Displaying 1-10 of 16 results found.
T(n,k)=Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).
+10
19
1, 1, 1, 2, 4, 2, 5, 34, 34, 5, 15, 500, 2052, 500, 15, 52, 10900, 278982, 278982, 10900, 52, 203, 322768, 68162042, 455546040, 68162042, 322768, 203, 877, 12297768, 26419793726, 1625686993918, 1625686993918, 26419793726, 12297768, 877
COMMENTS
Table starts
...1.........1..............2.................5.................15
...1.........4.............34...............500..............10900
...2........34...........2052............278982...........68162042
...5.......500.........278982.........455546040......1625686993918
..15.....10900.......68162042.....1625686993918.103204230192540988
..52....322768....26419793726.10764437129618296
.203..12297768.15002771641712
.877.580849872
LINKS
Eric Weisstein's World of Mathematics, Grid Graph.
EXAMPLE
Some solutions for n=5 k=3
..0..1..0....0..1..2....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..1..0..1....1..0..3....1..0..1....1..0..1....1..2..0....1..0..1....1..0..1
..0..1..0....0..1..0....0..1..0....2..1..0....0..1..2....0..2..3....0..1..2
..1..0..1....1..0..1....1..0..1....0..2..3....1..0..1....1..0..1....1..0..1
..0..1..0....0..1..0....2..1..0....1..3..0....2..1..0....0..1..0....0..1..0
T(n,k) = number of n X k 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).
+10
19
1, 1, 1, 2, 3, 2, 4, 9, 9, 4, 8, 27, 41, 27, 8, 16, 81, 187, 187, 81, 16, 32, 243, 853, 1302, 853, 243, 32, 64, 729, 3891, 9075, 9075, 3891, 729, 64, 128, 2187, 17749, 63267, 96831, 63267, 17749, 2187, 128, 256, 6561, 80963, 441090, 1034073, 1034073, 441090, 80963
COMMENTS
Number of colorings of the grid graph P_n X P_k using a maximum of 3 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017
EXAMPLE
Table starts
..1....1.....2.......4.........8.........16...........32............64
..1....3.....9......27........81........243..........729..........2187
..2....9....41.....187.......853.......3891........17749.........80963
..4...27...187....1302......9075......63267.......441090.......3075255
..8...81...853....9075.....96831....1034073.....11045757.....117997043
.16..243..3891...63267...1034073...16932816....277458045....4547477370
.32..729.17749..441090..11045757..277458045...6978332618..175605187731
.64.2187.80963.3075255.117997043.4547477370.175605187731.6787438272198
...
Some solutions for n=4, k=3:
..0..1..2....0..1..0....0..1..0....0..1..2....0..1..2....0..1..2....0..1..0
..2..0..1....2..0..2....1..0..2....1..2..1....2..0..1....1..2..1....1..2..1
..0..2..0....0..1..0....2..1..0....0..1..2....0..2..0....0..1..2....2..0..2
..1..0..1....1..2..1....1..0..1....1..2..0....2..0..2....2..0..1....1..2..0
T(n,k) = number of n X k 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor.
+10
17
1, 1, 1, 2, 4, 2, 5, 33, 33, 5, 15, 380, 1211, 380, 15, 51, 4801, 50384, 50384, 4801, 51, 187, 62004, 2125425, 6907736, 2125425, 62004, 187, 715, 804833, 89793204, 948656912, 948656912, 89793204, 804833, 715, 2795, 10459180, 3794115705
COMMENTS
Number of colorings of the grid graph P_n X P_k using a maximum of 5 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017
EXAMPLE
Table starts
.....1..........1...............2....................5
.....1..........4..............33..................380
.....2.........33............1211................50384
.....5........380...........50384..............6907736
....15.......4801.........2125425............948656912
....51......62004........89793204.........130292546801
...187.....804833......3794115705.......17895005957823
...715...10459180....160319061892.....2457786852894234
..2795..135958401...6774239755817...337564362706067534
.11051.1767426404.286243775060868.46362726246946052884
...
