Displaying 1-10 of 11 results found.
Number of {0,1} n X n matrices with no zero rows or columns.
+10
71
1, 1, 7, 265, 41503, 24997921, 57366997447, 505874809287625, 17343602252913832063, 2334958727565749108488321, 1243237913592275536716800402887, 2630119877024657776969635243647463625, 22170632855360952977731028744522744983195423
COMMENTS
Number of relations on n labeled points such that for every point x there exists y and z such that xRy and zRx.
Also the number of edge covers in the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Apr 24 2017
Counts labeled digraphs (loops allowed, no multiarcs) on n nodes where each indegree and each outdegree is >= 1. The corresponding sequence for unlabeled digraphs (1, 5, 55, 1918,... for n >= 1) seems not to be in the OEIS. - R. J. Mathar, Nov 21 2023
These relations form a subsemigroup of the semigroup of all binary relations on [n]. The zero element is the universal relation (all 1's matrix). See Schwarz link. - Geoffrey Critzer, Jan 15 2024
REFERENCES
Brendan McKay, Posting to sci.math.research, Jun 14 1999.
LINKS
Eric Weisstein's World of Mathematics, Edge Cover.
FORMULA
a(n) = Sum_{s=0..n} binomial(n, s)*(-1)^s*2^((n-s)*n)*(1-2^(-n+s))^n.
E.g.f.: Sum_{n>=0} (2^n-1)^n*exp((1-2^n)*x)*x^n/n!.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j)*binomial(n,i)*binomial(n,j)*2^(i*j). (End)
EXAMPLE
a(2) = 7: |01| |01| |10| |10| |11| |11| |11|
|10| |11| |01| |11| |01| |10| |11|.
MAPLE
seq(add((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n), n=0..15); # Robert FERREOL, Mar 10 2017
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k]*(-1)^k*(2^(n-k)-1)^n, {k, 0, n}], {n, 1, 15}]}] (* Vaclav Kotesovec, Jul 02 2014 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(n, k)*(-1)^k*(2^(n-k)-1)^n)
(Python)
import math
f = math.factorial
def A048291(n): return sum([(f(n)/f(s)/f(n - s))*(-1)**s*(2**(n - s) - 1)**n for s in range(0, n+1)]) # Indranil Ghosh, Mar 14 2017
AUTHOR
Joe Keane (jgk(AT)jgk.org)
Number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
+10
45
1, 1, 3, 9, 33, 125, 531, 2349, 11205, 55589, 291423, 1583485, 8985813, 52661609, 319898103, 2000390153, 12898434825, 85374842121, 580479540219, 4041838056561, 28824970996809, 210092964771637, 1564766851282299, 11890096357039749, 92151199272181629
COMMENTS
Number of normal semistandard Young tableaux of size n, where a tableau is normal if its entries span an initial interval of positive integers. - Gus Wiseman, Feb 23 2018
FORMULA
G.f.: Sum_{n>=0} Sum_{k=0..n} (-1)^(n-k)*C(n,k)*(1-x)^(-k)*(1-x^2)^(-C(k,2)).
G.f.: Sum_{n>=0} 2^(-n-1)*(1-x)^(-n)*(1-x^2)^(-C(n,2)). - Vladeta Jovovic, Dec 09 2009
EXAMPLE
a(4) = 33 because there are 1 such matrix of type 1 X 1, 7 matrices of type 2 X 2, 15 of type 3 X 3 and 10 of type 4 X 4, cf. A138177.
The a(3) = 9 normal semistandard Young tableaux:
1 1 2 1 3 1 2 1 1 1 2 3 1 2 2 1 1 2 1 1 1
2 3 2 2 2
3
(End)
The a(4) = 33 matrices:
[4]
.
[30][21][20][11][10][02][01]
[01][10][02][11][03][20][12]
.
[200][200][110][101][100][100][100][100][011][010][010][010][001][001][001]
[010][001][100][010][020][011][010][001][100][110][101][100][020][010][001]
[001][010][001][100][001][010][002][011][100][001][010][002][100][101][110]
.
