2, k, v[2*k-1]) \\ Gheorghe Coserea, Aug 17 2016
(Magma) [&+[Binomial(n, k)^2 * Binomial(2*k, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 26 2018
(SageMath)
def A002893(n): return simplify(hypergeometric([1/2, -n, -n], [1, 1], 4))
[A002893(n) for n in range(31)] # G. C. Greubel, Jan 21 2023
CROSSREFS
Cf. A169714 and A169715. - Peter Bala, Mar 05 2013
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
KEYWORD
nonn,easy,walk,nice
STATUS
approved
Domb numbers: number of 2n-step polygons on diamond lattice.
(Formerly M3626 N1473)
+10
66
1, 4, 28, 256, 2716, 31504, 387136, 4951552, 65218204, 878536624, 12046924528, 167595457792, 2359613230144, 33557651538688, 481365424895488, 6956365106016256, 101181938814289564, 1480129751586116848, 21761706991570726096, 321401321741959062016
OFFSET
0,2
COMMENTS
a(n) is the (2n)th moment of the distance from the origin of a 4-step random walk in the plane. - Peter M.W. Gill (peter.gill(AT)nott.ac.uk), Mar 03 2004
Row sums of the cube of A008459. - Peter Bala, Mar 05 2013
Conjecture: Let D(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0..n. Then the number D(n)/12^n is always a positive odd integer. - Zhi-Wei Sun, Aug 14 2013
It appears that the expansions exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 4*x + 22*x^2 + 152*x^3 + 1241*x^4 + ... and exp( Sum_{n >= 1} 1/4*a(n)*x^n/n ) = 1 + x + 4*x^2 + 25*x^3 + 199*x^4 + ... have integer coefficients. See A267219. - Peter Bala, Jan 12 2016
This is one of the Apéry-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Named after the British-Israeli theoretical physicist Cyril Domb (1920-2012). - Amiram Eldar, Mar 20 2021
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..832 (terms 0..100 from T. D. Noe)
B. Adamczewski, Jason P. Bell and E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments and applications, Journal of Physics A: Mathematical and Theoretical, Vol. 41, No. 20 (2008), 205203; arXiv preprint, arXiv:0801.0891 [hep-th], 2008.
Jonathan M. Borwein, A short walk can be beautiful, Journal of Humanistic Mathematics, Vol. 6, No. 1 (2016), pp. 86-109; preprint, 2015.
Jonathan M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016.
Jonathan M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine integrals, Theoretical Computer Science, Vol. 479 (2013), pp. 4-21.
Jonathan M. Borwein, Armin Straub and Christophe Vignat, Densities of short uniform random walks, Part II: Higher dimensions, Preprint, 2015.
Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, 2010.
Alin Bostan, Andrew Elvey Price, Anthony John Guttmann and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
H. Huat Chan, Song Heng Chan and Zhiguo Liu, Domb's numbers and Ramanujan-Sato type series for 1/pi, Adv. Math., Vol. 186, No. 2 (2004), pp. 396-410.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023. See Table 2 p. 7.
Shaun Cooper, James G. Wan and Wadim Zudilin, Holonomic Alchemy and Series for 1/pi, in: G. Andrews and F. Garvan (eds.) Analytic Number Theory, Modular Forms and q-Hypergeometric Series, ALLADI60 2016, Springer Proceedings in Mathematics & Statistics, Vol 221. Springer, Cham, 2016; arXiv preprint, arXiv:1512.04608 [math.NT], 2015.
Eric Delaygue, Arithmetic properties of Apéry-like numbers, Compositio Mathematica, Vol. 154, No. 2 (2018), pp. 249-274; arXiv preprint, arXiv:1310.4131 [math.NT], 2013-2015.
Cyril Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., Vol. 9 (1960), pp. 149-361.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See alpha p. 3.
John A. Hendrickson, Jr., On the enumeration of rectangular (0,1)-matrices, Journal of Statistical Computation and Simulation, Vol. 51 (1995), pp. 291-313.
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
Ji-Cai Liu, Supercongruences for sums involving Domb numbers, arXiv:2008.02647 [math.NT], 2020.
Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
Yen Lee Loh, A general method for calculating lattice green functions on the branch cut, Journal of Physics A: Mathematical and Theoretical, Vol. 50, No. 40 (2017), 405203; arXiv preprint, arXiv:1706.03083 [math-ph], 2017.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
Guo-Shuai Mao and Yan Liu, Proof of some conjectural congruences involving Domb numbers, arXiv:2112.00511 [math.NT], 2021.
Guo-Shuai Mao and Michael J. Schlosser, Supercongruences involving Domb numbers and binary quadratic forms, arXiv:2112.12732 [math.NT], 2021.
Robert Osburn and Brundaban Sahu, A supercongruence for generalized Domb numbers, Functiones et Approximatio Commentarii Mathematici, Vol. 48, No. 1 (2013), pp. 29-36; preprint.
L. B. Richmond and Jeffrey Shallit, Counting Abelian Squares, The Electronic Journal of Combinatorics, Vol. 16, No. 1 (2009), Article R72; arXiv preprint, arXiv:0807.5028 [math.CO], 2008.
Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
Zhi-Wei Sun, Conjectures involving arithmetical sequences, in: S. Kanemitsu, H. Li and J. Liu (eds.), Number Theory: Arithmetic in Shangri-La, Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258; alternative link.
Chen Wang, Supercongruences and hypergeometric transformations, arXiv:2003.09888 [math.NT], 2020.
Yi Wang and BaoXuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, Science China Mathematics, Vol. 57, No. 11 (2014), pp. 2429-2435; arXiv preprint, arXiv:1303.5595 [math.CO], 2013.
Bao-Xuan Zhu, Higher order log-monotonicity of combinatorial sequences, arXiv preprint, arXiv:1309.6025 [math.CO], 2013.
FORMULA
a(n) = Sum_{k=0..n} binomial(n, k)^2 * binomial(2n-2k, n-k) * binomial(2k, k).
