This site is supported by donations to The OEIS Foundation.
User:Gerry Martens
From OeisWiki
Contents
- In case you spot any related sequences or have comments, you can post them on my user_talk_page.
Reviewing some OEIS binomial related sequences one notices the following form for certain p and q :
By assigning p=1 and q=-2 the sequence a(n) is the central binomial coefficient and one obtains the following identity:
- It is a little challenging writing the identity this way but the (-1)^j takes care of the sign.
Due to its origin it is more meaningful using the variables (i,j,k).
For the OEIS sequences it is common to replace k by n.
Related Sequence |
Name |
A108958 | Number of unordered pairs of distinct length-n binary words having the same number of 1's. |
A054563 | a(n) = n*(n^2 - 1)*(n + 2)*(n^2 + 4*n + 6)/72. |
n | k | Related Sequence |
Name |
n | 1 | A000027 | The positive integers. |
n | 2 | A000217 | Triangular numbers: a(n) = binomial(n+1,2). |
n | 3 | A000292 | Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3). |
n | 4 | A000332 | Binomial coefficient binomial(n,4) |
n | 5 | A000389 | Binomial coefficients C(n,5). |
n | 6 | A000579 | Figurate numbers or binomial coefficients C(n,6). |
n | 7 | A000580 | a(n) = binomial coefficient C(n,7). |
n | 8 | A000581 | a(n) = binomial coefficient C(n,8). |
n | 9 | A000582 | a(n) = binomial coefficient C(n,9). |
n | 10 | A001287 | a(n) = binomial coefficient C(n,10). |
n | 11 | A001288 | a(n) = binomial(n,11). |
n | 12 | A010965 | a(n) = binomial(n,12). |
n | 13 | A010966 | a(n) = binomial(n,13). |
n | k | Related Sequence |
Name |
2n | 1 | A005408 | The odd numbers: a(n) = 2*n + 1. |
2n | 2 | A000384 | Hexagonal numbers : a (n) = n*(2*n - 1) = C(2*n,2). |
2n | 4 | A053134 | Binomial coefficients C (2*n + 4, 4). |
2n | 6 | A053135 | Binomial coefficients C (2*n + 6, 6). |
2n | 8 | A053137 | Binomial coefficients C (2*n + 8, 8). |
2n | 10 | A196789 | Binomial coefficients C(2*n+10,10). |