[1000][1000][1000][1000][0100][0100][0010][0010][0001][0001]
[0100][0100][0010][0001][1000][1000][0100][0001][0100][0010]
[0010][0001][0100][0010][0010][0001][1000][1000][0010][0100]
[0001][0010][0001][0100][0001][0010][0001][0100][1000][1000]
(End)
MAPLE
gf:= proc(j) local k, n; add(add((-1)^(n-k) *binomial(n, k) *(1-x)^(-k) *(1-x^2)^(-binomial(k, 2)), k=0..n), n=0..j) end: a:= n-> coeftayl(gf(n+1), x=0, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008
MATHEMATICA
Table[Sum[SeriesCoefficient[1/(2^(k+1)*(1-x)^k*(1-x^2)^(k*(k-1)/2)), {x, 0, n}], {k, 0, Infinity}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 03 2014 *)
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], Sort[Reverse/@#]==#]&]], {n, 5}] (* Gus Wiseman, Nov 14 2018 *)
Number of square matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
+10
27
1, 1, 3, 15, 107, 991, 11267, 151721, 2360375, 41650861, 821881709, 17932031225, 428630422697, 11138928977049, 312680873171465, 9428701154866535, 303957777464447449, 10431949496859168189, 379755239311735494421
FORMULA
a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n-k)*Stirling1(n,k)* A048144(k).
G.f.: Sum_{n>=0} Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*((1-x)^(-j)-1)^n.
a(n) ~ c * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.4670932578797312973586879293426... . - Vaclav Kotesovec, May 07 2014
In closed form, c = 2^(log(2)/2-2) / (log(2) * sqrt(Pi*(1-log(2)))). - Vaclav Kotesovec, May 03 2015
G.f.: Sum_{n>=0} (1-x)^n * (1 - (1-x)^n)^n. - Paul D. Hanna, Mar 26 2018
EXAMPLE
The a(3) = 15 matrices:
[3]
.
[2 0] [1 1] [1 1] [1 0] [1 0] [0 2] [0 1] [0 1]
[0 1] [1 0] [0 1] [1 1] [0 2] [1 0] [2 0] [1 1]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
(End)
MATHEMATICA
Table[1/n!*Sum[(-1)^(n-k)*StirlingS1[n, k]*Sum[(m!)^2*StirlingS2[k, m]^2, {m, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 07 2014 *)
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n], 2], n], Union[First/@#]==Union[Last/@#]==Range[Max@@First/@#]&]], {n, 5}] (* Gus Wiseman, Nov 14 2018 *)
CROSSREFS
Cf. A007716, A048291, A054976, A057149, A057150, A057151, A104601, A104602, A120733, A138178, A316983, A319616.
Number of square (0,1)-matrices with exactly n entries equal to 1 and no zero row or columns.
+10
21
1, 1, 2, 10, 70, 642, 7246, 97052, 1503700, 26448872, 520556146, 11333475922, 270422904986, 7016943483450, 196717253145470, 5925211960335162, 190825629733950454, 6543503207678564364, 238019066600097607402, 9153956822981328930170, 371126108428565106918404
COMMENTS
Number of square (0,1)-matrices with exactly n entries equal to 1 and no zero row or columns, up to row and column permutation, is A057151(n). - Vladeta Jovovic, Mar 25 2006
FORMULA
G.f.: Sum_{n>=0} Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*((1+x)^j-1)^n. - Vladeta Jovovic, Mar 25 2006
a(n) ~ c * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.28889864564457451375789435201798... . - Vaclav Kotesovec, May 07 2014
In closed form, c = 1 / (log(2) * 2^(log(2)/2+2) * sqrt(Pi*(1-log(2)))). - Vaclav Kotesovec, May 03 2015
G.f.: Sum_{n>=0} ((1+x)^n - 1)^n / (1+x)^(n*(n+1)). - Paul D. Hanna, Mar 26 2018
EXAMPLE
The a(3) = 10 matrices:
[1 1] [1 1] [1 0] [0 1]
[1 0] [0 1] [1 1] [1 1]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
(End)
MATHEMATICA
Table[1/n!*Sum[StirlingS1[n, k]*Sum[(m!)^2*StirlingS2[k, m]^2, {m, 0, k}], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, May 07 2014 *)
Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], Union[First/@#]==Union[Last/@#]==Range[Max@@First/@#]&]], {n, 5}] (* Gus Wiseman, Nov 14 2018 *)
CROSSREFS
Cf. A048291, A049311, A054976, A057150, A057151, A101370, A120732, A120733, A138178, A316983, A319616.