Some solutions with values 0 to 4 for n=6, k=4:
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..1..0..2....0..1..0..2....0..1..0..2....0..1..0..2....0..1..0..2
..2..0..2..0....2..0..3..0....2..0..2..3....2..0..1..0....2..0..1..3
..3..2..1..4....0..1..0..4....0..4..0..2....3..2..4..3....0..3..4..2
..2..4..2..1....2..4..3..1....1..3..1..4....1..0..1..2....4..0..1..4
T(n,k) = number of n X k 0..5 arrays with values 0..5 introduced in row major order and no element equal to any horizontal or vertical neighbor.
+10
16
1, 1, 1, 2, 4, 2, 5, 34, 34, 5, 15, 481, 1835, 481, 15, 52, 8731, 146286, 146286, 8731, 52, 202, 174454, 12662226, 53082012, 12662226, 174454, 202, 855, 3603244, 1112962873, 19622872903, 19622872903, 1112962873, 3603244, 855, 3845, 75251971
COMMENTS
Number of colorings of the grid graph P_n X P_k using a maximum of 6 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017
EXAMPLE
Table starts
.....1...........1.................2........................5
.....1...........4................34......................481
.....2..........34..............1835...................146286
.....5.........481............146286.................53082012
....15........8731..........12662226..............19622872903
....52......174454........1112962873............7267830860056
...202.....3603244.......98102456246.........2692353648978984
...855....75251971.....8651794282083.......997397244990907738
..3845..1577395861...763087851014929....369492074075459555844
.18002.33105096904.67305520316532514.136880688981914387733120
...
Some solutions with all values from 0 to 5 for n=6, k=4:
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..2..3..0....1..2..3..0....1..2..3..0....1..2..3..0....1..2..3..0
..0..3..0..1....0..3..0..1....0..3..0..1....0..3..0..1....0..3..0..1
..2..0..3..0....1..0..3..0....1..0..3..0....1..0..3..0....1..0..3..0
..1..2..0..2....4..1..0..1....3..1..0..4....3..4..2..1....3..4..2..5
..4..5..2..1....5..4..2..4....5..2..3..1....1..5..1..5....5..1..5..2
T(n,k) = number of n X k 0..6 arrays with values 0..6 introduced in row major order and no element equal to any horizontal or vertical neighbor.
+10
15
1, 1, 1, 2, 4, 2, 5, 34, 34, 5, 15, 499, 2027, 499, 15, 52, 10507, 232841, 232841, 10507, 52, 203, 272410, 34003792, 173549032, 34003792, 272410, 203, 876, 7817980, 5315840795, 141168480719, 141168480719, 5315840795, 7817980, 876, 4111
COMMENTS
Number of colorings of the grid graph P_n X P_k using a maximum of 7 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017
EXAMPLE
Table starts
.....1............1...................2.......................5
.....1............4..................34.....................499
.....2...........34................2027..................232841
.....5..........499..............232841...............173549032
....15........10507............34003792............141168480719
....52.......272410..........5315840795.........116492275674072
...203......7817980........846047363854.......96356630422085931
...876....234638905.....135284283124811....79732515488691835557
..4111...7176366133...21658679381667910.65980773070548173552412
.20648.221220625936.3468618095206638077
...
Some solutions with all values 0 to 6 for n=3, k=3:
..0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..0....0..1..2
..3..2..4....2..3..1....3..4..5....1..3..4....3..4..3....2..3..4....3..4..3
..4..5..6....4..5..6....6..2..4....5..0..6....1..5..6....5..4..6....5..6..2
T(n,k) = number of n X k 0..7 arrays with values 0..7 introduced in row major order and no element equal to any horizontal or vertical neighbor.
