[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a000172 -id:a000172
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p such that p does not divide any term of the Apéry-like sequence A000172 (also known as Type I primes).
+20
26
3, 11, 17, 19, 43, 83, 89, 97, 113, 137, 139, 163, 193, 211, 233, 241, 283, 307, 313, 331, 347, 353, 379, 401, 409, 419, 433, 443, 491, 499, 523, 547, 569, 587, 601, 617, 619, 641, 643, 673, 811, 827, 859, 881, 929, 947, 953, 977, 1009, 1019, 1033, 1049, 1051
OFFSET
1,1
COMMENTS
See Schulte et al. (2014) for the precise definition of Type I primes.
LINKS
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5
A. Schulte, S. VanSchalkwyk, A. Yang, On the divisibility and valuations of the Franel numbers, in MSRI-UP Research Reports, 2014.
A. Schulte, S. VanSchalkwyk, A. Yang, On the divisibility and valuations of the Franel numbers, Examples of Outstanding Student Posters, MAA.
MATHEMATICA
maxPrime = 1051;
maxPi = PrimePi @ maxPrime;
okQ[p_] := AllTrue[Range[3 maxPi (* coeff 3 is empirical *)], GCD[HypergeometricPFQ[{-#, -#, -#}, {1, 1}, -1], p] == 1&];
Select[Prime[Range[maxPi]], okQ] (* Jean-François Alcover, Jan 13 2020 *)
CROSSREFS
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see this sequence, A291275-A291284 and A133370 respectively.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 05 2015
EXTENSIONS
Edited by N. J. A. Sloane, Aug 22 2017
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} A000172(n)*x^n/n ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.
+20
15
1, 2, 7, 30, 147, 786, 4472, 26644, 164477, 1044258, 6782484, 44887236, 301782361, 2056250570, 14172792355, 98667874038, 692948001906, 4904403499992, 34951124337300, 250617829087656, 1807055528439771, 13095146839953030
OFFSET
0,2
COMMENTS
Analogous to the square of the g.f. of Catalan numbers (A000108):
C(x)^2 = exp( Sum_{n>=1} A000984(n)*x^n/n ) where central binomial coefficient A000984(n) = Sum_{k=0..n} C(n,k)^2.
LINKS
FORMULA
Self-convolution of A166991.
a(n) ~ c * 8^n / n^2, where c = 0.58462945... - Vaclav Kotesovec, Nov 27 2017, updated Oct 29 2024
EXAMPLE
G.f.: A(x) = 1 + 2*x + 7*x^2 + 30*x^3 + 147*x^4 + 786*x^5 + 4472*x^6 +...
log(A(x)) = 2*x + 10*x^2/2 + 56*x^3/3 + 346*x^4/4 + 2252*x^5/5 + 15184*x^6/6 + 104960*x^7/7 +...+ A000172(n)*x^n/n +...
MATHEMATICA
a[n_] := Sum[(Binomial[n, k])^3, {k, 0, n}]; f[x_] := Sum[a[n]*x^n/n, {n, 1, 75}]; CoefficientList[Series[Exp[f[x]], {x, 0, 50}], x] (* G. C. Greubel, May 30 2016 *)
nmax = 30; Clear[a]; franel = RecurrenceTable[{n^2*a[n] == (7*n^2 - 7*n + 2)*a[n-1] + 8*(n-1)^2*a[n-2], a[1] == 2, a[2] == 10}, a, {n, 1, nmax}]; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[franel[[k]]*a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 27 2024 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^3)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A000172 (Franel numbers), A166991, A166992, A218117, A218119.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 17 2009
STATUS
approved
Least prime divisor of Fr(n) which does not divide any Fr(k) with k < n, or 1 if such a primitive prime divisor of Fr(n) does not exist, where Fr(n) denotes the n-th Franel number given by A000172.
+20
11
2, 5, 7, 173, 563, 13, 41, 369581, 937, 61, 23, 29, 2141, 12148537, 31, 157, 59, 37, 506251, 151, 3019, 769, 47, 6730949, 79, 53, 3853, 661, 138961158000728258971, 1361, 421, 96920594213, 51378681049, 457, 71
OFFSET
1,1
COMMENTS
Conjecture: a(n) > 1 for all n > 0.