Number of binary n X n matrices with no zero rows or columns, up to row and column permutation.
+10
19
1, 3, 17, 179, 3835, 200082, 29610804, 13702979132, 20677458750966, 103609939177198046, 1745061194503344181714, 99860890306900024150675406, 19611238933283757244479826044874, 13340750149227624084760722122669739026, 31706433098827528779057124372265863803044450
COMMENTS
Also the number of non-isomorphic set multipartitions (multisets of sets) with n parts and n vertices. - Gus Wiseman, Nov 18 2018
EXAMPLE
Inequivalent representatives of the a(3) = 17 matrices:
100 100 100 100 100 010 010 001 001 001 001 110 101 101 011 011 111
100 010 001 011 011 001 101 001 101 011 111 101 011 011 011 111 111
011 001 011 011 111 111 011 111 011 111 111 011 011 111 111 111 111
Non-isomorphic representatives of the a(1) = 1 through a(3) = 17 set multipartitions:
{{1}} {{1},{2}} {{1},{2},{3}}
{{2},{1,2}} {{1},{1},{2,3}}
{{1,2},{1,2}} {{1},{3},{2,3}}
{{1},{2,3},{2,3}}
{{2},{1,3},{2,3}}
{{2},{3},{1,2,3}}
{{3},{1,3},{2,3}}
{{3},{3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2,3},{1,2,3}}
{{1,3},{2,3},{2,3}}
{{3},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{2,3},{2,3},{1,2,3}}
{{3},{1,2,3},{1,2,3}}
{{2,3},{1,2,3},{1,2,3}}
{{1,2,3},{1,2,3},{1,2,3}}
(End)
MATHEMATICA
A002724 = Cases[Import["https://oeis.org/ A002724/b002724.txt", "Table"], {_, _}][[All, 2]];
A002725 = Cases[Import["https://oeis.org/ A002725/b002725.txt", "Table"], {_, _}][[All, 2]];
Number of square binary matrices with n ones, with no zero rows or columns, up to row and column permutation.
+10
15
1, 1, 2, 4, 8, 18, 41, 102, 252, 666, 1789, 5031, 14486, 43280, 132777, 420267, 1366307, 4566966, 15661086, 55081118, 198425478, 731661754, 2758808581, 10629386376, 41814350148, 167830018952, 686822393793, 2864024856054, 12162059027416, 52564545391789
COMMENTS
Number of square binary matrices with n ones and with no zero rows or columns is A104602(n). - Vladeta Jovovic, Mar 25 2006
Also the number of non-isomorphic square set multipartitions (multisets of sets) of weight n. A multiset partition or hypergraph is square if its length (number of blocks or edges) is equal to its number of vertices. The weight of a multiset partition is the sum of sizes of its parts. - Gus Wiseman, Nov 16 2018
EXAMPLE
There are 666 square binary matrices with 10 ones, with no zero rows or columns, up to row and column permutation: 33 of size 4 X 4, 248 of size 5 X 5, 288 of size 6 X 6, 79 of size 7 X 7, 15 of size 8 X 8, 2 of size 9 X 9 and 1 of size 10 X 10. Cf. A057150.
Non-isomorphic representatives of the a(1) = 1 through a(6) = 18 square set multipartitions:
{1} {1}{2} {2}{12} {12}{12} {1}{23}{23} {12}{13}{23}
{1}{2}{3} {1}{1}{23} {2}{13}{23} {1}{23}{123}
{1}{3}{23} {2}{3}{123} {13}{23}{23}
{1}{2}{3}{4} {3}{13}{23} {3}{23}{123}
{3}{3}{123} {1}{1}{1}{234}
{1}{2}{2}{34} {1}{1}{24}{34}
{1}{2}{4}{34} {1}{1}{4}{234}
{1}{2}{3}{4}{5} {1}{2}{34}{34}
{1}{3}{24}{34}
{1}{3}{4}{234}
{1}{4}{24}{34}
{1}{4}{4}{234}
{2}{4}{12}{34}
{3}{4}{12}{34}
{4}{4}{12}{34}
{1}{2}{3}{3}{45}
{1}{2}{3}{5}{45}
{1}{2}{3}{4}{5}{6}
(End)
Triangle read by rows: T(n,k) = number of k X k binary matrices with n ones, with no zero rows or columns, up to row and column permutation.
