[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a225468 -id:a225468
     Sort: relevance | references | number | modified | created      Format: long | short | data
Galton triangle T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k) read by rows.
+10
15
1, 1, 1, 1, 5, 1, 1, 21, 12, 1, 1, 85, 105, 22, 1, 1, 341, 820, 325, 35, 1, 1, 1365, 6081, 4070, 780, 51, 1, 1, 5461, 43932, 46781, 14210, 1596, 70, 1, 1, 21845, 312985, 511742, 231511, 39746, 2926, 92, 1, 1, 87381, 2212740, 5430405, 3521385, 867447, 95340, 4950, 117, 1
OFFSET
1,5
COMMENTS
In triangles of analogs to Stirling numbers of the second kind, the multipliers of T(n-1,k) in the recurrence are terms in arithmetic sequences: in Pascal's triangle A007318, the multiplier = 1. In triangle A008277, the Stirling numbers of the second kind, the multipliers are in the set (1,2,3...). For this sequence here, the multipliers are from A016777.
Riordan array [exp(x), (exp(3x)-1)/3]. - Paul Barry, Nov 26 2008
From Peter Bala, Jan 27 2015: (Start)
Working with an offset of 0, this is the triangle of connection constants between the polynomial basis sequences {x^n}, n>=0 and {n!*3^n*binomial((x - 1)/3,n)}, n>=0. An example is given below.
Call this array M and let P denote Pascal's triangle A007318, then P * M = A225468, P^2 * M = A075498. Also P^(-1) * M is a shifted version of A075498.
This triangle is the particular case a = 3, b = 0, c = 1 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. (End)
Named after the English scientist Francis Galton (1822-1911). - Amiram Eldar, Jun 13 2021
LINKS
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
Ruedi Suter, Two Analogues of a Classical Sequence, Journal of Integer Sequences, Vol. 3 (2000), Article 00.1.8. [Paul Barry, Nov 26 2008]
FORMULA
T(n, k) = T(n-1, k-1) + (3k-2)*T(n-1, k).
E.g.f.: exp(x)*exp((y/3)*(exp(3x)-1)). - Paul Barry, Nov 26 2008
Let f(x) = exp(1/3*exp(3*x)+x). Then, with an offset of 0, the row polynomials R(n,x) are given by R(n,exp(3*x)) = 1/f(x)*(d/dx)^n(f(x)). Similar formulas hold for A008277, A039755, A105794, A143494 and A154537. - Peter Bala, Mar 01 2012
T(n, k) = 1/(3^k*k!)*Sum_{j=0..k}((-1)^(k-j)*binomial(k,j)*(3*j+1)^n). - Peter Luschny, May 20 2013
From Peter Bala, Jan 27 2015: (Start)
T(n,k) = sum {i = 0..n-1} 3^(i-k+1)*binomial(n-1,i)*Stirling2(i,k-1).
O.g.f. for n-th diagonal: exp(-x/3)*sum {k >= 0} (3*k + 1)^(k + n - 1)*((x/3*exp(-x))^k)/k!.
O.g.f. column k (with offset 0): 1/( (1 - x)*(1 - 4*x)*...*(1 - (3*k + 1)*x) ). (End)
EXAMPLE
T(5,3) = T(4,2)+7*T(4,3) = 21 + 7*12 = 105.
The triangle starts in row n=1 as:
1;
1,1;
1,5,1;
1,21,12,1;
1,85,105,22,1;
Connection constants: Row 4: [1, 21, 12, 1] so
x^3 = 1 + 21*(x - 1) + 12*(x - 1)*(x - 4) + (x - 1)*(x - 4)*(x - 7). - Peter Bala, Jan 27 2015
MAPLE
A111577 := proc(n, k) option remember; if k = 1 or k = n then 1; else procname(n-1, k-1)+(3*k-2)*procname(n-1, k) ; fi; end:
seq( seq(A111577(n, k), k=1..n), n=1..10) ; # R. J. Mathar, Aug 22 2009
MATHEMATICA
T[_, 1] = 1; T[n_, n_] = 1;
T[n_, k_] := T[n, k] = T[n-1, k-1] + (3k-2) T[n-1, k];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 13 2019 *)
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Aug 07 2005
EXTENSIONS
Edited and extended by R. J. Mathar, Aug 22 2009
STATUS
approved
Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 3*x)^(-1/3), (-1/3)*log(1 - 3*x)). A generalized Stirling1 triangle.
+10
13
1, 1, 1, 4, 5, 1, 28, 39, 12, 1, 280, 418, 159, 22, 1, 3640, 5714, 2485, 445, 35, 1, 58240, 95064, 45474, 9605, 1005, 51, 1, 1106560, 1864456, 959070, 227969, 28700, 1974, 70, 1, 24344320, 42124592, 22963996, 5974388, 859369, 72128, 3514, 92, 1, 608608000, 1077459120, 616224492, 172323696, 27458613, 2662569, 159978, 5814, 117, 1, 17041024000, 30777463360, 18331744896, 5441287980, 941164860, 102010545, 7141953, 322770, 9090, 145, 1
OFFSET
0,4
COMMENTS
This is a generalization of the unsigned Stirling1 triangle A132393.