LINKS
EXAMPLE
a(7) = 41 since Fr(7) = 2^9*5*41 with the prime factor 41 dividing none of Fr(1), ..., Fr(6) but 2 divides Fr(1) = 2 and 5 divides Fr(2) = 10.
MATHEMATICA
Fr[n_]:=Sum[Binomial[n, k]^3, {k, 0, n}]
f[n_]:=FactorInteger[Fr[n]]
p[n_]:=Table[Part[Part[f[n], k], 1], {k, 1, Length[f[n]]}]
Do[Do[Do[If[Mod[Fr[i], Part[p[n], k]]==0, Goto[aa]], {i, 1, n-1}]; Print[n, " ", Part[p[n], k]]; Goto[bb]; Label[aa]; Continue, {k, 1, Length[p[n]]}]; Print[n, " ", 1]; Label[bb]; Continue, {n, 1, 35}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 05 2014
STATUS
approved
G.f. A(x) satisfies: the sum of the coefficients of x^k, k=0..n, in A(x)^n equals Sum_{k=0..n} C(n,k)^3 = A000172(n) (Franel numbers), for n>=0.
+20
9
1, 1, 3, 7, 20, 66, 244, 980, 4182, 18674, 86353, 410541, 1996214, 9888844, 49760925, 253767097, 1309154825, 6822023553, 35865392690, 190038440422, 1014015337209, 5444707218851, 29401289997403, 159584901816255, 870267544114291, 4766246752344215, 26206635040151511
OFFSET
0,3
COMMENTS
Compare to: Sum_{k=0..n} [x^k] 1/(1-x)^n = Sum_{k=0..n} C(n,k)^2 = (2*n)!/n!^2.
a(n+1)/a(n) tends to 6.0295... - Vaclav Kotesovec, Jan 22 2014
LINKS
Paul D. Hanna and Vaclav Kotesovec, Table of n, a(n) for n = 0..460 (first 200 terms from Paul D. Hanna)
FORMULA
Given g.f. A(x), Sum_{k=0..n} [x^k] A(x)^n = Sum_{k=0..n} C(n,k)^3 = A000172(n).
Given g.f. A(x), let G(x) = A(x*G(x)) then (G(x) + x*G'(x)) / (G(x) - x*G(x)^2) = Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-2*x)^(3*n+1) = Sum_{n>=0} A000172(n)*x^n.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 20*x^4 + 66*x^5 + 244*x^6 + 980*x^7 +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:
A^0: [1],0, 0, 0, 0, 0, 0, 0, 0, ...;
A^1: [1, 1], 3, 7, 20, 66, 244, 980, 4182, ...;
A^2: [1, 2, 7], 20, 63, 214, 789, 3124, 13112, ...;
A^3: [1, 3, 12, 40], 138, 492, 1848, 7326, 30531, ...;
A^4: [1, 4, 18, 68, 255], 960, 3716, 14920, 62295, ...;
A^5: [1, 5, 25, 105, 425, 1691], 6785, 27805, 117165, ...;
A^6: [1, 6, 33, 152, 660, 2772, 11560], 48588, 207774, ...;
A^7: [1, 7, 42, 210, 973, 4305, 18676, 80746],351792, ...;
A^8: [1, 8, 52, 280, 1378, 6408, 28916, 128808, 573311], ...; ...
then the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals Sum_{k=0..n} C(n,k)^3 = A000172(n):
A000172(0) = 1 = 1;
A000172(1) = 1 + 1 = 2;
A000172(2) = 1 + 2 + 7 = 10;
A000172(3) = 1 + 3 + 12 + 40 = 56;
A000172(4) = 1 + 4 + 18 + 68 + 255 = 346;
A000172(5) = 1 + 5 + 25 + 105 + 425 + 1691 = 2252;
A000172(6) = 1 + 6 + 33 + 152 + 660 + 2772 + 11560 = 15184; ...