+10
12
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 5, 2, 1, 0, 0, 4, 11, 2, 1, 0, 0, 3, 21, 14, 2, 1, 0, 0, 1, 34, 49, 15, 2, 1, 0, 0, 1, 33, 131, 69, 15, 2, 1, 0, 0, 0, 33, 248, 288, 79, 15, 2, 1, 0, 0, 0, 19, 410, 840, 420, 82, 15, 2, 1, 0, 0, 0, 14, 531, 2144, 1744, 497, 83, 15, 2, 1
COMMENTS
Also the number of non-isomorphic set multipartitions (multisets of sets) of weight n with k parts and k vertices. - Gus Wiseman, Nov 14 2018
EXAMPLE
[1], [0,1], [0,1,1], [0,1,2,1], [0,0,5,2,1], [0,0,4,11,2,1], ...;
There are 8 square binary matrices with 5 ones, with no zero rows or columns, up to row and column permutation: 5 of size 3 X 3:
[0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 1 0] [0 1 1] [0 1 1] [1 1 0]
[1 1 1] [1 1 1] [1 0 1] [1 1 0] [1 1 0]
2 of size 4 X 4:
[0 0 0 1] [0 0 0 1]
[0 0 0 1] [0 0 1 0]
[0 0 1 0] [0 1 0 0]
[1 1 0 0] [1 0 0 1]
and 1 of size 5 X 5:
[0 0 0 0 1]
[0 0 0 1 0]
[0 0 1 0 0]
[0 1 0 0 0]
[1 0 0 0 0].
Triangle begins:
1
0 1
0 1 1
0 1 2 1
0 0 5 2 1
0 0 4 11 2 1
0 0 3 21 14 2 1
0 0 1 34 49 15 2 1
0 0 1 33 131 69 15 2 1
0 0 0 33 248 288 79 15 2 1
Non-isomorphic representatives of the multiset partitions counted in row 6 {0,0,4,11,2,1} are:
{{12}{13}{23}} {{1}{1}{1}{234}} {{1}{2}{3}{3}{45}} {{1}{2}{3}{4}{5}{6}}
{{1}{23}{123}} {{1}{1}{24}{34}} {{1}{2}{3}{5}{45}}
{{13}{23}{23}} {{1}{1}{4}{234}}
{{3}{23}{123}} {{1}{2}{34}{34}}
{{1}{3}{24}{34}}
{{1}{3}{4}{234}}
{{1}{4}{24}{34}}
{{1}{4}{4}{234}}
{{2}{4}{12}{34}}
{{3}{4}{12}{34}}
{{4}{4}{12}{34}}
(End)
MATHEMATICA
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
c[p_List, q_List, k_] := SeriesCoefficient[Product[Product[(1 + O[x]^(k + 1) + x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}], {i, 1, Length[p]}], {x, 0, k}];
M[m_, n_, k_] := M[m, n, k] = Module[{s = 0}, Do[Do[s += permcount[p]* permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
T[n_, k_] := M[k, k, n] - 2*M[k, k - 1, n] + M[k - 1, k - 1, n];
PROG
T(n, k) = M(k, k, n) - 2*M(k, k-1, n) + M(k-1, k-1, n); \\ Andrew Howroyd, Nov 14 2018
CROSSREFS
Cf. A007716, A048291, A054976, A101370, A104601, A104602, A120732, A120733, A135588, A319616, A321609, A321615.
EXTENSIONS
Duplicate seventh row removed by Gus Wiseman, Nov 14 2018
Number of symmetric (0,1)-matrices with exactly n entries equal to 1 and no zero rows or columns.