In general the lower triangular Sheffer matrix ((1 - d*x)^(-a/d), (-1/d)*log(1 - d*x)) is called here |S1hat[d,a]|. The signed matrix S1hat[d,a] with elements (-1)^(n-k)*|S1hat[d,a]|(n, k) is the inverse of the generalized Stirling2 Sheffer matrix S2hat[d,a] with elements S2[d,a](n, k)/d^k, where S2[d,a] is Sheffer (exp(a*x), exp(d*x) - 1).
In the Bala link the signed S1hat[d,a] (with row scaled elements S1[d,a](n,k)/d^n where S1[d,a] is the inverse matrix of S2[d,a]) is denoted by s_{(d,0,a)}, and there the notion exponential Riordan array is used for Sheffer array.
In the Luschny link the elements of |S1hat[m,m-1]| are called Stirling-Frobenius cycle numbers SF-C with parameter m.
From Wolfdieter Lang, Aug 09 2017: (Start)
The general row polynomials R(d,a;n,x) = Sum_{k=0..n} T(d,a;n,k)*x^k of the Sheffer triangle |S1hat[d,a]| satisfy, as special polynomials of the Boas-Buck class (see the reference), the identity (we use the notation of Rainville, Theorem 50, p. 141, adapted to an exponential generating function)
(E_x - n*1)*R(d,a;n,x) = -n!*Sum_{k=0..n-1} d^k*(a*1 + d*beta(k)*E_x)*R(d,a;n-1-k,x)/(n-1-k)!, for n >= 0, with E_x = x*d/dx (Euler operator), and beta(k) = A002208(k+1)/A002209(k+1).
This entails a recurrence for the sequence of column k, for n > k >= 0: T(d,a;n,k) = (n!/(n - k))*Sum_{p=k..n-1} d^(n-1-p)*(a + d*k*beta(n-1-p))*T(d,a;p,k)/p!, with input T(d,a;k,k) = 1. For the present [d,a] = [3,1] case see the formula and example sections below. (End)
The inverse of the Sheffer triangular matrix S2[3,1] = A282629 is the Sheffer matrix S1[3,1] = (1/(1 + x)^(1/3), log(1 + x)/3) with rational elements S1[3,1](n, k) = (-1)^(n-m)*T(n, k)/3^n. - Wolfdieter Lang, Nov 15 2018
REFERENCES
Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
FORMULA
Recurrence: T(n, k) = T(n-1, k-1) + (3*n-2)*T(n-1, k), for n >= 1, k = 0..n, and T(n, -1) = 0, T(0, 0) = 1 and T(n, k) = 0 for n < k.
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (i.e., e.g.f. of the triangle) is (1 - 3*z)^{-(x+1)/3}.
E.g.f. of column k is (1 - 3*x)^(-1/3)*((-1/3)*log(1 - 3*x))^k/k!.
Recurrence for row polynomials is R(n, x) = (x+1)*R(n-1, x+3), with R(0, x) = 1.
Row polynomial R(n, x) = risefac(3,1;x,n) with the rising factorial
risefac(d,a;x,n) := Product_{j=0..n-1} (x + (a + j*d)). (For the signed case see the Bala link, eq. (16)).
T(n, k) = sigma^{(n)}_{n-k}(a_0,a_1,...,a_{n-1}) with the elementary symmetric functions with indeterminates a_j = 1 + 3*j.
T(n, k) = Sum_{j=0..n-k} binomial(n-j, k)*|S1|(n, n-j)*3^j, with the unsigned Stirling1 triangle |S1| = A132393.
Boas-Buck column recurrence (see a comment above): T(n, k) =
(n!/(n - k))*Sum_{p=k..n-1} 3^(n-1-p)*(1 + 3*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, with beta(k) = A002208(k+1)/A002209(k+1). See an example below. - Wolfdieter Lang, Aug 09 2017
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 ...
O: 1
1: 1 1
2: 4 5 1
3: 28 39 12 1
4: 280 418 159 22 1
5: 3640 5714 2485 445 35 1
6: 58240 95064 45474 9605 1005 51 1
7: 1106560 1864456 959070 227969 28700 1974 70 1
8: 24344320 42124592 22963996 5974388 859369 72128 3514 92 1
...
From Wolfdieter Lang, Aug 09 2017: (Start)
Recurrence: T(3, 1) = T(2, 0) + (3*3-2)*T(2, 1) = 4 + 7*5 = 39.
Boas-Buck recurrence for column k = 2 and n = 5:
T(5, 2) = (5!/3)*(3^2*(1 + 6*(3/8))*T(2,2)/2! + 3*(1 + 6*(5/12)*T(3, 2)/3! + (1 + 6*(1/2))* T(4, 2)/4!)) = (5!/3)*(9*(1 + 9/4)/2 + 3*(1 + 15/6)*12/6 + (1 + 3)*159/24) = 2485.
The beta sequence begins: {1/2, 5/12, 3/8, 251/720, 95/288, 19087/60480, ...}.
(End)
MATHEMATICA
T[n_ /; n >= 1, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (3*n-2)* T[n-1, k]; T[_, -1] = 0; T[0, 0] = 1; T[n_, k_] /; n<k = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018 *)
CROSSREFS
S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is A048993, A154537, A282629, A225466, A285061 and A225467, respectively.
S2hat[d,a] for these [d,a] values is A048993, A039755, A111577 (offset 0), A225468, A111578 (offset 0) and A225469, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,2], [4,1] and [4,3] is A132393, A028338, A225470, A290317 and A225471, respectively.