+10
15
1, 1, 1, 2, 4, 2, 5, 34, 34, 5, 15, 500, 2051, 500, 15, 52, 10867, 269940, 269940, 10867, 52, 203, 313132, 54381563, 319608038, 54381563, 313132, 203, 877, 10856948, 13088156547, 481871809749, 481871809749, 13088156547, 10856948, 877, 4139
COMMENTS
Number of colorings of the grid graph P_n X P_k using a maximum of 8 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017
EXAMPLE
Table starts
.....1............1..................2......................5
.....1............4.................34....................500
.....2...........34...............2051.................269940
.....5..........500.............269940..............319608038
....15........10867...........54381563...........481871809749
....52.......313132........13088156547........769126451071174
...203.....10856948......3352514013159....1243368053336112649
...877....418689772....876632051686733.2015791720035206825303
..4139..17067989413.230783525290600476
.21110.715189507700
...
Some solutions with values 0 to 7 for n=5, k=3:
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0
..1..2..1....1..0..1....1..2..1....1..0..2....1..0..2....1..2..3....1..2..3
..3..0..2....2..3..4....3..4..2....3..4..5....3..4..5....0..1..4....0..4..5
..2..4..5....5..4..3....5..6..1....5..3..6....6..7..0....5..6..7....1..5..1
..1..6..7....6..0..7....6..7..2....7..4..2....3..0..3....7..0..5....6..7..4
T(n,k) = number of n X k 0..3 arrays with entries increasing mod 4 by 0, 1 or 2 rightwards and downwards, starting with upper left zero.
+10
14
1, 3, 3, 9, 21, 9, 27, 147, 147, 27, 81, 1029, 2403, 1029, 81, 243, 7203, 39285, 39285, 7203, 243, 729, 50421, 642249, 1500183, 642249, 50421, 729, 2187, 352947, 10499787, 57289767, 57289767, 10499787, 352947, 2187, 6561, 2470629, 171655443
COMMENTS
1/4 the number of 4-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1).
k=2: a(n) = 7*a(n-1).
k=3: a(n) = 18*a(n-1) - 27*a(n-2).
k=4: a(n) = 45*a(n-1) - 267*a(n-2) + 263*a(n-3).
k=5: a(n) = 118*a(n-1) - 2811*a(n-2) + 22255*a(n-3) - 53860*a(n-4) - 54747*a(n-5) + 269406*a(n-6) - 175392*a(n-7).
k=6: [order 13]
k=7: [order 32]
EXAMPLE
Table starts
......1..........3...............9..................27.......................81
......3.........21.............147................1029.....................7203
......9........147............2403...............39285...................642249
.....27.......1029...........39285.............1500183.................57289767
.....81.......7203..........642249............57289767...............5110723191
....243......50421........10499787..........2187822609.............455924913093
....729.....352947.......171655443.........83550197745...........40672916404629
...2187....2470629......2806303725.......3190677470643.........3628419487925547
...6561...17294403.....45878770089.....121847980727187.......323690312271131451
..19683..121060821....750047661027....4653221950068669.....28876324830999722133
..59049..847425747..12262131106083..177700725073710285...2576049100980154511889
.177147.5931980229.200467073061765.6786168386579878383.229808641254065144560647
...
Some solutions for n=3, k=4:
..0..0..0..2....0..0..2..0....0..2..0..0....0..2..0..2....0..0..2..3
..1..2..2..3....0..2..3..1....2..2..2..0....0..0..0..2....0..2..3..1
..2..2..3..1....2..0..1..3....2..2..0..0....2..0..1..3....1..2..0..1
T(n,k) = number of n X k 0..5 arrays with no entry increasing mod 6 by 5 rightwards or downwards, starting with upper left zero.
+10
13
1, 5, 5, 25, 105, 25, 125, 2205, 2205, 125, 625, 46305, 194485, 46305, 625, 3125, 972405, 17153945, 17153945, 972405, 3125, 15625, 20420505, 1513010465, 6354787485, 1513010465, 20420505, 15625, 78125, 428830605, 133450391205
COMMENTS
1/6 the number of 6-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017
EXAMPLE
Table starts
........1................5......................25..........................125
........5..............105....................2205........................46305
.......25.............2205..................194485.....................17153945
......125............46305................17153945...................6354787485
......625...........972405..............1513010465................2354171487645
.....3125.........20420505............133450391205..............872117822449905
....15625........428830605..........11770577485085...........323081602357856985
....78125.......9005442705........1038187247574145........119687637492011211885
...390625.....189114296805.......91570083319317865......44339047670574481807485
..1953125....3971400232905.....8076654937439905005...16425682631297501047982145
..9765625...83399404891005...712376276332499775685.6084998755694142903356375385
.48828125.1751387502711105.62832938018547611186345
...