D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(5*n^2-5*n+2)*a(n-1) - 64*(n-1)^3*a(n-2). - Vladeta Jovovic, Jul 16 2004
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^4. - Vladeta Jovovic, Aug 01 2006
G.f.: hypergeom([1/6, 1/3],[1],108*x^2/(1-4*x)^3)^2/(1-4*x). - Mark van Hoeij, Oct 29 2011
From Zhi-Wei Sun, Mar 20 2013: (Start)
Via the Zeilberger algorithm, Zhi-Wei Sun proved that:
(1) 4^n*a(n) = Sum_{k = 0..n} (binomial(2k,k)*binomial(2(n-k),n-k))^3/ binomial(n,k)^2,
(2) a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*binomial(2k,n)*binomial(2k,k)* binomial(2(n-k),n-k). (End)
a(n) ~ 2^(4*n+1)/((Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 20 2013
G.f. y=A(x) satisfies: 0 = x^2*(4*x - 1)*(16*x - 1)*y''' + 3*x*(128*x^2 - 30*x + 1)*y'' + (448*x^2 - 68*x + 1)*y' + 4*(16*x - 1)*y. - Gheorghe Coserea, Jun 26 2018
a(n) = Sum_{p+q+r+s=n} (n!/(p!*q!*r!*s!))^2 with p,q,r,s >= 0. See Verrill, p. 5. - Peter Bala, Jan 06 2020
From Peter Bala, Jul 25 2024: (Start)
a(n) = 2*Sum_{k = 1..n} (k/n)*binomial(n, k)^2*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1.
a(n-1) = (1/2)*Sum_{k = 1..n} (k/n)^3*binomial(n, k)^2*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1. Cf. A081085. (End)
MAPLE
A002895 := n -> add(binomial(n, k)^2*binomial(2*n-2*k, n-k)*binomial(2*k, k), k=0..n): seq(A002895(n), n=0..25); # Wesley Ivan Hurt, Dec 20 2015
A002895 := n -> binomial(2*n, n)*hypergeom([1/2, -n, -n, -n], [1, 1, 1/2 - n], 1):
seq(simplify(A002895(n)), n=0..19); # Peter Luschny, May 23 2017
MATHEMATICA
Table[Sum[Binomial[n, k]^2 Binomial[2n-2k, n-k]Binomial[2k, k], {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Aug 15 2011 *)
a[n_] = Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n, -n}, {1, 1, 1/2-n}, 1]; (* or *) a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^4, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Dec 30 2013, after Vladeta Jovovic *)
max = 19; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 3] (* Jean-François Alcover, Mar 24 2015, after Peter Bala *)
PROG
(PARI) C=binomial;
a(n) = sum(k=0, n, C(n, k)^2 * C(2*n-2*k, n-k) * C(2*k, k) );
/* Joerg Arndt, Apr 19 2013 */
CROSSREFS
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
KEYWORD
nonn,easy,nice,walk
EXTENSIONS
More terms from Vladeta Jovovic, Mar 11 2003
STATUS
approved
a(n) = Sum_{k = 0..n} binomial(n,k)^4.
(Formerly M2110)
+10
65
1, 2, 18, 164, 1810, 21252, 263844, 3395016, 44916498, 607041380, 8345319268, 116335834056, 1640651321764, 23365271704712, 335556407724360, 4854133484555664, 70666388112940818, 1034529673001901732
OFFSET
0,2
COMMENTS
This sequence is s_10 in Cooper's paper. - Jason Kimberley, Nov 25 2012
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y*z + x*y*z + w*x + y*z)). - Gheorghe Coserea, Jul 13 2016
This is one of the Apéry-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Every prime eventually divides some term of this sequence. - Amita Malik, Aug 20 2017
Two walkers, A and B, stand on the South-West and North-East corners of an n X n grid, respectively. A walks by either North or East steps while B walks by either South or West steps. Sequence values a(n) < binomial(2*n,n)^2 count the simultaneous walks where A and B meet after exactly n steps and change places after 2*n steps. - Bradley Klee, Apr 01 2019
a(n) is the constant term in the expansion of ((1 + x) * (1 + y) * (1 + z) + (1 + 1/x) * (1 + 1/y) * (1 + 1/z))^n. - Seiichi Manyama, Oct 27 2019
REFERENCES
H. W. Gould, Combinatorial Identities, Morgantown, 1972, (X.14), p. 79.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..834 (terms 0..250 from Jason Kimberley)
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
Hacene Belbachir and Yassine Otmani, A Strehl Version of Fourth Franel Sequence, arXiv:2012.02563 [math.CO], 2020.
F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), no. 2, 201-210.
W. Y. C. Chen, Q.-H. Hou, and Y-P. Mu, A telescoping method for double summations, J. Comp. Appl. Math. 196 (2006) 553-566, eq (5.5).
M. Coster, Email, Nov 1990
E. Delaygue, Arithmetic properties of Apéry-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See s10 p. 3.
Darij Grinberg, Introduction to Modern Algebra (UMN Spring 2019 Math 4281 Notes), University of Minnesota (2019).
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
Robert Osburn, Armin Straub, and Wadim Zudilin, A modular supercongruence for 6F5: an Apéry-like story, arXiv:1701.04098 [math.NT], 2017.
M. A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory 27 (1987), pp. 304-309.
V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
Zhi-Wei Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly 36(2019), no.1, 1-99. (Cf. Conjectures 49-51.)
Eric Weisstein's World of Mathematics, Binomial Sums
Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, preprint of Combinatorics, Probability and Computing, 24(1), 2015, 354-372.