+10
11
1, 1, 2, 6, 20, 74, 302, 1314, 6122, 29982, 154718, 831986, 4667070, 27118610, 163264862, 1013640242, 6488705638, 42687497378, 288492113950, 1998190669298, 14177192483742, 102856494496050, 762657487965086, 5771613810502002, 44555989658479726, 350503696871063138
FORMULA
G.f.: Sum_{n>=0} (1+x)^n*(1+x^2)^binomial(n,2)/2^(n+1).
G.f.: Sum_{n>=0} (Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*(1+x)^k*(1+x^2)^binomial(k,2)).
EXAMPLE
The a(4) = 20 matrices:
[11]
[11]
.
[110][101][100][100][011][010][010][001][001]
[100][010][011][001][100][110][101][010][001]
[001][100][010][011][100][001][010][101][110]
.
[1000][1000][1000][1000][0100][0100][0010][0010][0001][0001]
[0100][0100][0010][0001][1000][1000][0100][0001][0100][0010]
[0010][0001][0100][0010][0010][0001][1000][1000][0010][0100]
[0001][0010][0001][0100][0001][0010][0001][0100][1000][1000]
(End)
MATHEMATICA
Table[Sum[SeriesCoefficient[(1+x)^k*(1+x^2)^(k*(k-1)/2)/2^(k+1), {x, 0, n}], {k, 0, Infinity}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 02 2014 *)
Join[{1}, Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], Sort[Reverse/@#]==#]&]], {n, 5}]] (* Gus Wiseman, Nov 14 2018 *)
CROSSREFS
Cf. A049311, A054976, A101370, A104601, A104602, A120733, A138178, A283877, A316983, A320796, A321401, A321405.
Number of n X n binary matrices with no 0 rows or columns and with n+1 1's.
+10
9
0, 4, 45, 432, 4200, 43200, 476280, 5644800, 71850240, 979776000, 14270256000, 221298739200, 3642807168000, 63465795993600, 1167099373440000, 22596613079040000, 459548157100032000, 9795631769763840000
FORMULA
Number of m X n binary matrices with no zero rows or columns and with k=0..m*n ones is Sum_{i=0..n} (-1)^i*binomial(n, i)*a(m, n-i, k) where a(m, n, k)=Sum_{i=0..m} (-1)^i*binomial(m, i)*binomial((m-i)*n, k).
E.g.f.: x^2*(4-x)/(2*(1-x)^2).
D-finite with recurrence 4*(n-2)*a(n)-n*(4*n+3)*a(n-1)-(n-1)^2*a(n-2)=0.
(End)
MAPLE
f:= n -> n*(n-1)*(n+2)*n!/4:
Triangle read by rows: T(n,k) is the number of k X k integer matrices with sum of elements n, with no zero rows or columns, up to row and column permutation.
+10
5
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 6, 3, 1, 0, 1, 9, 13, 3, 1, 0, 1, 17, 38, 20, 3, 1, 0, 1, 23, 97, 82, 23, 3, 1, 0, 1, 36, 217, 311, 126, 24, 3, 1, 0, 1, 46, 453, 968, 624, 151, 24, 3, 1, 0, 1, 65, 868, 2825, 2637, 933, 162, 24, 3, 1, 0, 1, 80, 1585, 7394, 10098, 4942, 1132, 165, 24, 3, 1
COMMENTS
Also the number of non-isomorphic multiset partitions of weight n with k parts and k vertices, where the weight of a multiset partition is the sum of sizes of its parts. - Gus Wiseman, Nov 18 2018
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 2 1
0 1 6 3 1
0 1 9 13 3 1
0 1 17 38 20 3 1
0 1 23 97 82 23 3 1
0 1 36 217 311 126 24 3 1
0 1 46 453 968 624 151 24 3 1
0 1 65 868 2825 2637 933 162 24 3 1
MATHEMATICA
T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
PROG
T(n, k) = if(k==0, n==0, M(k, k, n) - 2*M(k, k-1, n) + M(k-1, k-1, n));
T(n)={[Vecrev(p) | p<-Vec(1 + sum(k=1, n, y^k*(polcoef(G(k, n, n, y), k, y) - polcoef(G(k-1, n, n, y), k, y))))]}
{ my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 16 2024
Search completed in 0.009 seconds
|