Column sequences for k = 0, 1: A007559, A024216.
Diagonal sequences: A000012, A000326(n+1), A024212(n+1), A024213(n+1).
Row sums: A008544. Alternating row sums: A000007.
Beta sequence: A002208(n+1)/A002209(n+1).
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, May 18 2017
STATUS
approved
Triangle read by rows, 3^k*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
+10
11
1, 2, 3, 4, 21, 9, 8, 117, 135, 27, 16, 609, 1431, 702, 81, 32, 3093, 13275, 12015, 3240, 243, 64, 15561, 115479, 171990, 81405, 13851, 729, 128, 77997, 970515, 2238327, 1655640, 479682, 56133, 2187, 256, 390369, 7998111, 27533142, 29893941, 13121514, 2561706
OFFSET
0,2
COMMENTS
The definition of the Stirling-Frobenius subset numbers of order m is in A225468.
From Wolfdieter Lang, Apr 09 2017: (Start)
This is the Sheffer triangle (exp(2*x), exp(3*x) - 1), denoted by S2[3,2]. See also A282629 for S2[3,1]. The stirling2 triangle A048993 is in this notation denoted by S2[1,0].
The a-sequence for this Sheffer triangle has e.g.f. 3*x/log(1+x) and is 3*A006232(n)/A006233(n) (Cauchy numbers of the first kind). For a- and z-sequences for Sheffer triangles see the W. Lang link under A006232, also with references).
The z-sequence has e.g.f. (3/(log(1+x)))*(1 - 1/(1+x)^(2/3)) and gives 2*A284862/A284863.
The first column k sequences divided by 3^k are A000079, A016127, A016297, A025999. For the e.g.f.s and o.g.f.s see below.
The row sums give A284864. The alternating row sums give A284865.
This triangle appears in the o.g.f. G(n, x) of the sequence {(2 + 3*m)^n}_{m>=0}, as G(n, x) = Sum_{k=0..n} T(n, k)*k!*x^k/(1-x)^(k+1), n >= 0. Hence the corresponding e.g.f. is, by the linear inverse Laplace transform, E(n, t) = Sum_{m >=0} (2 + 3*m)^n t^m/m! = exp(t)*Sum_{k=0..n} T(n, k)*t^k.
The corresponding Eulerian number triangle is A225117(n, k) = Sum_{m=0..k} (-1)^(k-m)*binomial(n-m, k-m)*T(n, m)*m!, 0 <= k <= n. (End)
LINKS
Vincenzo Librandi, Rows n = 0..50, flattened
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
Peter Luschny, Eulerian polynomials.
Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv:1308.0169 [math.CO], 2013, p. 12.
FORMULA
T(n, k) = (1/k!)*Sum_{j=0..n} binomial(j, n-k)*A_3(n, j) where A_m(n, j) are the generalized Eulerian numbers A225117.
For a recurrence see the Maple program.
T(n, 0) ~ A000079; T(n, 1) ~ A005057; T(n, n) ~ A000244.
From Wolfdieter Lang, Apr 09 2017: (Start)
T(n, k) = Sum_{j=0..k} binomial(k,j)*(-1)^(j-k)*(2 + 3*j)^n/k!, 0 <= k <= n.
E.g.f. of triangle: exp(2*z)*exp(x*(exp(3*z)-1)) (Sheffer type).
E.g.f. for sequence of column k is exp(2*x)*((exp(3*x) - 1)^k)/k! (Sheffer property).
O.g.f. for sequence of column k is 3^k*x^k/Product_{j=0..k} (1 - (2+3*j)*x).
A nontrivial recurrence for the column m=0 entries T(n, 0) = 2^n from the z-sequence given above: T(n,0) = n*Sum_{k=0..n-1} z(k)*T(n-1,k), n >= 1, T(0, 0) = 1.
The corresponding recurrence for columns k >= 1 from the a-sequence is T(n, k) = (n/k)* Sum_{j=0..n-k} binomial(k-1+j, k-1)*a(j)*T(n-1, k-1+j).
Recurrence for row polynomials R(n, x) (Meixner type): R(n, x) = ((3*x+2) + 3*x*d_x)*R(n-1, x), with differentiation d_x, for n >= 1, with input R(0, x) = 1.
(End)
Boas-Buck recurrence for column sequence m: T(n, k) = (1/(n - m))*[(n/2)*(4 + 3*m)*T(n-1, k) + m* Sum_{p=m..n-2} binomial(n, p)(-3)^(n-p)*Bernoulli(n-p)*T(p, k)], for n > k >= 0, with input T(k, k) = 3^k. See a comment and references in A282629, An example is given below. - Wolfdieter Lang, Aug 11 2017
EXAMPLE
[n\k][ 0, 1, 2, 3, 4, 5, 6, 7]
[0] 1,
[1] 2, 3,
[2] 4, 21, 9,
[3] 8, 117, 135, 27,
[4] 16, 609, 1431, 702, 81,
[5] 32, 3093, 13275, 12015, 3240, 243,
[6] 64, 15561, 115479, 171990, 81405, 13851, 729,
[7] 128, 77997, 970515, 2238327, 1655640, 479682, 56133, 2187.
...
From Wolfdieter Lang, Aug 11 2017: (Start)
Recurrence (see the Maple program): T(4, 2) = 3*T(3, 1) + (3*2+2)*T(3, 2) = 3*117 + 8*135 = 1431.