Jin Yuan, Zhi-Juan Lu, Asmus L. Schmidt, On recurrences for sums of powers of binomial coefficients, J. Numb. Theory 128 (2008) 2784-2794
FORMULA
a(n) ~ 2^(1/2)*Pi^(-3/2)*n^(-3/2)*2^(4*n). - Joe Keane (jgk(AT)jgk.org), Jun 21 2002
D-finite with recurrence: n^3*a(n) = 2*(2*n - 1)*(3*n^2 - 3*n + 1)*a(n-1) + (4*n - 3)*(4*n - 4)*(4*n - 5)*a(n-2). [Yuan]
G.f.: 5*hypergeom([1/8, 3/8],[1], (4/5)*((1-16*x)^(1/2)+(1+4*x)^(1/2))*(-(1-16*x)^(1/2)+(1+4*x)^(1/2))^5/(2*(1-16*x)^(1/2)+3*(1+4*x)^(1/2))^4)^2/(2*(1-16*x)^(1/2)+3*(1+4*x)^(1/2)). - Mark van Hoeij, Oct 29 2011
1/Pi = sqrt(15)/18 * Sum_{n >= 0} a(n)*(4*n + 1)/36^n (Cooper, equation (5)) = sqrt(15)/18 * Sum_{n >= 0} a(n)*A016813(n)/A009980(n). - Jason Kimberley, Nov 26 2012
0 = (-x^2 + 12*x^3 + 64*x^4)*y''' + (-3*x + 54*x^2 + 384*x^3)*y'' + (-1 + 40*x + 444*x^2)*y' + (2 + 60*x)*y, where y is g.f. - Gheorghe Coserea, Jul 13 2016
For r a nonnegative integer, Sum_{k = r..n} C(k,r)^4*C(n,k)^4 = C(n,r)^4*a(n-r), where we take a(n) = 0 for n < 0. - Peter Bala, Jul 27 2016
a(n) = hypergeom([-n, -n, -n, -n], [1, 1, 1], 1). - Peter Luschny, Jul 27 2016
Sum_{n>=0} a(n) * x^n / (n!)^4 = (Sum_{n>=0} x^n / (n!)^4)^2. - Ilya Gutkovskiy, Jul 17 2020
a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k)*C(2k,k)*C(2n-2k,n-k)*(-1)^(n-k). This can be proved via the Zeilberger algorithm. - Zhi-Wei Sun, Aug 23 2020
a(n) = (-1)^n*binomial(2*n, n)*hypergeom([1/2, -n, -n, n + 1], [1, 1, 1/2 - n], 1). - Peter Luschny, Aug 24 2020
a(n) = Sum_{k=0..n} binomial(n,k)^2*binomial(2*k,n)*binomial(2*n-k,n) [Theorem 1 in Belbachir and Otmani]. - Michel Marcus, Dec 06 2020
a(n) = [x^n] (1 - x)^(2*n) P(n,(1 + x)/(1 - x))^2, where P(n,x) denotes the n-th Legendre polynomial. See Gould, p. 66. This formula is equivalent to the binomial sum identity of Zhi-Wei Sun given above. - Peter Bala, Mar 24 2022
From Peter Bala, Oct 31 2024: (Start)
For n >= 1, a(n) = 2 * Sum_{k = 0..n-1} binomial(n, k)^3 * binomial(n-1, k).
For n >= 1, a(n) = 2 * hypergeom([-n, -n, -n, -n + 1], [1, 1, 1], 1). (End)
EXAMPLE
G.f. = 1 + 2*x + 18*x^2 + 164*x^3 + 1810*x^4 + 21252*x^5 + 263844*x^6 + ...
MAPLE
A005260 := proc(n)
add( (binomial(n, k))^4, k=0..n) ;
end proc:
seq(A005260(n), n=0..10) ; # R. J. Mathar, Nov 19 2012
MATHEMATICA
Table[Sum[Binomial[n, k]^4, {k, 0, n}], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 09 2014 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial(n, k)^4)};
(Python)
def A005260(n):
m, g = 1, 0
for k in range(n+1):
g += m
m = m*(n-k)**4//(k+1)**4
return g # Chai Wah Wu, Oct 04 2022
CROSSREFS
Column k=4 of A309010.
Related to diagonal of rational functions: A268545-A268555.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
KEYWORD
nonn,easy
EXTENSIONS
Edited by Michael Somos, Aug 09 2002
Minor edits by Vaclav Kotesovec, Aug 28 2014
STATUS
approved
T(n,k) = binomial(n,k)*binomial(n+k,k), 0 <= k <= n, triangle read by rows.
+10
64
1, 1, 2, 1, 6, 6, 1, 12, 30, 20, 1, 20, 90, 140, 70, 1, 30, 210, 560, 630, 252, 1, 42, 420, 1680, 3150, 2772, 924, 1, 56, 756, 4200, 11550, 16632, 12012, 3432, 1, 72, 1260, 9240, 34650, 72072, 84084, 51480, 12870, 1, 90, 1980, 18480, 90090, 252252, 420420, 411840, 218790, 48620
OFFSET
0,3
COMMENTS
T(n,k) is the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's Cluster algebra of finite type B_n. Take a row of this triangle regarded as a polynomial in x and rewrite as a polynomial in y := x+1. The coefficients of the polynomial in y give a row of triangle A008459 (squares of binomial coefficients). For example, x^2+6*x+6 = y^2+4*y+1. - Paul Boddington, Mar 07 2003
T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k N=(0,1) steps. E.g. T(2,0)=1 because we have DD; T(2,1) = 6 because we have NED, NDE, EDN, END, DEN and DNE; T(2,2)=6 because we have NNEE, NENE, NEEN, EENN, ENEN and ENNE. - Emeric Deutsch, Apr 20 2004
Another version of [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] = 1; 1, 0; 1, 2, 0; 1, 6, 6, 0; 1, 12, 30, 20, 0; ..., where DELTA is the operator defined in A084938. - Philippe Deléham Apr 15 2005
Terms in row n are the coefficients of the Legendre polynomial P(n,2x+1) with increasing powers of x.
From Peter Bala, Oct 28 2008: (Start)
Row n of this triangle is the f-vector of the simplicial complex dual to an associahedron of type B_n (a cyclohedron) [Fomin & Reading, p.60]. See A008459 for the corresponding h-vectors for associahedra of type B_n and A001263 and A033282 respectively for the h-vectors and f-vectors for associahedra of type A_n.
An alternative description of this triangle in terms of f-vectors is as follows. Let A_n be the root lattice generated as a monoid by {e_i - e_j: 0 <= i,j <= n+1}. Let P(A_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the f-vectors of a unimodular triangulation of P(A_n) [Ardila et al.]. A008459 is the corresponding array of h-vectors for these type A_n polytopes. See A127674 (without the signs) for the array of f-vectors for type C_n polytopes and A108556 for the array of f-vectors associated with type D_n polytopes.