MATHEMATICA
Franel[n_] := Sum[Binomial[n, k]^3, {k, 0, n}];
a[0] = 1; a[n_] := Module[{B, G}, B = Sum[Franel[k]*x^k, {k, 0, n+1}] + x^3*O[x]^n; G = 1+x*O[x]^n; For[i=1, i <= n, i++, G = 1+Integrate[(B-1)* (G/x)-B*G^2, x]]; SeriesCoefficient[x/InverseSeries[x*G, x], {x, 0, n}]];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jan 15 2018, translated from 2nd PARI program *)
PROG
(PARI) /* By Definition (slow): */
{Franel(n)=sum(k=0, n, binomial(n, k)^3)}
{a(n)=if(n==0, 1, (Franel(n) - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n + x*O(x^k), k)))/n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Faster, using series reversion: */
{Franel(n)=sum(k=0, n, binomial(n, k)^3)}
{a(n)=local(B=sum(k=0, n+1, Franel(k)*x^k)+x^3*O(x^n), G=1+x*O(x^n));
for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); polcoeff(x/serreverse(x*G), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 05 2013
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} A000172(n)*x^n/(2*n) ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.
+20
6
1, 1, 3, 12, 57, 300, 1693, 10045, 61890, 392688, 2550843, 16891566, 113660475, 775223595, 5349057132, 37280705406, 262119009927, 1857241951359, 13250054817027, 95110710932424, 686490953423700, 4979704242810870
OFFSET
0,3
LINKS
FORMULA
Self-convolution yields A166990.
a(n) ~ c * 8^n / n^2, where c = 0.231776... - Vaclav Kotesovec, Nov 27 2017
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 57*x^4 + 300*x^5 + 1693*x^6 +...
log(A(x)^2) = 2*x + 10*x^2/2 + 56*x^3/3 + 346*x^4/4 + 2252*x^5/5 + 15184*x^6/6 + 104960*x^7/7 +...+ A000172(n)*x^n/n +...
MATHEMATICA
a[n_] := Sum[(Binomial[n, k])^3, {k, 0, n}]; f[x_] := Sum[a[n]*x^n/(2*n), {n, 1, 75}]; CoefficientList[Series[Exp[f[x]], {x, 0, 50}], x] (* G. C. Greubel, May 30 2016 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^3)/2*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A000172 (Franel numbers), A166990, A166993, A218118, A218120.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 17 2009
STATUS
approved
Least positive integer m such that m + n divides f(m) + f(n), where f(.) is given by A000172.
+20
6
1, 1, 25, 6, 14, 4, 13, 49, 19, 10, 2, 56, 2, 5, 6, 5, 27, 61, 9, 33, 23, 53, 21, 15, 3, 24, 11, 58, 39, 118, 3, 1598, 20, 40, 4, 2, 58, 26, 29, 17, 47, 34, 4, 31, 43, 163, 41, 25, 8, 26, 67, 40, 21, 214, 535, 12, 7, 22, 164, 74
OFFSET
1,3
COMMENTS
Conjecture: a(n) exists for any n > 0.
EXAMPLE
a(5) = 14 since 5 + 14 = 19 divides f(5) + f(14) = 2252 + 112738423360 = 112738425612 = 19*5933601348.
MATHEMATICA
f[n_]:=Sum[Binomial[n, k]^3, {k, 0, n}]
Do[m=1; Label[aa]; If[Mod[f[m]+f[n], m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 02 2014
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} A000172(n)^n*x^n/n ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.
+20
5
1, 2, 52, 58640, 3583098592, 11584364000042912, 2042518153012624794424576, 20047892010468651075834167466942080, 11138509206681372983092694151616405935206616064, 354938139483847646086359348765071470756626699510545192807936
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 2*x + 52*x^2 + 58640*x^3 + 3583098592*x^4 +...
where
log(A(x)) = 2*x + 10^2*x^2/2 + 56^3*x^3/3 + 346^4*x^4/4 + 2252^5*x^5/5 + 15184^6*x^6/6 + 104960^7*x^7/7 +...+ A000172(n)^n*x^n/n +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3)^m*x^m/m+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 04 2012
STATUS
approved
a(n) = A000172(n)^2.
+20
4
1, 4, 100, 3136, 119716, 5071504, 230553856, 11016601600, 546360462244, 27888242788624, 1456587070867600, 77515424509446400, 4189899499315360000, 229472379264509977600, 12709952101698593689600, 710863065714510068187136
OFFSET
0,2
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 191.