Boas-Buck recurrence for column m = 2, and n = 4: T(4,2) = (1/2)*[2*(4 + 3*2)*T(3, 2) + 2*6*(-3)^2*Bernoulli(2)*T(2, 2))] = (1/2)*(20*135 + 12*9*(1/6)*9) = 1431. (End)
MAPLE
SF_SS := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
m*SF_SS(n-1, k-1, m) + (m*(k+1)-1)*SF_SS(n-1, k, m) end:
seq(print(seq(SF_SS(n, k, 3), k=0..n)), n=0..5);
MATHEMATICA
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/k!; Table[ SFSS[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
PROG
(Sage)
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) + (m*k+1)*EulerianNumber(n-1, k, m)
def SF_SS(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n-k) for j in (0..n))/ factorial(k)
def A225466(n): return SF_SS(n, k, 3)
(PARI) T(n, k) = sum(j=0, k, binomial(k, j)*(-1)^(j - k)*(2 + 3*j)^n/k!);
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "); ); print(); ) \\ Indranil Ghosh, Apr 10 2017
(Python)
from sympy import binomial, factorial
def T(n, k): return sum(binomial(k, j)*(-1)**(j - k)*(2 + 3*j)**n//factorial(k) for j in range(k + 1))
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 10 2017
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Luschny, May 08 2013
STATUS
approved
Triangle read by rows, S_4(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
+10
10
1, 3, 1, 9, 10, 1, 27, 79, 21, 1, 81, 580, 310, 36, 1, 243, 4141, 3990, 850, 55, 1, 729, 29230, 48031, 16740, 1895, 78, 1, 2187, 205339, 557571, 299131, 52745, 3689, 105, 1, 6561, 1439560, 6338620, 5044536, 1301286, 137592, 6524, 136, 1
OFFSET
0,2
COMMENTS
The definition of the Stirling-Frobenius subset numbers: S_m(n, k) = (sum_{j=0..n} binomial(j, n-k)*A_m(n, j)) / (m^k*k!) where A_m(n, j) are the generalized Eulerian numbers (see the links for details).
This is the Sheffer triangle (exp(3*x),(1/4)*(exp(4*x -1))). See the P. Bala link where this is called exponential Riordan array S_{(4,0,3)}. - Wolfdieter Lang, Apr 13 2017
LINKS
Vincenzo Librandi, Rows n = 0..50, flattened
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See pp. 8-9.
Shi-Mei Ma, Toufik Mansour, and Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv 1308.0169 p. 12.
FORMULA
T(n, k) = (sum_{j=0..n} binomial(j, n-k)*A_4(n, j)) / (4^k*k!) where A_4(n,j) = A225118.
For a recurrence see the Maple program.
T(n, 0) ~ A000244; T(n, 1) ~ A016138; T(n, 2) ~ A018054.
T(n, n) ~ A000012; T(n, n-1) ~ A014105.
From Wolfdieter Lang, Apr 13 2017: (Start)
E.g.f.: exp(3*z)*exp((x/4)*(exp(4*z -1))). Sheffer triangle (see a comment above).
E.g.f. column k: exp(3*x)*(exp(4*x) -1)^k/(4^k*k!), k >= 0 (Sheffer property).
O.g.f. column k: x^m/Product_{j=0..k} (1 - (3+4*j)*x), k >= 0.
(End)
EXAMPLE
[n\k][ 0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 3, 1,
[2] 9, 10, 1,
[3] 27, 79, 21, 1,
[4] 81, 580, 310, 36, 1,
[5] 243, 4141, 3990, 850, 55, 1,
[6] 729, 29230, 48031, 16740, 1895, 78, 1.
MAPLE
SF_S := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
SF_S(n-1, k-1, m) + (m*(k+1)-1)*SF_S(n-1, k, m) end:
seq(print(seq(SF_S(n, k, 4), k=0..n)), n = 0..5);
MATHEMATICA
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/(k!*m^k); Table[ SFS[n, k, 4], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
PROG
(Sage)
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) + (m*k+1)*EulerianNumber(n-1, k, m)
def SF_S(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/(factorial(k)*m^k)
for n in (0..6): [SF_S(n, k, 4) for k in (0..n)]
CROSSREFS
Cf. A048993 (m=1), A039755 (m=2), A225468 (m=3).
Cf. Columns: A000244, A016138, A018054.
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Luschny, May 16 2013
STATUS
approved
Triangle read by rows, s_3(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
+10
10
1, 2, 1, 10, 7, 1, 80, 66, 15, 1, 880, 806, 231, 26, 1, 12320, 12164, 4040, 595, 40, 1, 209440, 219108, 80844, 14155, 1275, 57, 1, 4188800, 4591600, 1835988, 363944, 39655, 2415, 77, 1, 96342400, 109795600, 46819324, 10206700, 1276009, 95200, 4186, 100, 1
OFFSET
0,2
COMMENTS
The Stirling-Frobenius subset numbers S_{m}(n,k), for m >= 1 fixed, regarded as an infinite lower triangular matrix, can be inverted by Sum_{k} S_{m}(n,k)*s_{m}(k,j)*(-1)^(n-k) = [j = n]. The inverse numbers s_{m}(k,j), which are unsigned, are the Stirling-Frobenius cycle numbers. For m = 1 this gives the classical Stirling cycle numbers A132393. The Stirling-Frobenius subset numbers are defined in A225468.