The S-transform on the ring of polynomials is the linear transformation of polynomials that is defined on the basis monomials x^k by S(x^k) = binomial(x,k) = x(x-1)...(x-k+1)/k!. Let P_n(x) denote the S-transform of the n-th row polynomial of this array. In the notation of [Hetyei] these are the Stirling polynomials of the type B associahedra. The first few values are P_1(x) = 2*x + 1, P_2(x) = 3*x^2 + 3*x + 1 and P_3(x) = (10*x^3 + 15*x^2 + 11*x + 3)/3. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane, that is, the polynomials P_n(-x) satisfy a Riemann hypothesis. See A142995 for further details. The sequence of values P_n(k) for k = 0,1,2,3, ... produces the n-th row of A108625. (End)
This is the row reversed version of triangle A104684. - Wolfdieter Lang, Sep 12 2016
T(n, k) is also the number of (n-k)-dimensional faces of a convex n-dimensional Lipschitz polytope of real functions f defined on the set X = {1, 2, ..., n+1} which satisfy the condition f(n+1) = 0 (see Gordon and Petrov). - Stefano Spezia, Sep 25 2021
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial ((x+1)*(x+2)*(x+3)*...*(x+n) / n!)^2 in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 09 2022
Chapoton's observation above is correct: the precise expansion is ((x+1)*(x+2)*(x+3)*...*(x+n)/ n!)^2 = Sum_{k = 0..n} (-1)^k*T(n,n-k)*binomial(x+2*n-k, 2*n-k), as can be verified using the WZ algorithm. For example, n = 3 gives ((x+1)*(x+2)*(x+3)/3!)^2 = 20*binomial(x+6,6) - 30*binomial(x+5,5) + 12*binomial(x+4,4) - binomial(x+3,3). - Peter Bala, Jun 24 2023
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 366.
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, Table I, p. 92.
D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.
LINKS
F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO], 2008.
Cyril Banderier, Combinatoire analytique des chemins et des cartes, Thesis (2001), page 49.
David Callan, A bijection for Delannoy paths, arXiv:2202.04649 [math.CO], 2022.
F. Chapoton, Enumerative properties of generalized associahedra, Séminaire Lotharingien de Combinatoire, B51b (2004), 16 pp.
Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
Mark Dukes and Chris D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
Mark Dukes and Chris D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, Electronic Journal Of Combinatorics, 23(1) (2016), #P1.45.
S. Fomin and N. Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004; arXiv:math/0505518 [math.CO], 2005-2008.
S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15(2) (2002), 497-529.
S. Fomin and A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977-1018.
J. Gordon and F. Petrov, Combinatorics of the Lipschitz Polytope, Arnold Mathematical Journal (2016).
G. Hetyei, Face enumeration using generalized binomial coefficients. This is the draft version of Hetyei's paper referenced below. [Archived version]
Gabor Hetyei, The Stirling polynomial of a simplicial complex Discrete and Computational Geometry 35(3) (2006), 437-455.
Hsien-Kuei Hwang and Satoshi Kuriki, Integrated empirical measures and generalizations of classical goodness-of-fit statistics, arXiv:2404.06040 [math.ST], 2024. See p. 11.
C. Lanczos, Applied Analysis (Annotated scans of selected pages). See page 514.
T. Manneville and V. Pilaud, Compatibility fans for graphical nested complexes, arXiv preprint arXiv:1501.07152 [math.CO], 2015.
Thomas Selig, Combinatorial aspects of sandpile models on wheel and fan graphs, arXiv:2202.06487 [math.CO], 2022.
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages) See Table I, page 92.
V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
R. A. Sulanke, Objects counted by the central Delannoy numbers., J. Integer Seq. 6 (2003), no. 1, Article 03.1.5.
FORMULA
T(n, k) = (n+k)!/(k!^2*(n-k)!) = T(n-1, k)*(n+k)/(n-k) = T(n, k-1)*(n+k)*(n-k+1)/k^2 = T(n-1, k-1)*(n+k)*(n+k-1)/k^2.
binomial(x, n)^2 = Sum_{k>=0} T(n,k) * binomial(x, n+k). - Michael Somos, May 11 2012
T(n, k) = A109983(n, k+n). - Michael Somos, Sep 22 2013
G.f.: G(t, z) = 1/sqrt(1-2*z-4*t*z+z^2). Row generating polynomials = P_n(1+2z), i.e., T(n, k) = [z^k] P_n(1+2*z), where P_n are the Legendre polynomials. - Emeric Deutsch, Apr 20 2004
Sum_{k>=0} T(n, k)*A000172(k) = Sum_{k>=0} T(n, k)^2 = A005259(n). - Philippe Deléham, Jun 08 2005
1 + z*d/dz(log(G(t,z)) = 1 + (1 + 2*t)*z + (1 + 8*t + 8*t^2)*z^2 + ... is the o.g.f. for a signed version of A127674. - Peter Bala, Sep 02 2015
If R(n,t) denotes the n-th row polynomial then x^3 * exp( Sum_{n >= 1} R(n,t)*x^n/n ) = x^3 + (1 + 2*t)*x^4 + (1 + 5*t + 5*t^2)*x^5 + (1 + 9*t + 21*t^2 + 14*t^3)*x^6 + ... is an o.g.f for A033282. - Peter Bala, Oct 19 2015
P(n,x) := 1/(1 + x)*Integral_{t = 0..x} R(n,t) dt are (modulo differences of offset) the row polynomials of A033282. - Peter Bala, Jun 23 2016
From Peter Bala, Mar 09 2018: (Start)
R(n,x) = Sum_{k = 0..n} binomial(2*k,k)*binomial(n+k,n-k)*x^k.
R(n,x) = Sum_{k = 0..n} binomial(n,k)^2*x^k*(1 + x)^(n-k).
n*R(n,x) = (1 + 2*x)*(2*n - 1)*R(n-1,x) - (n - 1)*R(n-2,x).
R(n,x) = (-1)^n*R(n,-1 - x).
