[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A222462
T(n,k) = number of n X k 0..7 arrays with no entry increasing mod 8 by 7 rightwards or downwards, starting with upper left zero.
11
1, 7, 7, 49, 301, 49, 343, 12943, 12943, 343, 2401, 556549, 3418807, 556549, 2401, 16807, 23931607, 903055069, 903055069, 23931607, 16807, 117649, 1029059101, 238535974201, 1465295106499, 238535974201, 1029059101, 117649, 823543
OFFSET
1,2
COMMENTS
1/8 the number of 8-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..276 (terms 1..83 from R. H. Hardin)
FORMULA
T(n, k) = 7 * (720*A198914(n,k) - 360*A198982(n,k) - 240*A198906(n,k) - 90*A198715(n,k) - 24*A207997(n,k) - 5) for n*k > 1. - Andrew Howroyd, Jun 27 2017
Empirical for column k:
k=1: a(n) = 7*a(n-1).
k=2: a(n) = 43*a(n-1).
k=3: a(n) = 270*a(n-1) - 1547*a(n-2).
k=4: a(n) = 1689*a(n-1) - 108775*a(n-2) + 1672631*a(n-3).
k=5: a(n) = 10754*a(n-1) - 8060499*a(n-2) + 2219242223*a(n-3) - 245682627864*a(n-4) + 5798947687589*a(n-5) + 448113231493438*a(n-6) - 2763020698450992*a(n-7).
EXAMPLE
Table starts
......1.............7..................49........................343
......7...........301...............12943.....................556549
.....49.........12943.............3418807..................903055069
....343........556549...........903055069..............1465295106499
...2401......23931607........238535974201...........2377584520856755
..16807....1029059101......63007686842527........3857863258420747009
.117649...44249541343...16643060295393343.....6259760185235726701945
.823543.1902730277749.4396153388210813341.10157072698503130798653535
...
Some solutions for n=3, k=4:
..0..4..2..3....0..0..0..4....0..4..6..1....0..4..0..4....0..2..6..2
..0..0..5..6....0..0..4..6....0..0..1..5....0..0..6..0....0..0..2..3
..0..0..0..1....0..0..5..1....0..0..3..5....0..0..0..1....0..0..3..5
CROSSREFS
Columns 1-5 are A000420(n-1), 7*43^(n-1), A222459, A222460, A222461.
Main diagonal is A068258.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A222281 (6 colorings), A222340 (7 colorings), A198914 (unlabeled 8 colorings).
Sequence in context: A161343 A038273 A245132 * A214887 A203066 A165425
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 21 2013
STATUS
approved