Triangle T(n,k), read by rows, given by (2, 3, 5, 6, 8, 9, 11, 12, 14, 15, ... (A007494)) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 14 2015
FORMULA
For a recurrence see the Maple program.
From Wolfdieter Lang, May 18 2017: (Start)
This is the Sheffer triangle (1/(1 - 3*x)^{-2/3}, -(1/3)*log(1-3*x)). See the P. Bala link where this is called exponential Riordan array, and the signed version is denoted by s_{(3,0,2)}.
E.g.f. of row polynomials in the variable x (i.e., of the triangle): (1 - 3*z)^{-(2+x)/3}.
E.g.f. of column k: (1-3*x)^(-2/3)*(-(1/3)*log(1-3*x))^k/k!, k >= 0.
Recurrence for row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k: R(n, x) = (x+2)*R(n-1,x+3), with R(0, x) = 1.
R(n, x) = risefac(3,2;x,n) := Product_{j=0..(n-1)} (x + (2 + 3*j)). (See the P. Bala link, eq. (16) for the signed s_{3,0,2} row polynomials.)
T(n, k) = Sum_{j=0..(n-m)} binomial(n-j, k)* S1p(n, n-j)*2^(n-k-j)*3^j, with S1p(n, m) = A132393(n, m). (End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 3^(n-1-p)*(2 + 3*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1), beginning {1/2, 5/12, 3/8, 251/720, ...}. See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
EXAMPLE
[n\k][ 0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 2, 1,
[2] 10, 7, 1,
[3] 80, 66, 15, 1,
[4] 880, 806, 231, 26, 1,
[5] 12320, 12164, 4040, 595, 40, 1,
[6] 209440, 219108, 80844, 14155, 1275, 57, 1.
...
From Wolfdieter Lang, Aug 11 2017: (Start)
Recurrence (see Maple program): T(4, 2) = T(3, 1) + (3*4 - 1)*T(3, 2) = 66 + 11*15 = 231.
Boas-Buck type recurrence for column k = 2 and n = 4: T(4, 2) = (4!/2)*(3*(2 + 6*(5/12))*T(2, 2)/2! + 1*(2 + 6*(1/2))*T(3,2)/3!) = (4!/2)*(3*9/4 + 5*15/3!) = 231. (End)
MAPLE
SF_C := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
SF_C(n-1, k-1, m) + (m*n-1)*SF_C(n-1, k, m) end:
seq(print(seq(SF_C(n, k, 3), k = 0..n)), n = 0..8);
MATHEMATICA
SFC[0, 0, _] = 1; SFC[n_, k_, _] /; (k > n || k < 0) = 0; SFC[n_, k_, m_] := SFC[n, k, m] = SFC[n-1, k-1, m] + (m*n-1)*SFC[n-1, k, m]; Table[SFC[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *)
CROSSREFS
Cf. A225468; A132393 (m=1), A028338 (m=2), A225471(m=4).
T(n, 0) ~ A008544; T(n, 1) ~ A024395; T(n, n) ~ A000012;
T(n, n-1) ~ A005449; T(n, n-2) ~ A024391; T(n, n-3) ~ A024392.
row sums ~ A032031; alternating row sums ~ A007559.
Cf. A132393.
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Luschny, May 16 2013
STATUS
approved
Triangle read by rows, T(n, k) = 4^k*S_4(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
+10
9
1, 3, 4, 9, 40, 16, 27, 316, 336, 64, 81, 2320, 4960, 2304, 256, 243, 16564, 63840, 54400, 14080, 1024, 729, 116920, 768496, 1071360, 485120, 79872, 4096, 2187, 821356, 8921136, 19144384, 13502720, 3777536, 430080, 16384, 6561, 5758240, 101417920, 322850304
OFFSET
0,2
COMMENTS
The definition of the Stirling-Frobenius subset numbers of order m is in A225468.
This is the Sheffer triangle (exp(3*x), exp(4*x) - 1). See also the P. Bala link under A225469, the Sheffer triangle (exp(3*x),(1/4)*(exp(4*x) - 1)), which is named there exponential Riordan array S_{(4,0,3)}. - Wolfdieter Lang, Apr 13 2017
LINKS
Vincenzo Librandi, Rows n = 0..50, flattened
Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
Peter Luschny, Eulerian polynomials.
FORMULA
T(n, k) = (1/k!)*sum_{j=0..n} binomial(j, n-k)*A_4(n, j) where A_m(n, j) are the generalized Eulerian numbers A225118.
For a recurrence see the Maple program.
T(n, 0) ~ A000244; T(n, 1) ~ A190541.
T(n, n) ~ A000302; T(n, n-1) ~ A002700.
From Wolfdieter Lang, Apr 13 2017: (Start)
T(n, k) = Sum_{m=0..k} binomial(k,m)*(-1)^(m-k)*((3+4*m)^n)/k!, 0 <= k <= n.
In terms of Stirling2 = A048993: T(n, m) = Sum_{k=0..n} binomial(n, k)* 3^(n-k)*4^k*Stirling2(k, m), 0 <= m <= n.
E.g.f. exp(3*z)*exp(x*(exp(4*z) - 1)) (Sheffer property).
E.g.f. column k: exp(3*x)*((exp(4*x) - 1)^k)/k!, k >= 0.
O.g.f. column k: (4*x)^k/Product_{j=0..k} (1 - (3 + 4*j)*x), k >= 0.