R(n,x) = 1/n! * (d/dx)^n ((x^2 + x)^n). (End)
The row polynomials are R(n,x) = hypergeom([-n, n + 1], [1], -x). - Peter Luschny, Mar 09 2018
T(n,k) = C(n+1,k)*A009766(n,k). - Bob Selcoe, Jan 18 2020 (Connects this triangle with the Catalan triangle. - N. J. A. Sloane, Jan 18 2020)
If we let A(n,k) = (-1)^(n+k)*(2*k+1)*(n*(n-1)*...*(n-(k-1)))/((n+1)*...*(n+(k+1))) for n >= 0 and k = 0..n, and we consider both T(n,k) and A(n,k) as infinite lower triangular arrays, then they are inverses of one another. (Empty products are by definition 1.) See the example below. The rational numbers |A(n,k)| appear in Table II on p. 92 in Ser's (1933) book. - Petros Hadjicostas, Jul 11 2020
From Peter Bala, Nov 28 2021: (Start)
Row polynomial R(n,x) = Sum_{k >= n} binomial(k,n)^2 * x^(k-n)/(1+x)^(k+1) for x > -1/2.
R(n,x) = 1/(1 + x)^(n+1) * hypergeom([n+1, n+1], [1], x/(1 + x)).
R(n,x) = (1 + x)^n * hypergeom([-n, -n], [1], x/(1 + x)).
R(n,x) = hypergeom([(n+1)/2, -n/2], [1], -4*x*(1 + x)).
If we set R(-1,x) = 1, we can run the recurrence n*R(n,x) = (1 + 2*x)*(2*n - 1)*R(n-1,x) - (n - 1)*R(n-2,x) backwards to give R(-n,x) = R(n-1,x).
R(n,x) = [t^n] ( (1 + t)*(1 + x*(1 + t)) )^n. (End)
n*T(n,k) = (2*n-1)*T(n-1,k) + (4*n-2)*T(n-1,k-1) - (n-1)*T(n-2,k). - Fabián Pereyra, Jun 30 2022
From Peter Bala, Oct 07 2024: (Start)
n-th row polynomial R(n,x) = Sum_{k = 0..n} binomial(n, k) * x^k o (1 + x)^(n-k), where o denotes the black diamond product of power series as defined by Dukes and White (see Bala, Section 4.4, exercise 3).
Denote this triangle by T. Then T * transpose(T) = A143007, the square array of crystal ball sequences for the A_n X A_n lattices.
Let S denote the triangle ((-1)^(n+k)*T(n, k))n,k >= 0, a signed version of this triangle. Then S^(-1) * T = A007318, Pascal's triangle; it appears that T * S^(-1) = A110098.
T = A007318 * A115951. (End)
EXAMPLE
The triangle T(n, k) starts:
n\k 0 1 2 3 4 5 6 7
0: 1
1: 1 2
2: 1 6 6
3: 1 12 30 20
4: 1 20 90 140 70
5: 1 30 210 560 630 252
6: 1 42 420 1680 3150 2772 924
7: 1 56 756 4200 11550 16632 12012 3432
row n = 8: 1 72 1260 9240 34650 72072 84084 51480 12870,
row n = 9: 1 90 1980 18480 90090 252252 420420 411840 218790 48620,
row n = 10: 1 110 2970 34320 210210 756756 1681680 2333760 1969110 923780 184756.
... reformatted by Wolfdieter Lang, Sep 12 2016
From Petros Hadjicostas, Jul 11 2020: (Start)
Its inverse (from Table II, p. 92, in Ser's book) is
1;
-1/2, 1/2;
1/3, -1/2, 1/6;
-1/4, 9/20, -1/4, 1/20;
1/5, -2/5, 2/7, -1/10, 1/70;
-1/6, 5/14, -25/84, 5/36, -1/28, 1/252;
1/7, -9/28, 25/84, -1/6, 9/154, -1/84, 1/924;
... (End)
MAPLE
p := (n, x) -> orthopoly[P](n, 1+2*x): seq(seq(coeff(p(n, x), x, k), k=0..n), n=0..9);
MATHEMATICA
Flatten[Table[Binomial[n, k]Binomial[n + k, k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Dec 24 2011 *)
Table[CoefficientList[Hypergeometric2F1[-n, n + 1, 1, -x], x], {n, 0, 9}] // Flatten
(* Peter Luschny, Mar 09 2018 *)
PROG
(PARI) {T(n, k) = local(t); if( n<0, 0, t = (x + x^2)^n; for( k=1, n, t=t'); polcoeff(t, k) / n!)} /* Michael Somos, Dec 19 2002 */
(PARI) {T(n, k) = binomial(n, k) * binomial(n+k, k)} /* Michael Somos, Sep 22 2013 */
(PARI) {T(n, k) = if( k<0 || k>n, 0, (n+k)! / (k!^2 * (n-k)!))} /* Michael Somos, Sep 22 2013 */
(Haskell)
a063007 n k = a063007_tabl !! n !! k
a063007_row n = a063007_tabl !! n
a063007_tabl = zipWith (zipWith (*)) a007318_tabl a046899_tabl
-- Reinhard Zumkeller, Nov 18 2014
(Magma) /* As triangle: */ [[Binomial(n, k)*Binomial(n+k, k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 03 2015
CROSSREFS
See A331430 for an essentially identical triangle, except with signed entries.
Columns include A000012, A002378, A033487 on the left and A000984, A002457, A002544 on the right.
Main diagonal is A006480.
Row sums are A001850. Alternating row sums are A033999.
Cf. A033282 (f-vectors type A associahedra), A108625, A080721 (f-vectors type D associahedra).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
KEYWORD
nonn,tabl,nice,easy
AUTHOR
Henry Bottomley, Jul 02 2001
STATUS
approved
Square array, read by antidiagonals, where row n equals the crystal ball sequence for the 2*n-dimensional lattice A_n x A_n.
+10
64
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 25, 73, 25, 1, 1, 41, 253, 253, 41, 1, 1, 61, 661, 1445, 661, 61, 1, 1, 85, 1441, 5741, 5741, 1441, 85, 1, 1, 113, 2773, 17861, 33001, 17861, 2773, 113, 1, 1, 145, 4873, 46705, 142001, 142001, 46705, 4873, 145, 1
OFFSET
0,5
COMMENTS
The A_n lattice consists of all vectors v = (x_1,...,x_(n+1)) in Z^(n+1) such that x_1 + ... + x_(n+1) = 0. The lattice is equipped with the norm ||v|| = 1/2*(|x_1| + ... + |x_(n+1)|). Pairs of lattice points (v,w) in the product lattice A_n x A_n have norm ||(v,w)|| = ||v|| + ||w||. Then the k-th term in the crystal ball sequence for the A_n x A_n lattice gives the number of such pairs (v,w) for which ||(v,w)|| is less than or equal to k.