LINKS
FORMULA
P-recursive: P(n-1)*n^4*a(n) = P(n)*Q(n)*a(n-1) + 8*P(n-1)*Q(n)*a(n-2) - 512*P(n)*(n-2)^4*a(n-3), where P(n) = 7*n^2 - 7*n + 2 and Q(n) = 57*n^4 - 228*n^3 + 321*n^2 - 186*n + 40 with a(0) = 1, a(1) = 4 and a(2) = 100. - Peter Bala, Feb 01 2024
a(n) ~ 2^(6*n+2) / (3*Pi^2*n^2). - Vaclav Kotesovec, Feb 02 2024
MATHEMATICA
A052144[n_] := HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -1]^2;
Array[A052144, 20, 0] (* Paolo Xausa, Jan 30 2024, after Jean-François Alcover in A000172 *)
CROSSREFS
Cf. A000172.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 23 2000
STATUS
approved
a(n) = A000984(n)*A000172(n), which is the term-wise product of the Central binomial coefficients and Franel numbers, respectively.
+20
4
1, 4, 60, 1120, 24220, 567504, 14030016, 360222720, 9513014940, 256758913840, 7051260776560, 196403499277440, 5535202897806400, 157551884911456000, 4522682234563776000, 130783762623673221120, 3806221127760278029980
OFFSET
0,2
COMMENTS
This sequence is s_6 in Cooper's paper. - Jason Kimberley, Nov 25 2012
Diagonal of the rational function R(x,y,z,w)=1/(1-(w*x*y+w*z+x*y+x*z+y+z)). - Gheorghe Coserea, Jul 13 2016
LINKS
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
FORMULA
a(n) = C(2n,n) * Sum_{k=0..n} C(n,k)^3.
E.g.f.: Sum_{n>=0} a(n)*x^n/(n!*(2*n)!) = ( Sum_{n>=0} x^n/n!^3 )^2.
From Jason Kimberley, Nov 26 2012: (Start)
1/Pi
= (2/25)*Sum_{n>=0} a(n)*(9n+2)/50^n. [Cooper, equation (5)]
= (2/25)*Sum_{n>=0} a(n)*A017185(n)/A165800(n). (End)
G.f.: 4*hypergeom([1/6, 1/3],[1],(27/2)*(1+(1-32*x)^(1/2))*(1-(1-32*x)^(1/2))^2/(3+(1-32*x)^(1/2))^3)^2/(3+(1-32*x)^(1/2)). - Mark van Hoeij, May 07 2013
Recurrence: n^3*a(n) = 2*(2*n-1)*(7*n^2 - 7*n + 2)*a(n-1) + 32*(n-1)*(2*n-3)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Mar 06 2014
a(n) ~ 2^(5*n+1) / (sqrt(3) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Mar 06 2014
0 = (-x^2+28*x^3+128*x^4)*y''' + (-3*x+126*x^2+768*x^3)*y'' + (-1+92*x+864*x^2)*y' + (4+96*x)*y, where y is g.f. - Gheorghe Coserea, Jul 13 2016
EXAMPLE
E.g.f.: A(x) = 1 + 4*x/2! + 60*x^2/(2!*4!) + 1120*x^3/(3!*6!) + 24220*x^4/(4!*8!) + 567504*x^5/(5!*10!) +....
where A(x)^(1/2) = 1 + x + x^2/2!^3 + x^3/3!^3 + x^4/4!^3 +x^5/5!^3 +...
MATHEMATICA
Table[Binomial[2n, n]*Sum[Binomial[n, k]^3, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 06 2014 *)
PROG
(PARI) {a(n)=binomial(2*n, n)*sum(k=0, n, binomial(n, k)^3)}
(PARI) {a(n)=(2*n)!*n!*polcoeff(sum(m=0, n, x^m/m!^3+x*O(x^n))^2, n)}
CROSSREFS
Related to diagonal of rational functions: A268545-A268555.
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Jan 28 2011
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} A000172(n)^2*x^n/n ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.
+20
4
1, 4, 58, 1256, 35771, 1200188, 45016678, 1827941560, 78753548245, 3551810922324, 166120394053698, 8002733850225288, 395089619067741926, 19911864121386482264, 1021345223473335336668, 53190166903606336969840, 2807000233813092463820488, 149869216802426305919295328
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 4*x + 58*x^2 + 1256*x^3 + 35771*x^4 + 1200188*x^5 +...
such that
log(A(x)) = 4*x + 100*x^2/2 + 3136*x^3/3 + 119716*x^4/4 + 5071504*x^5/5 +...+ A000172(n)^2*x^n/n +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3)^2*x^m*1^m/m+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 04 2012
STATUS
approved

Search completed in 0.122 seconds