(End)
Boas-Buck recurrence for column sequence m: T(n, k) = (1/(n - k))*[(n/2)*(6 + 4*k)*T(n-1, k) + k*Sum_{p=k..n-2} binomial(n, p)(-4)^(n-p)*Bernoulli(n-p)*T(p, k)], for n > k >= 0, with input T(k, k) = 4^k. See a comment and references in A282629. An example is given below. - Wolfdieter Lang, Aug 11 2017
EXAMPLE
[n\k][ 0, 1, 2, 3, 4, 5, 6, 7]
[0] 1,
[1] 3, 4,
[2] 9, 40, 16,
[3] 27, 316, 336, 64,
[4] 81, 2320, 4960, 2304, 256,
[5] 243, 16564, 63840, 54400, 14080, 1024,
[6] 729, 116920, 768496, 1071360, 485120, 79872, 4096,
[7] 2187, 821356, 8921136, 19144384, 13502720, 3777536, 430080, 16384.
...
From Wolfdieter Lang, Aug 11 2017: (Start)
Recurrence (see the Maple program): T(4, 2) = 4*T(3, 1) + (4*2+3)*T(3, 2) = 4*316 + 11*336 = 4960.
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) =(1/2)*[2*(6 + 4*2)*T(3, 2) + 2*6*(-4)^2*Bernoulli(2)*T(2, 2))] = (1/2)*(28*336 + 12*16*(1/6)*16) = 4960. (End)
MAPLE
SF_SS := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
m*SF_SS(n-1, k-1, m) + (m*(k+1)-1)*SF_SS(n-1, k, m) end:
seq(print(seq(SF_SS(n, k, 4), k=0..n)), n=0..5);
MATHEMATICA
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/k!; Table[ SFSS[n, k, 4], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
PROG
(Sage)
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+(m*k+1)*EulerianNumber(n-1, k, m)
def SF_SS(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n-k) for j in (0..n))/factorial(k)
def A225467(n): return SF_SS(n, k, 4)
(PARI) T(n, k) = sum(m=0, k, binomial(k, m)*(-1)^(m - k)*((3 + 4*m)^n)/k!);
for(n = 0, 10, for(k=0, n, print1(T(n, k), ", "); ); print(); ) \\ Indranil Ghosh, Apr 13 2017
(Python)
from sympy import binomial, factorial
def T(n, k): return sum(binomial(k, m)*(-1)**(m - k)*((3 + 4*m)**n)//factorial(k) for m in range(k + 1))
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 13 2017
CROSSREFS
Cf. A048993 (m=1), A154537 (m=2), A225466 (m=3). A225469 (scaled).
Cf. Columns: A000244, 4*A016138, 16*A018054. A225118.
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Luschny, May 08 2013
STATUS
approved
Triangle read by rows, k!*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
+10
5
1, 2, 3, 4, 21, 18, 8, 117, 270, 162, 16, 609, 2862, 4212, 1944, 32, 3093, 26550, 72090, 77760, 29160, 64, 15561, 230958, 1031940, 1953720, 1662120, 524880, 128, 77997, 1941030, 13429962, 39735360, 57561840, 40415760, 11022480, 256, 390369, 15996222, 165198852
OFFSET
0,2
COMMENTS
The Stirling-Frobenius subset numbers are defined in A225468 (see also the Sage program).
FORMULA
For a recurrence see the Maple program.
T(n, 0) ~ A000079; T(n, 1) ~ A005057; T(n, n) ~ A032031.
From Wolfdieter Lang, Apr 10 2017: (Start)
E.g.f. for sequence of column k: exp(2*x)*(exp(3*x) - 1)^k, k >= 0. From the Sheffer triangle S2[3,2] = A225466 with column k multiplied with k!.
O.g.f. for sequence of column k is 3^k*k!*x^k/Product_{j=0..k} (1 - (2+3*j)*x), k >= 0.
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k, j)*(2+3*j)^n, 0 <= k <= n.
Three term recurrence (see the Maple program): T(n, k) = 0 if n < k , T(n, -1) = 0, T(0,0) = 1, T(n, k) = 3*k*T(n-1, k-1) + (2 + 3*k)*T(n-1, k) for n >= 1, k=0..n.
For the column scaled triangle (with diagonal 1s) see A225468, and the Bala link with (a,b,c) = (3,0,2), where Sheffer triangles are called exponential Riordan triangles.
(End)
The e.g.f. of the row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k is exp(2*z)/(1 - x*(exp(3*z) - 1)). - Wolfdieter Lang, Jul 12 2017
EXAMPLE
[n\k][0, 1, 2, 3, 4, 5, 6 ]
[0] 1,
[1] 2, 3,
[2] 4, 21, 18,
[3] 8, 117, 270, 162,
[4] 16, 609, 2862, 4212, 1944,
[5] 32, 3093, 26550, 72090, 77760, 29160,
[6] 64, 15561, 230958, 1031940, 1953720, 1662120, 524880.
MAPLE
SF_SO := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
m*k*SF_SO(n-1, k-1, m) + (m*(k+1)-1)*SF_SO(n-1, k, m) end:
seq(print(seq(SF_SO(n, k, 3), k=0..n)), n = 0..5);
MATHEMATICA
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]; Table[ SFSO[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
PROG
(Sage)
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+ (m*k+1)*EulerianNumber(n-1, k, m)
def SF_SO(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))
for n in (0..6): [SF_SO(n, k, 3) for k in (0..n)]
CROSSREFS
Cf. A131689 (m=1), A145901 (m=2), A225473 (m=4).