This array has a remarkable relationship with Apery's constant zeta(3). The row (or column) and main diagonal entries of the array occur in series acceleration formulas for zeta(3). For row n entries there holds zeta(3) = (1+1/2^3+...+1/n^3) + Sum_{k >= 1} 1/(k^3*T(n,k-1)*T(n,k)). Also, as consequence of Apery's proof of the irrationality of zeta(3), we have a series acceleration formula along the main diagonal of the table: zeta(3) = 6 * sum {n >= 1} 1/(n^3*T(n-1,n-1)*T(n,n)). Apery's result appears to generalize to the other diagonals of the table. Calculation suggests the following result may hold: zeta(3) = 1 + 1/2^3 + ... + 1/k^3 + Sum_{n >= 1} (2*n+k)*(3*n^2 +3*n*k +k^2)/(n^3*(n+k)^3*T(n-1,n+k-1)*T(n,n+k)).
For the corresponding results for the constant zeta(2), related to the crystal ball sequences of the lattices A_n, see A108625. For corresponding results for log(2), coming from either the crystal ball sequences of the hypercubic lattices A_1 x ... x A_1 or the lattices of type C_n, see A008288 and A142992 respectively.
LINKS
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
J. H. Conway and N. J. A. Sloane, Low dimensional lattices VII Coordination sequences, Proc. R. Soc. Lond., Ser. A, 453 (1997), 2369-2389.
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
FORMULA
T(n,k) = Sum_{j = 0..n} C(n+j,2*j)*C(2*j,j)^2*C(k+j,2*j).
The array is symmetric T(n,k) = T(k,n).
The main diagonal [1,5,73,1445,...] is the sequence of Apery numbers A005259.
The entries in the k-th column satisfy the Apery-like recursion n^3*T(n,k) + (n-1)^3*T(n-2,k) = (2*n-1)*(n^2-n+1+2*k^2+2*k)*T(n-1,k).
The LDU factorization of the square array is L * D * transpose(L), where L is the lower triangular array A085478 and D is the diagonal matrix diag(C(2n,n)^2). O.g.f. for row n: The generating function for the coordination sequence of the lattice A_n is [Sum_{k = 0..n} C(n,k)^2*x^k ]/(1-x)^n. Thus the generating function for the coordination sequence of the product lattice A_n x A_n is {[Sum_{k = 0..n} C(n,k)^2*x^k]/(1-x)^n}^2 and hence the generating function for row n of this array, the crystal ball sequence of the lattice A_n x A_n, equals [Sum_{k = 0..n} C(n,k)^2*x^k]^2/(1-x)^(2n+1) = 1/(1-x)*[Legendre_P(n,(1+x)/(1-x))]^2. See [Conway & Sloane].
Series acceleration formulas for zeta(3): Row n: zeta(3) = (1 + 1/2^3 + ... + 1/n^3) + Sum_{k >= 1} 1/(k^3*T(n,k-1)*T(n,k)), n = 0,1,2,... . For example, the fourth row of the table (n = 3) gives zeta(3) = (1 + 1/2^3 + 1/3^3) + 1/(1^3*1*25) + 1/(2^3*25*253) + 1/(3^3*253*1445) + ... . See A143003 for further details.
Main diagonal: zeta(3) = 6 * Sum_{n >= 1} 1/(n^3*T(n-1,n-1)*T(n,n)). Conjectural result for other diagonals: zeta(3) = 1 + 1/2^3 + ... + 1/k^3 + Sum_{n >= 1} (2*n+k)*(3*n^2+3*n*k+k^2)/(n^3*(n+k)^3*T(n-1,n+k-1)*T(n,n+k)).
Sum_{k=0..n} T(n-k,k) = A227845(n) (antidiagonal sums). - Paul D. Hanna, Aug 27 2014
The main superdiagonal numbers S(n) := T(n,n+1) appear to satisfy the supercongruences S(m*p^r - 1) == S(m*p^(r-1) - 1) (mod p^(3*r)) for prime p >= 5 and m, r in N (this is true: see A352653. - Peter Bala, Apr 16 2022).
From Paul D. Hanna, Aug 27 2014: (Start)
G.f. A(x,y) = Sum_{n>=0, k=0..n} T(n,k)*x^n*y^k can be expressed by:
(1) Sum_{n>=0} x^n * y^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k]^2,
(2) Sum_{n>=0} x^n / (1 - x*y)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k * y^k]^2,
(3) Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * y^k * Sum_{j=0..k} C(k,j)^2 * x^j,
(4) Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * y^(n-k) * Sum_{j=0..k} C(k,j)^2 * x^j * y^j. (End)
From Peter Bala, Jun 23 2023: (Start)
T(n,k) = Sum_{j = 0..n} C(n,j)^2 * C(n+k-j,k-j)^2.
T(n,k) = binomial(n+k,k)^2 * hypergeom([-n, -n, -k, -k],[-n - k, -n - k, 1], 1).
T(n,k) = hypergeom([n+1, -n, k+1, -k], [1, 1, 1], 1). (End)
From Peter Bala, Jun 28 2023: (Start)
T(n,k) = the coefficient of (x*z)^n*(y*t)^k in the expansion of 1/( (1 - x - y)*(1 - z - t) - x*y*z*t ).
T(n,k) = A(n, k, n, k) in the notation of Straub, equation 7.
The supercongruences T(n*p^r, k*p^r) == T(n*p^(r-1), k*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and k.
The formula T(n,k) = hypergeom([n+1, -n, k+1, -k], [1, 1, 1], 1) allows the table indexing to be extended to negative values of n and k; we have T(-n,k) = T(n-1,k) and T(n,-k) = T(n,k-1) leading to T(-n,-k) = T(n-1, k-1). (End)
From G. C. Greubel, Oct 05 2023: (Start)
Let t(n, k) = T(n-k, k) be the antidiagonal triangle, then:
t(n, k) = t(n, n-k).