Some solutions for n=3, k=4:
..0..0..0..0....0..0..0..0....0..0..0..0....0..3..0..0....0..0..0..0
..4..2..0..1....1..2..0..4....0..0..0..1....0..0..3..1....0..2..3..0
..0..4..1..4....1..4..1..2....3..4..4..1....3..0..4..4....4..5..1..3
T(n,k) = number of n X k 0..6 arrays with no entry increasing mod 7 by 6 rightwards or downwards, starting with upper left zero.
+10
13
1, 6, 6, 36, 186, 36, 216, 5766, 5766, 216, 1296, 178746, 923526, 178746, 1296, 7776, 5541126, 147918906, 147918906, 5541126, 7776, 46656, 171774906, 23691810366, 122408393436, 23691810366, 171774906, 46656, 279936, 5325022086
COMMENTS
1/7 the number of 7-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017
EXAMPLE
Table starts
.......1.............6...................36........................216
.......6...........186.................5766.....................178746
......36..........5766...............923526..................147918906
.....216........178746............147918906...............122408393436
....1296.......5541126..........23691810366............101297497221786
....7776.....171774906........3794659477146..........83827445649884946
...46656....5325022086......607781352505806.......69370328359709445996
..279936..165075684666....97346856728146986....57406526220963704077986
.1679616.5117346224646.15591808593304758846.47506035082750189614687546
...
Some solutions for n=3, k=4:
..0..0..2..0....0..2..2..0....0..0..0..0....0..2..0..0....0..2..0..0
..0..5..3..0....0..2..5..0....0..1..5..0....0..5..0..0....0..0..5..0
..3..1..4..5....4..4..2..3....3..6..1..4....2..2..2..2....4..1..3..4
T(n,k) = number of n X k 0..7 arrays with no entry increasing mod 8 by 7 rightwards or downwards, starting with upper left zero.
+10
11
1, 7, 7, 49, 301, 49, 343, 12943, 12943, 343, 2401, 556549, 3418807, 556549, 2401, 16807, 23931607, 903055069, 903055069, 23931607, 16807, 117649, 1029059101, 238535974201, 1465295106499, 238535974201, 1029059101, 117649, 823543
COMMENTS
1/8 the number of 8-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017
FORMULA
Empirical for column k:
k=1: a(n) = 7*a(n-1).
k=2: a(n) = 43*a(n-1).
k=3: a(n) = 270*a(n-1) - 1547*a(n-2).
k=4: a(n) = 1689*a(n-1) - 108775*a(n-2) + 1672631*a(n-3).
k=5: a(n) = 10754*a(n-1) - 8060499*a(n-2) + 2219242223*a(n-3) - 245682627864*a(n-4) + 5798947687589*a(n-5) + 448113231493438*a(n-6) - 2763020698450992*a(n-7).
EXAMPLE
Table starts
......1.............7..................49........................343
......7...........301...............12943.....................556549
.....49.........12943.............3418807..................903055069
....343........556549...........903055069..............1465295106499
...2401......23931607........238535974201...........2377584520856755
..16807....1029059101......63007686842527........3857863258420747009
.117649...44249541343...16643060295393343.....6259760185235726701945
.823543.1902730277749.4396153388210813341.10157072698503130798653535
...
Some solutions for n=3, k=4:
..0..4..2..3....0..0..0..4....0..4..6..1....0..4..0..4....0..2..6..2
..0..0..5..6....0..0..4..6....0..0..1..5....0..0..6..0....0..0..2..3
..0..0..0..1....0..0..5..1....0..0..3..5....0..0..0..1....0..0..3..5
Search completed in 0.009 seconds
|