Cf. A225466, A225468, columns: A000079, 3*A016127, 3^2*2!*A016297, 3^3*3!*A025999.
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Luschny, May 17 2013
STATUS
approved
Triangle read by rows, k!*S_4(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
+10
5
1, 3, 4, 9, 40, 32, 27, 316, 672, 384, 81, 2320, 9920, 13824, 6144, 243, 16564, 127680, 326400, 337920, 122880, 729, 116920, 1536992, 6428160, 11642880, 9584640, 2949120, 2187, 821356, 17842272, 114866304, 324065280, 453304320, 309657600, 82575360, 6561
OFFSET
0,2
COMMENTS
The Stirling-Frobenius subset numbers are defined in A225468 (see also the Sage program).
FORMULA
For a recurrence see the Maple program.
T(n, 0) ~ A000244; T(n, 1) ~ A190541; T(n, n) ~ A047053.
From Wolfdieter Lang, Jul 12 2017: (Start)
T(n, k) = A225467(n, k)*k! = A225469(n, k)*(4^k*k!), 0 <= k <= n.
T(n, k) = Sum_{m=0..n} binomial(k,m)*(-1)^(k-m)*(3 + 4*m)^n.
Recurrence: T(n, -1) = 0, T(0, 0) = 1, T(n, k) = 0 if n < k and T(n, k) =
4*k*T(n-1, k-1) + (3 + 4*k)*T(n-1, k) for n >= 1, k = 0..n (see the Maple program).
E.g.f. row polynomials R(n, x) = Sum_{m=0..n} T(n, k)*x^k: exp(3*z)/(1 - x*(exp(4*z) - 1)).
E.g.f. column k: exp(3*x)*(exp(4*x) - 1)^k, k >= 0.
O.g.f. column k: k!*(4*x)^k/Product_{j=0..k} (1 - (3 + 4*j)*x), k >= 0.
(End)
EXAMPLE
[n\k][0, 1, 2, 3, 4, 5, 6 ]
[0] 1,
[1] 3, 4,
[2] 9, 40, 32,
[3] 27, 316, 672, 384,
[4] 81, 2320, 9920, 13824, 6144,
[5] 243, 16564, 127680, 326400, 337920, 122880,
[6] 729, 116920, 1536992, 6428160, 11642880, 9584640, 2949120.
MAPLE
SF_SO := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
m*k*SF_SO(n-1, k-1, m) + (m*(k+1)-1)*SF_SO(n-1, k, m) end:
seq(print(seq(SF_SO(n, k, 4), k=0..n)), n = 0..5);
MATHEMATICA
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]; Table[ SFSO[n, k, 4], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
PROG
(Sage)
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+ (m*k+1)*EulerianNumber(n-1, k, m)
def SF_SO(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))
for n in (0..6): [SF_SO(n, k, 4) for k in (0..n)]
CROSSREFS
Cf. A131689 (m=1), A145901 (m=2), A225472 (m=3).
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 17 2013
STATUS
approved
Triangle read by rows. A generalization of unsigned Lah numbers, called L[3,2].
+10
2
1, 4, 1, 28, 14, 1, 280, 210, 30, 1, 3640, 3640, 780, 52, 1, 58240, 72800, 20800, 2080, 80, 1, 1106560, 1659840, 592800, 79040, 4560, 114, 1, 24344320, 42602560, 18258240, 3043040, 234080, 8778, 154, 1, 608608000, 1217216000, 608608000, 121721600, 11704000, 585200, 15400, 200, 1, 17041024000, 38342304000, 21909888000, 5112307200, 589881600, 36867600, 1293600, 25200, 252, 1, 528271744000, 1320679360000, 849008160000, 226402176000, 30477216000, 2285791200, 100254000, 2604000, 39060, 310, 1
OFFSET
0,2
COMMENTS
For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[3,2], the Sheffer triangle ((1 - 3*t)^(-4/3), t/(1 - 3*t)). It is defined as transition matrix risefac[3,2](x, n) = Sum_{m=0..n} L[3,2](n, m)*fallfac[3,2](x, m), where risefac[3,2](x, n):= Product_{0..n-1} (x + (2 + 3*j)) for n >= 1 and risefac[3,2](x, 0) := 1, and fallfac[3,2](x, n):= Product_{0..n-1} (x - (2 + 3*j)) for n >= 1 and fallfac[3,2](x, 0) := 1.
In matrix notation: L[3,2] = S1phat[3,2]*S2hat[3,2] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A225470 and A225468, respectively.
The a- and z-sequences for this Sheffer matrix have e.g.f.s 1 + 3*t and (1 + 3*t)*(1 - (1 + 3*t)^(-4/3))/t, respectively. That is, a = {1, 3, repeat(0)} and z(n) = A290603(n)/A038500(n+1). See a W. Lang link under A006232 for these types of sequences with a reference, and also the present link, eq. (142).
The inverse matrix T^(-1) = L^(-1)[3,2] is Sheffer ((1 + 3*t)^(-4/3), t/(1 + 3*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[3,2](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[3,2](x, m), n >= 0.
REFERENCES
Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.