Sum_{k=0..floor(n/2)} t(n-k,k) = A246563(n).
t(2*n+1, n+1) = A352653(n+1). (End)
From Peter Bala, Sep 27 2024: (Start)
The square array = A063007 * transpose(A063007) (LU factorization).
Let L denote the lower triangular array (l(n,k))n,k >= 0, where l(n, k) = (-1)^(n+k) * binomial(n, k)*binomial(n+k, k). (L is a signed version of A063007 and L = A063007 * A007318 ^(-1).)
Then the square array = L * transpose(A108625).
L^2 * transpose(A108625) = the Hadamard product of A108625 with itself (both identities can be verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package to find recurrences for the double sums involved). (End)
EXAMPLE
The table begins
n\k|0...1.....2......3.......4.......5
======================================
0..|1...1.....1......1.......1.......1
1..|1...5....13.....25......41......61 A001844
2..|1..13....73....253.....661....1441 A143008
3..|1..25...253...1445....5741...17861 A143009
4..|1..41...661...5741...33001..142001 A143010
5..|1..61..1441..17861..142001..819005 A143011
........
Example row 1 [1,5,13,...]:
The lattice A_1 x A_1 is equivalent to the square lattice of all integer lattice points v = (x,y) in Z x Z equipped with the taxicab norm ||v|| = (|x| + |y|). There are 4 lattice points (marked with a 1 on the figure below) satisfying ||v|| = 1 and 8 lattice points (marked with a 2 on the figure) satisfying ||v|| = 2. Hence the crystal ball sequence for the A_1 x A_1 lattice begins 1, 1+4 = 5, 1+4+8 = 13, ... .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . 2 . . . . .
. . . . 2 1 2 . . . .
. . . 2 1 0 1 2 . . .
. . . . 2 1 2 . . . .
. . . . . 2 . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
Row 1 = [1,5,13,...] is the sequence of partial sums of A008574; row 2 = [1,13,73,...] is the sequence of partial sums of A008530, so row 2 is the crystal ball sequence for the lattice A_2 x A_2 (the 4-dimensional di-isohexagonal orthogonal lattice).
Read as a triangle the array begins
n\k|0...1....2....3...4...5
===========================
0..|1
1..|1...1
2..|1...5....1
3..|1..13...13....1
4..|1..25...73...25...1
5..|1..41..253..253..41...1
MAPLE
with(combinat): T:= (n, k) -> add(binomial(n+j, 2*j)*binomial(2*j, j)^2*binomial(k+j, 2*j), j = 0..n): for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
MATHEMATICA
T[n_, k_]:= HypergeometricPFQ[{-k, k+1, -n, n+1}, {1, 1, 1}, 1]; Table[T[n-k, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Mar 06 2013 *)
PROG
/* Programs from Paul D. Hanna, Aug 27 2014 */
(PARI) /* Print as a square array: */
{T(n, k)=sum(j=0, n, binomial(n+j, 2*j)*binomial(2*j, j)^2*binomial(k+j, 2*j))}
for(n=0, 10, for(k=0, 10, print1(T(n, k), ", ")); print(""))
(PARI) /* (1) G.f. A(x, y) when read as a triangle: */
{T(n, k)=local(A=1+x); A=sum(m=0, n, x^m * y^m / (1-x +x*O(x^n))^(2*m+1) * sum(k=0, m, binomial(m, k)^2*x^k)^2 ); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* (2) G.f. A(x, y) when read as a triangle: */
{T(n, k)=local(A=1+x); A=sum(m=0, n, x^m/(1-x*y +x*O(x^n))^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k * y^k)^2 ); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* (3) G.f. A(x, y) when read as a triangle: */
{T(n, k)=local(A=1+x); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m , k)^2 * y^k * sum(j=0, k, binomial(k, j)^2 * x^j)+x*O(x^n))); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* (4) G.f. A(x, y) when read as a triangle: */
{T(n, k)=local(A=1+x); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * y^(m-k) * sum(j=0, k, binomial(k, j)^2 * x^j * y^j)+x*O(x^n))); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
/* End */
(Magma)
A:= func< n, k | (&+[(Binomial(n, j)*Binomial(n+k-j, k-j))^2: j in [0..n]]) >; // Array
A143007:= func< n, k | A(n-k, k) >; // Antidiagonal triangle
[A143007(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
(SageMath)
def A(n, k): return sum((binomial(n, j)*binomial(n+k-j, k-j))^2 for j in range(n+1)) # array
def A143007(n, k): return A(n-k, k) # antidiagonal triangle
flatten([[A143007(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023
CROSSREFS
Cf. A001844 (row 1), A005259 (main diagonal), A008288, A008530 (first differences of row 2), A008574 (first differences of row 1), A085478, A108625, A142992, A143003, A143004, A143005, A143006, A143008 (row 2), A143009 (row 3), A142010 (row 4), A143011 (row 5).
Cf. A227845 (antidiagonal sums), A246464.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Bala, Jul 22 2008
EXTENSIONS
Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010
STATUS
approved
Expansion of 1 / AGM(1, 1 - 8*x) in powers of x.
+10
57
1, 4, 20, 112, 676, 4304, 28496, 194240, 1353508, 9593104, 68906320, 500281280, 3664176400, 27033720640, 200683238720, 1497639994112, 11227634469668, 84509490017680, 638344820152784, 4836914483890112, 36753795855173776, 279985580271435584, 2137790149251471680
OFFSET
0,2
COMMENTS
AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre.
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
This is the exponential (also known as binomial) convolution of sequence A000984 (central binomial) with itself. See the V. Jovovic e.g.f. and a(n) formulas given below. - Wolfdieter Lang, Jan 13 2012
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
The recursion (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1) with n=0 has zero coefficient for a(-1) and thus a(-1) is not determined uniquely by it, but defining a(-1) = 2^(-5/2) makes a(n) = a(-1-n) * 32^(n-1/2) true for all n in Z. - Michael Somos, Apr 05 2022
REFERENCES
Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1110 (terms 0..200 from Vincenzo Librandi)
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
Arnaud Beauville, Les familles stables de courbes sur P_1 admettant quatre fibres singulières, Comptes Rendus, Académie Sciences Paris, no. 294, May 24 1982, page 657.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023.
