[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A222340
T(n,k) = number of n X k 0..6 arrays with no entry increasing mod 7 by 6 rightwards or downwards, starting with upper left zero.
13
1, 6, 6, 36, 186, 36, 216, 5766, 5766, 216, 1296, 178746, 923526, 178746, 1296, 7776, 5541126, 147918906, 147918906, 5541126, 7776, 46656, 171774906, 23691810366, 122408393436, 23691810366, 171774906, 46656, 279936, 5325022086
OFFSET
1,2
COMMENTS
1/7 the number of 7-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..325 (terms 1..84 from R. H. Hardin)
FORMULA
T(n, k) = 6 * (120*A198723(n,k) - 60*A198906(n,k) - 40*A198715(n,k) - 15*A207997(n,k) - 4) for n*k > 1. - Andrew Howroyd, Jun 27 2017
EXAMPLE
Table starts
.......1.............6...................36........................216
.......6...........186.................5766.....................178746
......36..........5766...............923526..................147918906
.....216........178746............147918906...............122408393436
....1296.......5541126..........23691810366............101297497221786
....7776.....171774906........3794659477146..........83827445649884946
...46656....5325022086......607781352505806.......69370328359709445996
..279936..165075684666....97346856728146986....57406526220963704077986
.1679616.5117346224646.15591808593304758846.47506035082750189614687546
...
Some solutions for n=3, k=4:
..0..0..2..0....0..2..2..0....0..0..0..0....0..2..0..0....0..2..0..0
..0..5..3..0....0..2..5..0....0..1..5..0....0..5..0..0....0..0..5..0
..3..1..4..5....4..4..2..3....3..6..1..4....2..2..2..2....4..1..3..4
CROSSREFS
Columns 1-6 are A000400(n-1), A222335, A222336, A222337, A222338, A222339.
Main diagonal is A068257.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A222281 (6 colorings), A198723 (unlabeled 7 colorings), A222462 (8 colorings).
Sequence in context: A242087 A217978 A257626 * A215270 A203057 A165424
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 15 2013
STATUS
approved