FORMULA
T(n, m) = L[3,2](n,m) = Sum_{k=m..n} A225470(n, k) * A225468(k, m), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 3*t)^(-4/3)*exp(x*t/(1 - 3*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 3*t)^(-4/3)*(t/(1 - 3*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 3*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0}^(n-1) z(j)*T(n-1, j), from the a-sequence {1, 3 repeat(0)} and the z-sequence given above.
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(3*n - 1)*T(n-1, m) - 3*(n-1)*(3*n - 2)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 3*D_x)) * R(n, x) = n*R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-3)^k*{D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(4 + x)*1 + 6*(2 + x)*D_x + 3^2*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(4 + 3*m)*Sum_{p=0..n-1-m} 3^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
EXAMPLE
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 4 1
2: 28 14 1
3: 280 210 30 1
4: 3640 3640 780 52 1
5: 58240 72800 20800 2080 80 1
6: 1106560 1659840 592800 79040 4560 114 1
7: 24344320 42602560 18258240 3043040 234080 8778 154 1
8: 608608000 1217216000 608608000 121721600 11704000 585200 15400 200 1
...
n = 9: 17041024000 38342304000 21909888000 5112307200 589881600 36867600 1293600 25200 252 1,
n = 10: 528271744000 1320679360000 849008160000 226402176000 30477216000 2285791200 100254000 2604000 39060 310 1.
...
Recurrence from a-sequence: T(4, 2) = (4/2)*T(3, 1) + 3*4*T(3, 2) = 2*210 + 12*30 = 780.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2) + z(3)*T(3, 3)) = 4*(4* 280 - 2*210 + (28/3)*30 - 70*1) = 3640.
Four term recurrence: T(4, 2) = T(3, 1) + 2*11*T(3, 2) - 3*3*10*T(2, 2) = 210 + 22*30 - 90*1 = 780.
Meixner type identity for n = 2: (D_x - 3*(D_x)^2)*(28 + 14*x + x^2) = (14 + 2*x) - 3*2 = 2*(4 + x).
Sheffer recurrence for R(3, x): [(4 + x) + 6*(2 + x)*D_x + 9*x*(D_x)^2] (28 + 14*x + x^2) = (4 + x)*(28 + 14*x + x^2) + 6*(2 + x)*(14 + 2*x) + 9*2*x= 280 + 210*x + 30*x^2 + x^3 = R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*(4 + 3*2)/2)*(1*30/3! + 3*1/2!) = 780.
CROSSREFS
Cf. A007559(n+1) (column m=0), A225468, A225470, A271703 L[1,0], A286724 L[2,1], A290596, L[3,1], A290603.
KEYWORD
nonn,tabl,easy
AUTHOR
Wolfdieter Lang, Sep 13 2017
STATUS
approved
Triangle read by rows, k!*2^k*S_2(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
+10
1
1, 1, 1, 1, 4, 2, 1, 13, 18, 6, 1, 40, 116, 96, 24, 1, 121, 660, 1020, 600, 120, 1, 364, 3542, 9120, 9480, 4320, 720, 1, 1093, 18438, 74466, 121800, 94920, 35280, 5040, 1, 3280, 94376, 576576, 1394064, 1653120, 1028160, 322560, 40320, 1, 9841, 478440, 4319160
OFFSET
0,5
COMMENTS
The Stirling-Frobenius subset numbers are defined in A225468 (see also the Sage program).
LINKS
Vincenzo Librandi, Rows n = 0..50, flattened
Shi-Mei Ma, Toufik Mansour, Matthias Schork, Normal ordering problem and the extensions of the Stirling grammar, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv 1308.0169 p. 12.
FORMULA
T(n, k) = sum_{j=0..n} A_2(n, j)*binomial(j, n-k), where A_2(n, j) are the generalized Eulerian numbers of order m=2.
For a recurrence see the Maple program.
EXAMPLE
[n\k][0, 1, 2, 3, 4, 5 ]
[0] 1,
[1] 1, 1,
[2] 1, 4, 2,
[3] 1, 13, 18, 6,
[4] 1, 40, 116, 96, 24,
[5] 1, 121, 660, 1020, 600, 120.
MAPLE
SF_SSO := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
k*SF_SSO(n-1, k-1, m) + (m*(k+1)-1)*SF_SSO(n-1, k, m) end:
seq(print(seq(SF_SSO(n, k, 2), k=0..n)), n = 0..5);
MATHEMATICA
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n - k) + m - 1)*EulerianNumber[n - 1, k - 1, m] + (m*k + 1)*EulerianNumber[n - 1, k, m]]); SFSSO[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n - k], {j, 0, n}]/m^k; Table[ SFSSO[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
PROG
(Sage)
@CachedFunction
def EulerianNumber(n, k, m) :
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m)+(m*k+1)*EulerianNumber(n-1, k, m)
def SF_SSO(n, k, m):
return add(EulerianNumber(n, j, m)*binomial(j, n - k) for j in (0..n))/m^k
for n in (0..6): [SF_SSO(n, k, 2) for k in (0..n)]
CROSSREFS
T(n, 0) ~ A000012; T(n, 1) ~ A003462; T(n, 2) ~ A007798.
T(n, n) ~ A000142; T(n, n-1) ~ A001563.
Alternating row sum ~ A000364 (Euler secant numbers).
Cf. A225468, A131689 (m=1).
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 19 2013
STATUS
approved

Search completed in 0.012 seconds