E. Delaygue, Arithmetic properties of Apery-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013-2015.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See E p. 2.
S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
Xiao-Juan Ji and Zhi-Hong Sun, Congruences for Catalan-Larcombe-French numbers, arXiv:1505.00668 [math.NT], 2015.
Bradley Klee, Checking Weierstrass data, 2023.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
Stéphane Ouvry and Alexios Polychronakos, Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers, arXiv:2006.06445 [math-ph], 2020.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
D. Zagier, Integral solutions of Apery-like recurrence equations. See line E in sporadic solutions table of page 5.
FORMULA
G.f.: 1 / AGM(1, 1 - 8*x).
E.g.f.: exp(4*x)*BesselI(0, 2*x)^2. - Vladeta Jovovic, Aug 20 2003
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k) = binomial(2*n, n)*hypergeom([ -n, -n, 1/2], [1, -n+1/2], -1). - Vladeta Jovovic, Sep 16 2003
D-finite with recurrence (n+1)^2 * a(n+1) = (12*n^2+12*n+4) * a(n) - 32*n^2*a(n-1). - Matthijs Coster, Apr 28 2004
E.g.f.: [Sum_{n>=0} binomial(2n,n)*x^n/n! ]^2. - Paul D. Hanna, Sep 04 2009
G.f.: Gaussian Hypergeometric function 2F1(1/2, 1/2; 1; 16*x-64*x^2). - Mark van Hoeij, Oct 24 2011
a(n) = 2^(-n) * A053175(n).
a(n) ~ 2^(3*n+1)/(Pi*n). - Vaclav Kotesovec, Oct 13 2012
0 = x*(x+4)*(x+8)*y'' + (3*x^2 + 24*x + 32)*y' + (x+4)*y, where y(x) = A(x/-32). - Gheorghe Coserea, Aug 26 2016
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k)^2. - Seiichi Manyama, Apr 02 2017
a(n) = (1/Pi)^2*Integral_{0 <= x, y <= Pi} (4*cos(x)^2 + 4*cos(y)^2)^n dx dy. - Peter Bala, Feb 10 2022
a(n) = a(-1-n)*32^(n-1/2) and 0 = +a(n)*(+a(n+1)*(+32768*a(n+2) -23552*a(n+3) +3072*a(n+4)) +a(n+2)*(-8192*a(n+2) +8448*a(n+3) -1248*a(n+4)) +a(n+3)*(-512*a(n+3) +96*a(n+4))) +a(n+1)*(+a(n+1)*(-5120*a(n+2) +3840*a(n+3) -512*a(n+4)) +a(n+2)*(+1536*a(n+2) -1728*a(n+3) +264*a(n+4)) +a(n+3)*(+120*a(n+3) -23*a(n+4))) +a(n+2)*(+a(n+2)*(-32*a(n+2) +48*a(n+3) -8*a(n+4)) +a(n+3)*(-5*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Apr 04 2022
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=4*(-1 + 8*x)*T(x) + (1 - 24*x + 96*x^2)*T'(x) + x*(-1 + 4*x)*(-1 + 8*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(1 - 16*(1 - 8*x)^2 + 16*(1 - 8*x)^4);
g3 = 1 + 30*(1 - 8*x)^2 - 96*(1 - 8*x)^4 + 64*(1 - 8*x)^6;
which determine an elliptic surface with four singular fibers. (End)
G.f.: Sum_{n>=0} binomial(2*n,n)^2 * x^n * (1 - 4*x)^n. - Paul D. Hanna, Apr 18 2024
From Peter Bala, Jul 25 2024: (Start)
a(n) = 2*Sum_{k = 1..n} (k/n)*binomial(n, k)*binomial(2*n-2*k, n-k)*binomial(2*k, k) for n >= 1.
a(n-1) = (1/2)*Sum_{k = 1..n} (k/n)^2*binomial(n, k)*binomial(2*n-2*k, n-k)* binomial(2*k, k) for n >= 1. Cf. A002895. (End)
EXAMPLE
G.f. = A(x) = 1 + 4*x + 20*x^2 + 112*x^3 + 676*x^4 + 4304*x^5 + 28496*x^6 + ...
MAPLE
seq(simplify(binomial(2*n, n)*hypergeom([ -n, -n, 1/2], [1, -n+1/2], -1)), n = 0..22); # Peter Bala, Jul 25 2024
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[2*n-2*k, n-k]*Binomial[2*k, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2012 *)
a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1/2, 1, 16 x (1 - 4 x)], {x, 0, n}]; (* Michael Somos, Oct 25 2014 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 1 / NestWhile[ {(#[[1]] + #[[2]])/2, Sqrt[#[[1]] #[[2]]]} &, {1, Series[ 1 - 8 x, {x, 0, n}]}, #[[1]] =!= #[[2]] &] // First, {x, 0, n}]]; (* Michael Somos, Oct 27 2014 *)
CoefficientList[Series[2*EllipticK[1/(1 - 1/(4*x))^2] / (Pi*(1 - 4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 13 2019 *)
a[n_] := Binomial[2 n, n] HypergeometricPFQ[{1/2, -n, -n}, {1, 1/2 - n}, -1];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 05 2022 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / agm( 1, 1 - 8 * x + x * O(x^n)), n))};
(PARI) {a(n) = if( n<0, 0, 4^n * sum( k=0, n\2, binomial( n, 2*k) * binomial( 2*k, k)^2 / 16^k))};
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, (2*k)!*x^k/(k!)^3 +x*O(x^n))^2, n)} /* Paul D. Hanna, Sep 04 2009 */
(Python)
from math import comb
def A081085(n): return sum((1<<(n-(m:=k<<1)<<1))*comb(n, m)*comb(m, k)**2 for k in range((n>>1)+1)) # Chai Wah Wu, Jul 09 2023
CROSSREFS
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Mar 04 2003
STATUS
approved

Search completed in 0.075 seconds